空间目标的单目视觉位姿测量方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着新军事变革的不断深化,空间已成为战略竞争新的制高点,空间安全成为国家安全与发展的基石。空间操作技术是保障空间安全的重要基础能力之一,在空间计划和任务中扮演着越来越重要的角色。目标航天器相对于追踪航天器的位置和姿态参数(位姿参数)的测量是多数空间操作任务中必不可少的关键环节,单目视觉是实现该测量过程的重要手段之一,在近距离范围更是首选的测量手段,因而需要对基于单目视觉的空间目标位姿测量技术进行深入的研究。
     本文以空间操作任务中近距离段的目标相对位姿信息获取问题为背景,对基于单目视觉系统对空间目标进行位姿测量的方法进行研究,以进一步提高空间目标位姿测量的速度、精度、鲁棒性和适应能力。论文避开了图像预处理和特征提取等受实际系统和目标特性影响较大的问题,着力解决基于特征点求解目标位姿的算法层面的问题,主要研究内容如下:
     (1)对正交迭代算法(OI算法)进行了深入研究,提出了一种改进的实现形式,并针对平面目标引起的位姿模糊问题提出了新的解决方法。改进的算法通过调整计算公式减少运算过程中的冗余,并在初始位姿求解过程中用平行透视模型取代弱透视模型,不仅大幅度提高了位姿求解的速度,还进一步提高了其稳定性和收敛性能。对于平面目标引起的位姿模糊问题,通过以平行透视模型下的两个局部最优位姿分别作为初始值进行正交迭代优化,提出了一种新的解决方法,较现有的同类算法减少了一次正交迭代优化过程,大幅度提高了运算效率。
     (2)对平行透视迭代算法(PI算法)进行了深入研究,并对其进行了多方面改进。针对PI算法因需要特殊的投影参考点而性能会受到目标点空间分布状态影响的问题,通过巧妙使用齐次坐标消除了对参考点的依赖,同时改善了算法的收敛性能和精度。PI算法虽然提供了解决位姿模糊问题的方法,但在迭代过程中需要花费大量的时间对中间解进行选择,改进算法提出了一种中间解快速选择策略,并解决了原算法计算过程中的一处数值问题,明显提高了平面目标位姿求解的速度和稳定性。
     (3)提出了一种基于平行透视模型的同时位姿估计与对应确定算法(SoftPI算法)。通过将平行透视模型引入同时位姿估计与对应确定问题的求解,并参考SoftPOSIT算法的思路,得到了一种新的算法,在与SoftPOSIT算法精度相当的前提下,具有更强的局部搜索能力和更高的运算效率。此外,通过应用本文提出的中间解快速选择策略,SoftPI算法还可以解决位姿模糊问题,在同类算法中首次具备了处理平面目标的能力。
     (4)提出了一种基于差分进化的同时位姿估计与对应确定算法(DePose算法)。SoftPI和SoftPOSIT算法的全局搜索能力较差,更适合于已知一定位姿范围时的同时位姿估计与对应确定问题求解。对于位姿信息完全未知的情况,本文通过引入差分进化算法并提出一种新的差分进化机制和越界参数处理方法,得到了一种更好的解决方案。实验数据表明,DePose算法不仅相比现有基于遗传算法的解决方案具有更高的运算效率和更强的全局搜索性能,而且其局部搜索性能超过了SoftPI算法。
     研究成果除可以为空间机动平台在天基背景下实时获取目标的近距/超近距形态信息提供技术支撑外,还很容易推广到视觉伺服、移动机器人定位与导航和虚拟现实等其它应用领域。
With the increasing deepening of a new revolution in military affairs, the space has be-come the new commanding elevation of strategic competition, and the space security has be-comethecornerstoneofacountry’ssecurityanddevelopment. Thespaceoperationtechnologyisoneofthevital basic capacitiesforprotectingthespacesecurity, which playsanincreasinglyimportantroleinthespaceprogramandmission. Themeasurementoftherelativepositionandattitude parameters (pose parameters) from the target spacecraft to the tracking spacecraft isa key essential step of most space operation tasks. Monocular vision is one of the significantmethods to achieve the measurement process, which is the preferred means of measurementat close range. Therefore, it is necessary to do more in-depth research on space object posemeasurement technique based on monocular vision.
