基质金属蛋白酶7和13在人椎间盘不同结构中的表达情况与椎间盘退变程度关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
椎间盘退变性疾病是骨科临床常见病、多发病,包括颈椎病、腰椎间盘突出症、腰椎管狭窄症等。免疫性炎症反应、髓核刺激压迫相邻神经和血管引起的相应症状、体征困扰着患者和医疗工作者。国内外临床MRI等影像学资料观察发现较低年龄群体中椎间盘就存在不同程度退变,但从临床资料分析来看,该类疾病的发病情况个体差异较大[1,2]。目前国内外对这类疾病的发病机理阐述并不完善,针对病因的预防性治疗的阐述甚少。虽然临床诊断方法、手术方法等技术在不断提高,但椎间盘疾患的治疗仍存在诸多问题如:保守治疗疗效不佳、手术治疗并发症多等等。这些促使研究者对椎间盘退变疾病的发病机理进行更加深入的研究。
     椎间盘是人体最大的无血供结构,其退变的特征是蛋白聚糖含量下降、水分减少、胶原纤维构成比改变等。新近的研究表明生物力学的作用是次要的,更强调生物化学机制在椎间盘退变中的作用[3,4],但启动和调节这一过程的生物学机制目前仍不十分清楚。细胞外基质(extra cell matrix,ECM)成分的变化可能是直接导致椎间盘退变的一个重要原因,基质金属蛋白酶(matrix metalloproteinase,MMPs)在椎间盘退变的启动和调节生物学机制中发挥着重要作用[5,6],同时MMPs相关基因的研究也使人们对椎间盘突出的病因有了更深入的认识[7,8]。
     MMPs是参与降解全身各种组织ECM的蛋白酶家族,目前椎间盘ECM中相关研究较多的MMPs包括MMP-1、2、3、7、9、13等。MMP-7又称基质溶解素,是MMPs家族中最小的独立分子,也是一个比较重要的成员,MMP-7在细胞外基质和基膜降解中起重要作用。MMP-13来源于软骨细胞,主要降解Ⅱ型胶原,还能降解聚集蛋白聚糖(aggrecan),从而在基质降解过程中发挥双重作用[9]。MMP-13可以受到体内多种细胞因子的调节,包括MMP-2、MMP-3等其它MMPs可以提高MMP-13的活性[10]。作为降解ECM的重要成分,MMPs在椎间盘退变中发挥的作用等相关研究显得非常重要。作为椎间盘重要营养途径结构的软骨终板的改变及MMPs的表达等研究也显得非常必要。通过研究不同程度退变椎间盘中MMP-7和MMP-13在软骨终板、髓核、纤维环不同结构中的表达与分布,了解椎间盘不同结构细胞、ECM在其退变过程中发挥的作用,探讨MMP-7和MMP-13在颈腰椎间盘退变中发挥的作用。
     方法:
     临床严格筛选颈椎病、腰椎间盘突出症、短期内脊柱外伤(椎间盘相对正常)患者,获得人不同程度退变椎间盘患者共32例,分为椎间盘突出组、椎间盘脱出组以及外伤性对照组。所有患者术前完善X线、MRI等辅助检查,使用视觉模拟评分法(visual analogue scale,VAS)评定患者疼痛程度。行手术治疗,术中切取患者病变椎间盘纤维环、髓核、软骨终板,分别用4%多聚甲醛固定约24小时后行脱水、包埋、切片等操作。通过HE染色、免疫组化、原位杂交方法检测椎间盘各部位MMP-7、MMP-13在细胞中的表达以及在ECM中含量的变化;通过免疫组化方法检测椎间盘各部位I型和II型胶原纤维含量变化,结合退变椎间盘标本的临床资料,分组统计学t检验分析实验结果。
     结果:
     (1)椎间盘突出患者的软骨终板和髓核中MMP-7和MMP-13均有较高表达,免疫组化半定量分析MMP-7在突出组软骨终板高于脱出组软骨终板(p<0.05);免疫组化单位面积阳性细胞表达均值MMP-7突出组软骨终板高于脱出组软骨终板(p<0.05)。(2)椎间盘脱出患者髓核细胞中MMP-7表达较高,免疫组化半定量分析MMP-7在脱出组髓核高于突出组髓核(p<0.05);免疫组化半定量分析MMP-13在脱出组软骨终板高于突出组软骨终板(p<0.05);免疫组化单位面积阳性细胞表达均值MMP-7和MMP-13脱出组髓核高于突出组髓核(p<0.05);免疫组化单位面积阳性细胞表达均值MMP-7脱出组软骨终板高于突出组软骨终板。(3)免疫组化分析突出组和脱出组椎间盘三个结构MMP-7和MMP-13均高于对照组。(4)原位杂交单位面积阳性细胞表达均值MMP-13突出组软骨终板高于脱出组软骨终板。
     结论:
     实验结果提示:(1)MMP-7和MMP-13在椎间盘退变过程中有高度表达,且基本与退变程度正相关。(2)MMP-7、MMP-13在不同退变程度、不同椎间盘结构中表达不一致。早期退变过程MMP-7在软骨终板较高表达,中晚期退变过程MMP-13在椎间盘软骨终板较高表达,提示软骨终板细胞可能在参与椎间盘不同时期退变过程中发挥不同作用。
Degenerative disc disease is the orthopedic clinical common disease, including cervical spondylosis, lumbar disc herniation and the lumbar spinal stenosis. Immune inflammatory response, nerves and blood vessels stimulated and oppressed by the nucleoplasty cause the appropriate symptoms and signs troubled patients and surgeon. Domestic and foreign clinical MRI imaging data shows that in the lower age groups there are varying degrees of disc degeneration, but in terms of clinical data analysis, the incidence of such diseases, had large individual differences. In present the pathogenesis of these diseases are not well described, the cause of preventive treatment for little elaboration. Although clinical diagnostic methods, surgical methods in continuous improvement to the treatment of intervertebral disc disease, there are still many problems exist such as: poor efficacy of conservative treatment, surgery complications and so on. These prompted researchers to study disc degeneration disease pathogenesis for more in-depth research.