     The background of this paper is based on the obtaining of relative pose information of thetargetincloserangesegmentofthespaceoperationtasks. Itstudiesthemethodsofspaceobjectpose measurement based on the monocular vision system. The target of the study is to explorehow to improve the speed, accuracy, robustness and the adaptation capacity of space objectpose measurement. This paper avoids the problems such as image pre-processing and featureextraction which are closely related with the actual system and the target characteristics. Onthe contrary, it makes efforts to solve the problem of solving the object pose based on featurepoints on the algorithmic level. The main contents of the study are listed as follows:
     (1) It explores the Orthogonal iterative (OI) algorithm in depth, raises a improved real-ization form of the OI algorithm, and it proposes a new solution of the pose ambiguity causedby the planar targets. The improvement is realized by means of adjustment formula to reducecalculational redundancy, and of adopting paraperspective model instead of weak perspectiveduring the initial pose solution process. This method not only greatly improves the speed ofposition solution, but also further improves its stability and convergence performance. Thisstudyraisesanewsolutiontosolvetheposeambiguitycausedbytheplanartargets,whichisre-alized by the iterative optimization using the two local optimal pose under the paraperspectivemodel as the initial value. It works out a new resolvent, which is less an orthogonal iterativeoptimizationprocesscomparedwithexistingsimilaralgorithmandwhichgreatlyimprovestheefficiency of operations.
     (2)It studies the paraperspective (PI) iteration algorithm in-depth and it makes a lotof improvement on the PI algorithm. The performance of PI algorithm will be affected by the space distribution of the target state because it needs a special projection reference point. Thisstudy focuses on this problem and improves the convergence performance and accuracy of thePI algorithm through clever use of homogeneous coordinates to eliminate the dependence ofthe reference point. Although the PI algorithm provides a method to solve the pose ambiguity,it still takes a lot of time to choose the intermediate solutions in an iterative process. Theimproved algorithm proposed an intermediate solution fast selection strategy, and it solves anumerical problem in the original algorithm calculation process, which obviously improvesthe speed and stability to the pose solution of planar targets.
     (3)The study proposes a simultaneous pose estimation and correspondence determina-tion algorithm based on the paraperspective model (SoftPI). It works out a new algorithm byintroducing the paraperspective model into simultaneous pose estimation and correspondencedetermination solution, referencing the way of SoftPOSIT algorithm. The new algorithm hasa stronger local search ability and higher operation efficiency, on the premise of the similaraccuracy with the SoftPOSIT algorithm. Moreover, SoftPI algorithm could also solve the poseambiguity by applying the intermediate solution fast selection strategy raised in this paper. Itis the first time that an algorithm of the same kind has the ability to deal with a planar target.
     (4)This study proposes a simultaneous pose estimation and correspondence determi-nation algorithm based on differential evolution (DePose). SoftPI and SoftPOSIT have a poorglobal searching ability, which are more suitable for solving simultaneous pose estimation andcorrespondence determination problems with a known pose range. In the condition that thepose information is totally unknown, this study raises a better solution by introducing the dif-ferential evolution algorithm and proposing a new differential evolution mechanism and theover boundary parameter processing method. The research results indicates that the DePosealgorithm not only has higher computing efficiency and stronger performance of global searchthantheexistinggeneticalgorithmbasedsolution,butalsohashigherlocalsearchperformancethan SoftPI algorithm.
     It is aimed that the research findings of this study provides technical support to the spacemobile platforms for real-time accessing the short-range/close short-range morphological in-formation of the target in space. It is also quite easy to be promoted in other application fieldssuch as visual servo, mobile robot localization and navigation, and virtual reality.
引文
[1]郭飞,从辉,宋伟.从神舟六号看我国空间技术法的发展[J].科技与法律,2006(2):13–17.
    [2]王德军.维护和加强我国空间安全的思考[J].国防科技,2012,33(2):1–3.
    [3]南松辉,廖学军,姜楠,等.国家空间安全对作战实验的需求研究[J].军事运筹与系统工程,2012,26(1):30–34.
    [4]袁建平,朱战霞.空间操作与非开普勒运动[J].宇航学报,2009,30(1):42–46.
    [5] Fehse W. Automated Rendezvous and Docking of Spacecraft[M]. Cambridge: Cam-bridge University Press,2003.
    [6]张淑琴,王忠贵,冉隆燧.空间交会对接测量技术及工程应用[M].北京:中国宇航出版社,2005.
    [7]张世杰.基于单目视觉的航天器相对导航理论与算法研究[D].哈尔滨:哈尔滨工业大学,2005.
    [8]解永春,张昊,石磊,等.交会对接光学成像敏感器设计中的关键问题[J].航天控制,2006,24(5):35–40.
    [9]李彬,任焜.交会对接敏感器总体设计要点分析[J].空间控制技术与应用,2011,37(6):34–39.
    [10] Parten R P, Mayer J P. Development of the Gemini Operational Rendezvous Plan[J].Journal of Spacecraft and Rockets,1968,5(9):1023–1028.
    [11] Woffinden D C, Geller D K. Navigating the Road to Autonomous Orbital Ren-dezvous[J]. Journal of Spacecraft and Rockets,2007,44(4):898–909.
    [12]雷鹏,王俊.美国天基自主交会对接技术的发展[J].国际太空,2008(4):26–31.
    [13]边广龙.苏联/俄罗斯的空间交会对接技术[J].太空探索,2011(10):34–36.
    [14] Ohkami Y, Oda M. NASDA’s activities in space robotics[C].5th International Sym-posium on Artificial Intelligence, Robotics and Automation in Space,1999:11–19.
    [15] Hirzinger G, Landzettel K, Brunner B, et al. DLR’s robotics technologies for on-orbitservicing[J]. Advanced Robotics,2004,18(2):139–174.
    [16]林来兴.四十年空间交会对接技术的发展[J].航天器工程,2007,16(4):70–77.
    [17] Zhang J, Wang L. Optical-Electronic System for Automatic Docking of Spatial Vehi-cles[C].14thWorldCongressofInternationalFederationofAutomaticControl. Beijing,China,1999:361–364.
    [18]张世杰,曹喜滨,李晖.交会对接航天器间相对位姿参数单目视觉测量的解析算法[J].光学技术,2005,31(1):6–10.
    [19]张昊,解永春,吴宏鑫.交会对接光学成像敏感器光点布局求解有效性研究[J].航天控制,2008,26(3):44–48.
    [20]张昊,石磊,涂俊峰,等.基于交会对接CCD光学成像敏感器的双目测量算法[J].空间控制技术与应用,2011,37(6):66–71.
    [21]梁斌,杜晓东,李成,等.空间机器人非合作航天器在轨服务研究进展[J].机器人,2012,34(2):242–256.
    [22]张永亮.面向非合作目标的自主空间飞行器图像信息处理关键技术研究[D].长沙:国防科学技术大学,2009.
    [23]张昊,解永春.交会对接光学成像敏感器中目标标志器的相关问题研究[J].中南大学学报,2005,36:474–478.
    [24] Kapellos K, Chaumette F, Vergauwen M, et al. VIMANCO: Vision manipulation ofnon-cooperative objects[C].9th ESA Workshop on Advanced Space Technologies forRobotics and Automation. Noordwijk, The Netherlands, France,2006:279–286.
    [25] Howard R, Tadikonda T B, Book M, et al. The Video Guidance Sensor a FlightProven Technology[C].22ndAAS Guidance and Control Conference. Breckenridge,CO,1999.
    [26] Keller B, Tadikonda S, J.Mapar. Rendezvous and Docking Using A Video GuidanceSensor: Experimental Testbed Results[C]. AIAA Guidance, Navigation, and ControlConference and Exhibit. Monterey,Califonria,2002.
    [27] Winklea S V. Advanced Video Guidance Sensor (AVGS) Project Summary[C]. Space-borne Sensors, Proceedings of SPIE. Bellingham, WA: SPIE,2004,5418:10–20.
    [28] Granade S R. Advanced Video Guidance Sensor and Next Generation AutonomousDocking Sensors[C]. Spaceborne Sensors, Proceedings of SPIE. Bellingham, WA:SPIE,2004,5418:38–49.
    [29]林来兴.美国“轨道快车”计划中的空间自主交会技术[J].国际太空,2005(2):23–27.
    [30] Howard R T, Heaton A F, Pinson R M, et al. The Advanced Video Guidance Sen-sor: Orbital Express and the Next Generation[C]. Space Technology and ApplicationsInternational ForumAmerican Institute of Physics,2008:717–724.
    [31] Kawano I, Mokuno M, Kasai T, et al. Result of Autonomous Rendezvous DockingExperiment of Engineering Test Satellite-VII[J]. Journal of Spacecraft and Rockets,2001,38(1):105–111.
    [32] Mokuno M, Kawano I. In-Orbit Demonstration of an Optical Navigation System forAutonomous Rendezvous Docking[J]. Journal of Spacecraft and Rockets,2011,48(6):1046–1054.
    [33]朱仁璋,王鸿芳,徐宇杰,等.从ETS-VII到HTV———日本交会对接/停靠技术研究[J].航天器工程,2011,20(4):6–31.
    [34] PochardM,BlarreL,MoussuC,etal. Qualificationofvideometeranopticalrendezvoussensor[C].54thInternational Astronautical Congress,2003.