     The disc is the largest no blood supply of the human body structure, characterized by degeneration of proteoglycan content decreased, water reduction, collagen fibers content changing. Recent studies show the role of biomechanics is secondary; emphasize biochemics process in the role of disc degeneration. But the start and control of this biochemical process are not clear. Changes in extracellular matrix may be a direct result of disc degeneration. Matrix metalloproteinase plays an important role in intervertebral disc degeneration biochemical process of initiation and regulation, while MMPs-related genes also let people to understand the role of MMPs in the disc degeneration.
     MMPs are involved in ECM degradation protease family, current research in the disc ECM have more MMPs, including MMP-1, 2,3,7,9,13 and so on. MMP-7, also known as matrilysin, is the smallest MMPs family of independent elements and a more important member, MMP-7 in the extracellular matrix and basement membrane degradation plays an important role. MMP-13 from chondrocytes, not only degradeⅡcollagen degradation, but also degrade aggrecan, resulting in substrate degradation played a important role. MMP-13 can be increased the activity by a variety of cytokines of the body, including MMP-2, MMP-3 and other MMPs. As an essential component of ECM degradation protease, MMPs play a very important role in disc degeneration. As an important structure of disc sustain way, cartilage endplate change and the expression of cartilage endplate MMPs research is very necessary. By studying the different degrees of degenerative disc MMP-7 and MMP-13 in the cartilage endplate, nucleus pulposus, annulus fibrosus, learning the expression of different structure and distribution, to understand different disc structure of cells, ECM degeneration process in its role of MMP-7 and MMP-13 in the cervical and lumbar disc degeneration.
     Method:
     Strictly screening out clinical case of cervical spondylosis, lumbar disc herniation, spinal injury patients in the short term as varying degrees of human intervertebral disc degeneration in patients with a total of 32 patients and divided them into 3 group: disc prominent group, disc prolapse group and the trauma group. All patients had X ray, MRI or other clinical examinations, using the VAS assessed the pain of patients. Cut anulus fibrosus, nucleus pulposus, cartilage endplate, respectively, by surgical treatment. With 4% paraformaldehyde for about 24 hours underwent dehydration, embedding, slicing up and other operations. By HE staining, immunohistochemistry, in situ hybridization detection of disc MMP-7, MMP-13 expression and the content changes in the ECM. Detected disc and all parts of I-type II collagen content by immunohistochemistry, combined with degenerative disc cases of clinical data, studied statistical analysis of experimental results.