    [35] Personne G, Lopez-y-diaz A, Delpy P. ATV GNC synthesis: overall design, operationsand main performances[C]. Proceedings of the6th International ESA Conference onGuidance, Navigation and Control Systems. Loutraki, Greece2006.
    [36] Rosa D D, Curti F. A Computer Vision Tool for ATV Rendezvous Monitoring[C]. Pro-ceedings of the6th International ESA Conference on Guidance, Navigation and ControlSystems. Loutraki, Greece2006.
    [37] Pinard D, Reynaud S, Delpy P, et al. Accurate and autonomous navigation for theATV[J]. Aerospace Science and Technology,2007,11:490–498.
    [38] Howard R T, Bryan T C, Book M L. Video Guidance Sensor Flight Experiment Re-sults[C]. AeroSense. Orlando, FL, United States,1998.
    [39] Howard R T, Bryan T C. DART AVGS Flight Results[C]. Sensors and Systems forSpace Applications, Proc. of SPIE. Bellingham, WA,2007,6555:1–10.
    [40] HeatonAF,HowardRT,PinsonRM. OrbitalExpressAVGSValidationandCalibrationforAutomatedRendezvous[C].AIAAAstrodynamicsSpecialistConference. Honolulu,HI, United States,2008.
    [41]朱仁璋,王鸿芳,徐宇杰,等.美国航天器交会技术研究[J].航天器工程,2011,20(5):11–36.
    [42] Strandmoe S, DePasquale E, Escane I, et al. Automated Transfer Vehicle (ATV) FlightControl Achievements[C].7th International ESA Conference on Guidance, Navigation&Control Systems. Tralee, County Kerry, Ireland,2008.
    [43]胡军,解永春,张昊,等.神舟八号飞船交会对接制导、导航与控制系统及其飞行结果评价[J].空间控制技术与应用,2011,37(6):1–5.
    [44]赵春晖,高文文,刘鲁,等.神舟八号飞船交会对接CCD光学成像敏感器[J].空间控制技术与应用,2011,37(6):6–13.
    [45] Weismuller T, Leinz M. GN&C Technology Demonstrated by the Orbital ExpressAutonomous Rendezvous and Capture Sensor System[C].29thAnnual AAS Guidanceand Control Conference. Breckenridge, Colorado,2006.
    [46] LeinzMR,ChenCT,BeavenMW,etal. OrbitalExpressAutonomousRendezvousandCapture Sensor System (ARCSS) flight test results[C]. Proceedings of SPIE, Sensorsand Systems for Space Applications II,2008.
    [47]王宏义.空间目标监视光电阵系统实时信息处理及工程化技术研究[D].长沙:国防科学技术大学,2008.
    [48]李骏.空间目标天基光学监视跟踪关键技术研究[D].长沙:国防科学技术大学,2009.
    [49]黄宗福.空间目标监视光电阵实时信息处理与工程化技术研究[D].长沙:国防科学技术大学,2011.
    [50] Andersson M, Nordlund P, Eklundh J O. Modeling, Matching and Tracking for theStereovision II project: State-of-the-Art Review[R]. Dept. of Numerical Analysis andComputing Science, Royal Institute of Technology,1993.
    [51] Jasiobedzki P, Greenspan M, Roth G. Pose determination and tracking for autonomoussatellitecapture[C].6thInternationalSymposiumonArtificialIntelligenceandRobotics&Automation in Space. Quebec, Canada,2001.
    [52] Greenspan M. The sample tree: A sequential hypothesis testing approach to3d objectrecognition[C]. Proceedings of the IEEE Computer Society Conference on ComputerVision and Pattern Recognition,1998:772–779.
    [53] Besl P, Mckay N. A method for registration of3-D shapes[J]. IEEE Transactions onPattern Analysis and Machine Intelligence,1992,14(2):239–256.
    [54] Dionnet F, Marchand E. Robust Stereo Tracking for Space Applications[C]. Proceed-ingsofthe2007InternationalConferenceonIntelligentRobotsandSystems. SanDiego,CA, USA,2007:3373–3378.
    [55] Petit A, Marchand E, Kanani K. Vision-based Space Autonomous Rendezvous: A CaseStudy[C].IEEE/RSJInt.Conf.onIntelligentRobotsandSystems. SanFrancisco, USA,2011:619–624.
    [56]张世杰,曹喜滨,陈闽.非合作航天器间相对位姿的单目视觉确定算法[J].南京理工大学学报(自然科学版),2006,30(5):564–568.
    [57]徐文福,梁斌,李成,等.空间机器人捕获非合作目标的测量与规划方法[J].机器人,2010,32(1):61–69.
    [58] Xu W, Liang B, Li C, et al. Autonomous rendezvous and robotic capturing of non-cooperative target in space[J]. Robotica,2010,28:705–718.
    [59] Tietz J C, Germann L M. Autonomous Rendezvous and Docking[C]. Proceedings ofthe1982American Control Conference,1982:460–465.
    [60] Ho C C J, CIamroch N H M. Automatic Spacecraft Docking Using Computer Vision-Based Guidance and Control Techniques[J]. Journal of Guidance, Control and Dynan-ics,1993,16(2):281–288.
    [61] Jatko W B, Goddard J S, Ferrell R K, et al. Crusader Automated Docking System Phase3report[R]. United States: Oak Ridge National Laboratory,1996.
    [62] JunkinsJL,HughesD,WazniK,etal. Vision-BasedNavigationforRendezvous, Dock-ing, and Proximity Operations[J]. Advances in the Astronautical Sciences,1999,101:203–220.
    [63]于起峰,尚洋.摄像测量学原理与应用研究[M].北京:科学出版社,2009.
    [64]姜广文.像机链位姿传递摄像测量方法及船体变形测量研究[D].长沙:国防科学技术大学,2010.
    [65] Fischlerand M, Bolles R. Random Sample Consensus: A Paradigm for Model Fittingwith Applications to Image Analysis and Automated Cartography[J]. Communicationsof the ACM,1981,24:381–385.
    [66]吴福朝,胡占义. PnP问题的线性求解算法[J].软件学报,2003,14(3):682–688.
    [67] Horaud R, B.Conio, Leboulleux O. An Analytic Solution for the Perspective4-PointProblem[J]. Computer Vision, Graphics, and Image Processing,1989,47:33–44.
    [68] Wolfe W J, Mathis D. The Perspective View of Three Points[J]. IEEE Transactions onPattern Analysis and Machine Intelligence,1991,13(1):66–73.
    [69] DeMenthon D, Davis L S. Exact and Approximate Solutions of the Perspective-Three-Point Problem[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(11):1100–1105.
    [70] Liu M L, Wong K H. Pose Estimation using Four Corresponding Points[J]. PatternRecognition Letters,1999,20(1):69–74.
    [71]胡占义,雷成,吴福朝.关于P4P问题的一点讨论[J].自动化学报,2001,27(6):770–776.
    [72]吴福朝,胡占义.关于P5P问题的研究[J].软件学报,2001,12(5):768–775.
    [73] GaoXS,HouXR,TangJL,etal. CompleteSolutionClassificationforthePerspective-Three-Point Problem[J]. IEEE Transactions on Pattern Analysis and Machine Intelli-gence,2003,25(8):930–943.
    [74]孔辉.吴方法在PnP问题中的应用[D].长沙:国防科学技术大学,2003.
    [75]汤建良.一个关于P5P问题的求解算法[J].广西师范大学学报:自然科学版,2009,27(1):40–42.
    [76]孙凤梅,王波.关于PnP问题多解的分布与解的稳定性的讨论[J].自动化学报,2010,36(9):1213–1219.
    [77] Abdel-Aziz Y I, Karara H M. Direct Linear Transformation into Object Space Co-ordinates in Close-Range Photogrammetry[C]. The Symposium on Close-Range Pho-togrammetry. Illinois, USA,1971:1–18.
    [78] Tsai R Y. A Versatile Camera Calibration Teehnique for High Aeeuracy3D MachineVision Metrology Using Off-the-Shelf TV Cameras and Lenses[J]. IEEE Joumal ofRobotics and Automation,1987, RA-3(4):323–344.
    [79] Quan L, Lan Z. Linear N-point camera pose determination[J]. IEEE Transactions onPattern Analysis and Machine Intelligence,1999,21(7):774–780.
    [80] Fiore P D. Efficient linear solution of exterior orientation[J]. IEEE Transactions onPattern Analysis and Machine Intelligence,2001,23(2):140–148.
    [81] AnsarA,DaniilidisK. Linearposeestimationfrompointsorlines[J]. IEEETransactionson Pattern Analysis and Machine Intelligence,2003,24(5):578–589.
    [82] Wolf P R. Elements of Photogrammetry[M]. New York: McGraw-Hill,2004.
    [83] Lowe D G. Three-Dimentional Object Recognition from Single Two-Dimensional Im-age[J]. Artificial Intelligence,1987,31:355–395.
    [84] LoweDG. FittingParameterizedThree-DimensionalModelstoImages[J]. IEEETrans-actions on Pattern Analysis and Machine Intelligence,1991,13(5):441–450.