     Results:
     (1)MMP-7 and MMP-13 expression were high in cartilage endplate and nucleus pulposus of disc prominent group, semi-quantitative immunohistochemical analysis of MMP-7 in a prominent group of cartilage endplate above the prolapse group (p <0.05); positive cells per unit area by immunohistochemical expression of MMP-7 of prominent group cartilage endplate above the prolapse group (p <0.05). (2) MMP-7 expression were high in nucleus pulposus of disc prolapse group, semi-quantitative immunohistochemical analysis of MMP-7 in the prolapse group were higher than prominent group of nucleus pulposus (p <0.05); semi-quantitative immunohistochemical analysis of MMP-13 in the prolapse group cartilage endplate above prominent group (p <0.05); immunohistochemical positive cells per unit area MMP-7 and MMP-13 in prominent group nucleus pulposus were higher than prolapsed group (p <0.05); immunohistochemical expression of positive cells per unit area MMP-7 prolapse group cartilage endplate above the prominent group. (3) Immunohistochemical analysis of prominent groups and prolapse group of three structures MMP-7 and MMP-13 were higher than the trauma group. (4)Positive cells per unit area in situ hybridization, the expression of MMP-13 prominent group cartilage endplate above the prolapse group.
     Conclusion:
     The results suggest that: (1) MMP-7 and MMP-13 in the disc degeneration process are highly expressed, and associated with the basic degeneration. (2) The expression of MMP-7, MMP-13 in different degeneration and different disc structure are inconsistent. In early degeneration the MMP-7 expression in the cartilage endplate is high, in middle and late degeneration the MMP-13 expression of intervertebral disc cartilage is high, showing cartilage endplate cells may participate in the process of disc degeneration play different roles in different times.
引文
[1] Freemont AJ. The cellular pathobiology of the degenerate intervertebral disc and discogenic back pain[J]. Rheumatology(Oxford),2009,48(1):5-10.
    [2] Martin JA, Klingelhu AJ, Moussavi-Harami F, et al. Effects of oxidafive damage and telomerase activity on human articular cartilage chondrocyte senescence [J]. J Gerontol A Biol Sci Med Sci, 2004,59(4):324-337.
    [3] Malemud CJ. Matrix metalloproteinases (MMPs) in health and disease: an overview [J]. Front Biosci, 2006, 11:1696-701.
    [4] Loeser RF. Aging and osteoarthritis:the role of chondrocyte senecsence and aging changes in the cartilage matrix[J]. Osteoarthritis Cartilage,2009,epub ahead of print.
    [5] Kozaci LD, Guner A, Oktay G, et al. Alterations in biochemical components of extracellular matrix in intervertebral disc herniation:role of MMP-2 and TIMP-2 in type II collagenloss[J]. Cell Biochem Funct, 2006, 24(5): 431-436.
    [6] Kanemoto M,Hukuda S,Komiya Y,et al. Immunohistochemical study of matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1 human intervertebral discs [J]. Spine, 1996, 21: 1-8.
    [7] Jurajda M,Muzík J,Izakovicova HL,et al. A newly identified single nucleotide polymorphism in the promoter of the matrix metalloproteinase-1 gene[J]. Mol Cell Probes, 2002, 16: 63-66.
    [8] Sakao K,Takahashi KA,Mazda O,et al. Enhanced expression of interleukin-6, matrix metalloproteinase-13, and receptor activator of NF-kappaB ligand in cells derived from osteoarthritic subchondral bone[J]. J Orthop Sci, 2008, 13: 202-10.
    [9] Bini A,Itoh Y,Kudryk BJ,et al. Degradation of cross-linked fibrin by matrix metalloproteinase 3 (stromelysin 1): hydrolysis of the gamma Gly 404-Ala 405 peptide bond [J]. Biochemistry, 1996, 35(40):13056-13063.
    [10] Hsieh AH,Lotz JC. Prolonged spinal loading induces matrix metalloproteinase-2 activation in intervertebral discs[J]. Spine, 2003, 28: 1781-1788.
    [11] Katz JN.Lumbar disc disorders and low-back pain:socioeco-nomic factors and consequences[J].J Bone Joint Surg Am,2006,88:21-2..