    [85] DeMenthon D F, Davis L S. Model-based object pose in25lines of codes[J]. Interna-tional Journal of Computer Vision,1995,15:123–141.
    [86] Horaud R, Dornaika F, Lamiroy B, et al. Object pose: The link between weak perspec-tive, paraperspective, and full perspective[J]. International Journal of Computer Vision,1997,22(2):173–189.
    [87] HornBKP,HildenHM,NegahdaripourS. Closed-formsolutionofabsoluteorientationusing orthonormal matrices[J]. Journal of the Optical Society of America A,1988,5:1127–1136.
    [88] Lu C, Hager G, Mjolsness E. Fast and globally convergent pose estimation from videoimages[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(6):610–622.
    [89] MorenoNoguer F, Lepetit V, Fua P. Accurate Non-Iterative O (n) Solution to the PnPProblem[C]. IEEE11th International Conference on Computer Vision,2007:1–8.
    [90]吴福朝.计算机视觉———Cayley变换与度量重构[M].北京:科学出版社,2011.
    [91] Hmam H, Kim J. Optimal non-iterative pose estimation via convex relaxation[J]. In-ternational Journal of Computer Vision,2010,28:1515–1523.
    [92] Schweighofer G, Pinz A. Robust pose estimation from a planar target[J]. IEEE Trans-actions on Pattern Analysis and Machine Intelligence,2006,28(12):2024–2030.
    [93] Oberkampf D, DeMenthon D F, Davis L S. Iterative pose estimation using coplanarfeature points[J]. Computer Vision and Image Understanding,1996,63(3):495–511.
    [94] Ahn S J, Rauh W, Recknagel M. Circular coded landmark for optical3D-measurementand robot vision[C]. Proceedings of the1999IEEE/RSJ international conference onintelligent robots and systems. Kyongju, South Korea,1999:1128–1133.
    [95] Hattori S, Aklmoto K, Fraser C, et al. Automated Procedures with Coded Targets in In-dustrial Vision Metrology[J]. Photogrammetric Engineering&Remote Sensing,2002,68(5):441–446.
    [96] Li Z, Liu M. Research on Decoding Method of Coded Targets in Close-rangePhotogrammetry[J]. Journal of Computational Information Systems,2010,6(8):2699–2705.
    [97] Fiala M. ARTag, a fiducial marker system using digital techniques[C]. IEEE ComputerSociety Conference on Computer Vision and Pattern Recognition,2005.
    [98] Wagner D, Schmalstieg D. Artoolkitplus for pose tracking on mobile devices[C]. Pro-ceedings of12th Computer Vision Winter Workshop. St. Lambrecht, Austria,2007:139–146.
    [99] Valasek J, Gunnam J, Tandale M D, et al. Vision-Based Sensor and Navigation Systemfor Autonomous Air Refueling[J]. Journal of Guidance, Control and Dynanics,2005,28(5):979–989.
    [100]杨望星,王秀美,山巍.一种人工标识点自动匹配新方法的研究[J].计算机工程,2007,33:207–211.
    [101] LeeD,PernickaH. IntegratedSystemforAutonomousProximityOperationsandDock-ing[J]. Internat Journal of Aeronautical and Space Science,2011,12(1):43–56.
    [102]李沛.立式风洞飞机尾旋运动参数测量关键技术研究[D].长沙:国防科学技术大学,2009.
    [103] Moreno-Noguer F, Lepetit V, Fua P. Pose Priors for Simultaneously Solving Alignmentand Correspondence[C]. Proceedings of the10th European Conference on ComputerVision Part II,2008:408–415.
    [104] David P, DeMenthon D F, Duraiswami R, et al. SoftPOSIT: Simultaneous pose and cor-respondence determination[C]. Proceedings of the7th European Conference on Com-puter Vision Part III,2002:698–714.
    [105] David P, DeMenthon D F, Duraiswami R, et al. SoftPOSIT: Simultaneous pose and cor-respondence determination[J]. International Journal of Computer Vision,2004,59(3):259–284.
    [106] Rossi C, Abderrahim M, Diaz J C. EvoPose: A Model-based Pose Estimation Algo-rithm with Correspondences Determination[C]. Proceedings of the IEEE InternationalConference on Mechatronics and Automation,2005:1551–1556.
    [107] Rossi C, Abderrahim M, Diaz J C. Evolutionary Model-based Pose Estimation forVariable Configuration Objects[C]. Proceedings of the5th WSEAS Int. Conf. on SignalProcessing, Robotics and Automation. Madrid, Spain,2006:52–57.