    [12] Ulrich D, Noah EM, von Heimburg D,et al. TIMP-1, MMP-2, MMP-9, and PIIINPas serum markers for skin fibrosis in patients following severe burn trauma[J]. Plast Reconstr Surg, 2003, 111: 1423-1431.
    [13] Burrage PS, Mix KS, Brinckerhoff CE, et al. Matrix metalloproteinases: role in arthritis [J]. Frontiers Bioscience, 2006, 11: 529-543.
    [14] Uchibori M, Nishida Y, Nagasaka T, et al. Increased expression of membrane-type matrix metalloproteinase-1 is correlated with poor prognosis in patients with osteosarcoma [J]. Int J Oncology, 2006, 28(1): 33-42.
    [15] Woessner JF. Regulation of matrilysin in the rat uterus [J]. Biochemisty Cell Biology, 1996, 74 (6): 777-784.
    [16] Das S,Mandal M,Chakraborti T,et al. Structure and evolutionary aspects of matrix metalloproteinases: A brief overview[J]. Molecular and Cellular Biochemistry, 2003, 253: 31–40.
    [17] Nagase H,Visse R,Murphy G. Structure and function of matrix metalloproteinases and TIMPs[J]. Cardiovascular Research, 2006, 69: 562-573.
    [18] Malemud CJ. Matrix metalloproteinases (MMPs) in health and disease: an overview [J]. Front Biosci, 2006, 11:1696-701.
    [19] Kanemoto M, Hukuda S, Komiya Y, et al. Immunohistochemical study of matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1 human intervertebral discs [J]. Spine, 1996, 21: 1-8.
    [20] Pei D, Weiss SJ. Transmembrane-deletion mutants of the menbrane-type matrix metalloproteinase-1 process progelatinase A and express intrinsic matrix-degrading activity[J]. J Boil Chem, 1996, 271: 9135-9140.
    [21] Rokerts S, Caterson B, Menage J, et al. Matrix metalloproteinases and aggrecanase: their role in disorders of the human intervertebral disc[J]. Spine, 2000, 25(23): 3005-3013.
    [22] Hirose Y, Chiba K, Karasugi T, et al. A functional polymorphism in THBS2 that affects alternative splicing and MMP binding is associated with lumbar-disc herniation[J]. The American Journal of Human Genetics, 2008, 82: 1122-1129.
    [23] Helen E Gruber, Jane A Ingram, Gretchen L, Hoelscher, et al.Matrix metalloproteinase-28, a novel matrix metalloproteinase, is constitutively expressed in human intervertebral disc tissue and is present in matrix of more degenerated discs [J]. Arthritis Research & Therapy 2009, 11:R184.
    [24] Gardner J,Ghorpade A.Tissue inhibitor of metlloproteinase (TIMP)-1:theTIMPed balance of matrix metalloproteinases in the central nervous system[J]. J Neurosci Res,2003,74(6):801-806.
    [25] HOLM S,HOLM AK,EKSTROM L,el a1.Experimental disc degeneration due to endplate injury[J].J SFlinal Disord Tech,2004,17(1):64-7
    [26] EDWARDS W T,ZHENG GY,FERRARA L A,et a1.Structural features and thickness of the vertebralcortexin the thoracolumbar spine[J].Spine,2001,26:218—225.
    [27] PARK J B,LEE J K,PARK S J,et a1.Nitochondrialinvolvementin fas-mediated apoptosis human lumbar disc cells[J].J Bone JointSurgAm,2005,87(6):1338-1342.
    [28]徐宏光,陈学武,卢林明等.阻断软骨终板营养对终板软骨细胞影响的实验研究[J].皖南医学院学报,2008,27(1):31-33.
    [29] Zhang YG,Liu JT,Wang JT,et a1.Indexes of intervertebral disc degeneration in rats during the aging process[J].Nanfang Yike DaxueXuebao,2008,2:169—172.
    [30] Lotz JC,Chin JR.Intervertebra1 disc cell death is dependent on the magnitude and duration of spinal loading.Spine,2000,25(12):1477—1483.
    [31] BENNEKER LM,HEINI,PF ALINI M,et al.2004 Young Investigator Award Winner:Vertebral Endplate Marrow ContactChannel Occlusions and Intervertebral Disc Degeneration[J].Spine,2005,30:167-173.
    [32] OKI S,MATSLJDA Y,SHIBATA T,et al.Morphologic difference of the vascular buds intervertebral endplate[J].Spine,1996,1(6):174-177.
    [1]胡有谷.腰椎间盘突出症[M].第2版.北京人民卫生出版社,1995:46.
    [2] Furusawa N,Baba H,Miyoshi N,et al. Herniation of cervical intervertebral disc: immunohistochemical examination and measurement of nitric oxide production [J]. Spine, 2001, 26:1110-1116.
    [3] Nagase H,Visse R,Murphy G. Structure and function of matrix metalloproteinases and TIMPs[J]. Cardiovascular Research, 2006, 69: 562-573.
    [4] Das S,Mandal M,Chakraborti T,et al. Structure and evolutionary aspects of matrix metalloproteinases: A brief overview [J]. Molecular and Cellular Biochemistry, 2003, 253: 31–40.
    [5] Malemud CJ. Matrix metalloproteinases (MMPs) in health and disease: an overview [J]. Front Biosci, 2006, 11:1696-701.
    [6] Burrage PS,Mix KS,Brinckerhoff CE,et al. Matrix metalloproteinases: role in arthritis [J]. Frontiers Bioscience, 2006, 11: 529-543.
    [7] Bini A,Itoh Y,Kudryk BJ,et al. Degradation of cross-linked fibrin by matrix metalloproteinase 3 (stromelysin 1): hydrolysis of the gamma Gly 404-Ala 405 peptide bond [J]. Biochemistry, 1996, 35(40):13056-13063.
    [8] Hsieh AH,Lotz JC. Prolonged spinal loading induces matrix metalloproteinase-2activation in intervertebral discs[J] . Spine, 2003, 28: 1781-1788.
    [9] Jurajda M,Muzík J,Izakovicova HL,et al. A newly identified single nucleotide polymorphism in the promoter of the matrix metalloproteinase-1 gene [J]. Mol Cell Probes, 2002, 16: 63-66.
    [10] Sakao K,Takahashi KA,Mazda O,et al. Enhanced expression of interleukin-6, matrix metalloproteinase-13, and receptor activator of NF-kappaB ligand in cells derived from osteoarthritic subchondral bone [J].J Orthop Sci, 2008, 13: 202-10.
    [11] Woessner JF. Regulation of matrilysin in the rat uterus [J]. Biochemisty Cell Biology, 1996, 74 (6): 777-784.
    [12] Ulrich D,Noah EM,von Heimburg D,et al. TIMP-1, MMP-2, MMP-9, and PIIINP as serum markers for skin fibrosis in patients following severe burn trauma [J]. Plast Reconstr Surg, 2003, 111: 1423-1431.
    [13] Uchibori M,Nishida Y,Nagasaka T,et al. Increased expression of membrane-type matrix metalloproteinase-1 is correlated with poor prognosis in patients with osteosarcoma [J]. Int J Oncology, 2006, 28(1): 33-42.
    [14] Maolood N,Hardin-Pouzet H,Grange-Messent V. Matrix metalloproteinases MMP2 and MMP9 are upregulated by noradrenaline in the mouse neuroendocrine hypothalamus [J]. Eur J Neurosci. 2008,27(5):1143-52.
    [15] Peruzzi D, Mori F, Conforti A,et al. MMP11: a novel target antigen for cancer immunotherapy [J].Clin Cancer Res,2009,15(12):4104-13.
    [16] Kozaci LD,Guner A,Oktay G,et al. Alterations in biochemical components of extracellular matrix in intervertebral disc herniation:role of MMP-2 and TIMP-2 in type II collagenloss[J]. Cell Biochem Funct, 2006, 24(5): 431-436.
    [17]胡峰,李康华,李贤德,等.基质金属蛋白酶-7在椎间盘组织中的表达和意义[J].医学临床研究, 2006, 23: 311-313.
    [18] Pei D,Weiss SJ. Transmembrane-deletion mutants of the menbrane-type matrix metalloproteinase-1 process progelatinase A and express intrinsic matrix-degrading activity[J]. J Boil Chem, 1996, 271: 9135-9140.