    [108] Heimonen T, Heikkila J. Monocular point based pose estimation of artificial markersby using evolutionary computing[C]. Proceedings of the15th Scandinavian conferenceon Image analysis. Berlin, Heidelberg: Springer-Verlag,2007:122–131.
    [109] Christy S, Horaud R. Iterative Pose Computation from Line Correspondences[J]. Com-puter Vision and Image Understanding,1999,73(1):137–144.
    [110] Dornaika F, Garcia C. Pose Estimation using Point and Line Correspondences[J]. Real-Time Imaging,1999,5:215–230.
    [111]张政,张小虎,傅丹.一种高精度鲁棒的基于直线对应的位姿估计迭代算法[J].计算机应用,2008,28(2):326–329.
    [112] Zhang X, Wang K, Zhang Z, et al. A New Line-Based Orthogonal Iteration PoseEstimation Algorithm[C]. In Proceeding of International Conference on InformationEngineering and Computer Science. Wuhan, China,2007.
    [113] David P, Dementhon D, Duraisvami R, et al. Simultaneous Pose and CorrespondenceDeterminationusingLineFeatures[C].Proceedingsofthe2003IEEEComputerSocietyConference on Computer Vision and Pattern Recognition,2003:424–431.
    [114]马颂德,张正友.计算机视觉———计算理论与算法基础[M].北京:科学出版社,1998.
    [115]晁志超.摄像测量的温度补偿方法和位姿传递像机网络研究[D].长沙:国防科学技术大学,2011.
    [116]尚洋.基于视觉的空间目标位置姿态测量方法研究[D].长沙:国防科学技术大学,2006.
    [117]吴福朝.计算机视觉中的数学方法[M].北京:科学出版社,2008.
    [118] WengJ,CohenP,HerniouM. CameraCalibrationwithDistortionModelsandAccuracyEvaluation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(10):965–980.
    [119]李伟,吕晓旭,钱晓凡等.基于平面模板的摄像机标定方法比较[J].激光杂志,2006,27(2):54–55.
    [120] Heikkil J, Silvn O. A four-step Camera Calibration Procedure with Implicit ImageCorrection[C]. Asian Conefrence on Computer Vision. Melbourne, Australia,2002:521–526.
    [121]胡占义,吴福朝.基于主动视觉摄像机标定方法[J].计算机学报,2002,25(11):1149–1156.
    [122]王睿,李欣,张广军.单目主动视觉无人机导引中摄像机内参数标定的线性方法[J].航空学报,2006,27(4):676–681.
    [123] Tsai R Y. An Efficient and Accurate Camera Calibration Technique for3D MachineVision[C].IEEEConferenceonComputerVisionandPatternRecognition. USA:IEEE,1986:364–374.
    [124] Zhang Z. A Flexible New Technique for Camera Calibration[J]. IEEE Transactions onPattern Analysis and Machine Intelligence,2000,22(11):1330–1334.
    [125] Zhang Z. Determining the Epipolar Geometry and Its Uncertainty: A review[J]. Inter-national Journal of Computer Vision,1998,27(2):161–198.
    [126] Luong Q T, Faugeras O D. Self-Calibration of a Moving Camera from Point Correspon-dences and Fundamental Matrices[J]. International Journal of Computer Vision,1997,22(3):261–289.
    [127] Hartley R, Zisserman A. Multiple View Geometry in Computer Vision[M]. Cambridge:Cambridge University Press,2004.
    [128] Bouguet J Y. Camera Calibration Toolbox for Matlab[EB/OL]. http://www.vision.caltech.edu/bouguetj/index.html.
    [129]徐德,谭民,李原.机器人视觉测量与控制(第二版)[M].北京:国防工业出版社,2011.
    [130]张志勇.飞行目标位置和姿态光电测量技术的研究与应用[D].成都:电子科技大学,2008.
    [131]邱志强.基于仿射近似从航空图像重建目标三维结构[D].长沙:国防科学技术大学,2004.
    [132]张广军.机器视觉[M].北京:科学出版社,2005.
    [133]胡占义,雷成,吴福朝.关于共面P4P问题的研究[J].自动化学报,2001,27(6):770–776.
    [134] Hu Z Y, Wu F C. A Note on the Number of Solutions of the Noncoplanar P4P Prob-lem[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(4):550–555.
    [135] Lepetit V, Moreno-Noguer F, Fua P. EPnP: an accurate O(n) solution to the PnP prob-lem[J]. International Journal of Computer Vision,2009,81(2):155–166.