    [19] Rokerts S,Caterson B,Menage J,et al. Matrix metalloproteinases andaggrecanase: their role in disorders of the human intervertebral disc [J]. Spine, 2000, 25(23): 3005-3013.
    [20] Le Maitre CL,Freemont AJ,Hoyland JA. Human disc degeneration is associated with increased MMP 7 expression [J]. Biotech Histoehem, 2006, 81(4-6): 125-131.
    [21] Anderson DG,Izzo MW,Hall DJ,et al. Comparative gene expression profiling of normal and degenerative dises: analysis of a rabbit annular laceration model [J]. Spine, 2002, 27(12): 1291-1296.
    [22] Hirose Y,Chiba K,Karasugi T,et al. A functional polymorphism in THBS2 that affects alternative splicing and MMP binding is associated with lumbar-disc herniation [J]. The American Journal of Human Genetics, 2008, 82: 1122-1129.
    [23]贾长青,王臣,陈勇,等.基质金属蛋白酶3和白细胞介素1在突出的腰椎间盘组织中的含量及其相关性研究[J].中国修复重建外科杂志, 2006, 12: 1180-1182.
    [24]贾长青,王臣,陈勇,等.基质金属蛋白酶-3和血管内皮生长因子在不同月龄大鼠椎间盘组织中的表达及意义[J].中国组织化学与细胞化学杂志, 2006, 15: 355-359.
    [25] Yoshiji H,Kuriyama S,Noguchi R,et al. Angiopoietin 2 displays vascular endothelial growth factor dependent synergistic effect in hepatocellular carcinoma development in mice[J]. Gut, 2005, 54:1768-1775.
    [26] Kato T,Halo H,Komori H,et al. Sequential dynamics of inflammatory cytokine, angiogenesis inducing factor and matrix degrading enzymes during spontaneous resorption of the herniated disc [J]. J Orthop Res, 2004, 22 (4): 895-900.
    [27] Lee YM,Bae MH,Lee OH,et al. Synergistic induction of in vivo angiogenesis by the combination of insulin-like growth factor-II and epidermal growth factor [J]. Oncol Rep, 2004, 12(4):843-848.
    [28] Wick W,Platten M,Weller M. Glioma cell invasion: regulation of metalloproteinase activity by TGF-beta [J] . J Neurooncol, 2001, 53(2): 117-185.
    [29] Frankenberger M,Hauck RW,Frankenberger B,et al. All trans-retinoic acid selectively down-regulates matrix metalloprotenase-9 (MMP-9) and up-regulatestissue inhibitor of metalloprotelnase-1 (TIMP-1) in human bronchoalveolar lavage cells [J]. Mol Med. 2001, 7(4): 263.
    [30] Galboiz Y,Shapiro S,Lahat N,et al. Matrix metalloproteinases and their tissue inhibitors as markers of disease subtype and response to interferon-beta therapy in relapsing and secondary-progressive multiple sclerosis patients[J]. Ann Neurol, 2001, 50(4): 443-451.
    [31] Luo XH,Liao EY. Progesterone differentially regulates the membrane-type matrix metalloproteinase-1 (MT1 -MMP) compartment of proMMP-2 activation in MG-63 cells [J]. Horm Metab Res, 2001, 33(7): 383-388.
    [32] Gardner J,Ghorpade A. Tissue inhibitor of metalloproteinase (TIMP)-1: the TIMPed balance of matrix metalloproteinases in the central nervous system [J]. J Neurosci Res, 2003, 74(6): 80l-806.
    [33] Singh RJ,Mason JC,Lidington EA,et al. Cytokine stimulated vascular cell adhesion molecule-1(VCAM-1) ectodomain release is regulated by TIMP-3 [J]. J Cardiovasclar Research, 2005, 67(1): 39-49.
    [34] Le Maitre CL,Freemont AJ,Hoyland JA. Localization of degradative enzymes and their inhibitors in the degenerate human intervertebral disc[J]. J Pathol, 2004, 204(1): 47-54.
    [35] Sobajima S,Shimer AL,Chadderdon RC,et al. Quantitative analysis of gene expression in a rabbit model of intervertebral disc degeneration by real-time polymerase chain reaction[J]. Spine J, 2005, 5(1): 14-23.