    [136] Campa G, Mammarella M, Napolitano M R, et al. A comparison of Pose Estimationalgorithms for Machine Vision based Aerial Refueling for UAVs[C]. In14th Mediter-ranean Conference on Control and Automation,2006.
    [137] Arun K S, Huang T S, Blostein S D. Least-Squares Fitting of Two3D Point Sets[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1987,9(5):698–700.
    [138] Umeyama S. Least-squares estimation of transformation parameters between two pointpatterns[J]. IEEE transactions on pattern analysis and machine inteligence,1991,13(4):376–380.
    [139] Horn B K P. Closed-form solution of absolute orientation using unit quaternions[J].Journal of the Optical Society of America A,1987,4:629–642.
    [140] Walker M W, Shao L, Volz R. Estimating3D Location Parameters Using Dual NumberQuaternions[J]. CVGIP: Image Understanding,1991,54(3):358–367.
    [141] Magnus J R, Neudecker H. Matrix differential calculus with applications in statisticsand econometrics,3rd edition[M]. New York: John Wiley&Sons,2007.
    [142] Eggert D W, Lorusso A, Fisher R B. Estimating3-D rigid body transformations: acomparison of four major algorithms[J]. Machine Vision and Applications,1997,9:272–290.
    [143] Shuster M D, Oh S D. Three-Axis Attitude Determination from Vector Observations[J].Journal of Guidance, Control, and Dynamics,1981,4(1):70–77.
    [144] Markley F L. Attitude Determination Using Vector Observations: A Fast Optimal Ma-trix Algorithm[J]. The Journal of the Astronautical Sciences,1993,41(2):261–280.
    [145] Markley F L, Mortari D. Attitude Determination Using Vector Observations: A FastOptimalMatrixAlgorithm[J]. TheJournaloftheAstronauticalSciences,2000,48(2/3):359–380.
    [146] Li S Q, Xu C. Efficient lookup table based camera pose estimation for augmentedreality[J]. Computer Animation and Virtual Worlds,2011,22:47–58.
    [147]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004.
    [148] Gold S, Rangarajan A. A Graduated Assignment Algorithm for Graph Match-ing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(4):377–388.
    [149] Gold S, Rangarajan A, Lu C P, et al. New algorithms for2D and3D point matchingpose estimation and correspondence[J]. Pattern Recognition,1998,31(8):1019–1031.
    [150] Storn R, Price K. Differential evoltion a simple and efficient heuristic for globaloptimization over continuous spaces[J]. Journal of Global Optimization,1997,11:341–359.
    [151] Stom R. System design by constraint adaptation and differential evolution[J]. IEEETransactions on Evolutionary Computation,1999,3:22–34.
    [152] Ali M M, Torn A. Population set based global optimization algorithms: some mod-ifications and numerical studies[J]. Computers and operations research,2004,31:1703–1725.
    [153] MoonTK. TheExpectation-MaximizationAlgorithm[J]. IEEESignalProcessingMag-azine,1996,13(6):47–60.
    [154] SinkhornR. ARelationshipbetweenArbitraryPositiveMatricesandDoublyStochasticMatrices[J]. Annals Mathematical Statistics,1964,35(2):876–879.
    [155] Bridle J S. Training Stochastic Model Recognition as Networks can Lead to Maxi-mum Mutual Information Estimation of Parameters[C].. In Proc. Advances in NeuralInformation Processing Systems. Denver, CO,1990:211–217.
    [156] Diaz J C, Abderrahim M. Modified SoftPOSIT algorithm for3D visual tracking[C].IEEE International Symposium on Intelligent Signal Processing. Alcala de Henares,2007:1–6.
    [157]段海滨,张祥银,徐春芳.仿生智能计算[M].北京:科学出版社,2011.
    [158] Storn R, Price K. Differential evoltion a simple and efficient heuristic for global opti-mization over continuous spaces[R]. Berkeley,USA: International Computer ScienceInstitute,1995.
    [159] Engelbrecht A P.计算智能导论(谭营等译)[M].北京:清华大学出版社,2010.
    [160] Liu J, Lampinen J. On setting the control parameter of the differential evolution al-gorithm[C]. Proceedings of the8th international Mendel conference on soft computing,2002:11–18.
    [161] Zielinski K, Weitkemper P, Laur R, et al. Parameter study for differential evolutionusing a power allocation problem including interference cancellation[C]. Proceedingsof the IEEE congress on evolutionary computation,2006:1857–1864.
    [162] Pedersen M E H. Good Parameters for Differential Evolution[R]. Hvass LaboratoriesTechnical Report no.HL1002,2010.