Pyk2信号通路在压力超负荷大鼠心肌肥厚中的作用及阿托伐他汀、伊贝沙坦的干预研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】心肌肥厚是心肌细胞对外界和(或)内在刺激的一种适应性反应。虽然心肌肥厚是心脏为维持心功能的一种有效的代偿机制,但长期的心肌肥厚可导致心肌缺血、心律失常、心力衰竭和猝死。富含脯氨酸的酪氨酸激酶2(proline-rich tyrosine kinase 2, Pyk2)是一种能被细胞内钙浓度增高及多种刺激信号激活的具有明显的酪氨酸激酶和自身激酶活性的信号分子,其调节的下游信号通路包括MAPK级联、磷脂酰肌醇3激酶(PI3K)等。本研究建立压力负荷左室肥厚模型,观察Rac1、Pyk2基因及蛋白的表达,探讨Pyk2/Rac1通路在左室肥厚心肌细胞中的作用以及阿托伐他汀、伊贝沙坦干预对其的影响。
     【方法】体重180-225g的雄性SD大鼠随机分为5组。A组为假手术组,其余4组行腹主动脉缩窄术建立压力负荷左室肥厚模型,B组为阿托伐他汀干预组,术前一周开始给予5 mg·kg-1·d-1灌胃,至术后4周;C组为伊贝沙坦干预组,术前一周开始给予20 mg·kg-1·d-1灌胃,至术后4周;D组为阿托伐他汀与伊贝沙坦联合用药组;E组为非药物组(左室肥厚模型组),灌胃器经口同时间给予等体积生理盐水。术后4周检测各组血流动力学参数,然后处死动物、制取标本。测左室质量指数(LVMI),病理切片染色后行光镜检查,并测心肌细胞横径和胶原容积百分比; 2’,7’-二氯双氢荧光素双乙酸酯(DCFH-DA)荧光探针检测细胞内活性氧(ROS)水平,RT-PCR测Rac1 mRNA、Pyk2 mRNA表达,Western blot技术检测Rac1蛋白、Pyk2及其磷酸化蛋白表达。
     【结果】(1)术后4周时左室肥厚模型组LVMI、心肌细胞横径及胶原容积指数以及ROS水平较假手术组均显著升高(P<0.05-0.01);(2)阿托伐他汀以及伊贝沙坦干预后LVMI、心肌细胞横径、胶原容积指数及ROS水平均显著低于左室肥厚模型组(P<0.05-0.01),联合用药组LVMI及ROS水平显著低于各单药组(P<0.05-0.01)。(3)术后4周时左室肥厚模型组Rac-1 mRNA及蛋白表达显著高于假手术组(P<0.05-0.01),Pyk2 mRNA及蛋白表达也显著高于假手术组(P<0.05-0.01),并且Pyk2 Tyr402蛋白表达、Pyk2 Tyr402蛋白与总Pyk2蛋白的比值均显著高于假手术组(P<0.05),直线相关分析表明Pyk2 mRNA表达与左室质量指数(LVMI)存在正相关性(P<0.05)。(4)阿托伐他汀干预组及伊贝沙坦干预组Pyk2 mRNA及蛋白表达、Pyk2 Tyr402蛋白表达、Rac1 mRNA及蛋白表达均显著低于心肌肥厚模型组(P<0.05-0.01)。而联合治疗组Pyk2 mRNA、Rac-1 mRNA及Pyk2 Tyr402蛋白表达水平显著低于各单独用药组(P<0.05-0.01)。
     【结论】①氧化应激在主动脉缩窄压力负荷左室心肌肥厚中起重要作用。②Pyk2/ Rac-1信号通路与心肌肥厚发生发展密切相关,Pyk2可能是抗心肌肥厚治疗的一个新的靶点。③阿托伐他汀及伊贝沙坦均能有效缓解压力负荷所致的左室肥厚。其抗心肌肥厚作用至少部分是通过下调Pyk2/Rac-1表达以及细胞内ROS水平实现的;而两药联用较各自单用更有利于改善心肌肥厚。
【Objective】Cardiac hypertrophy is one of the major adaptive responses to various extracellular stimuli, including hemodynamic overload (mechanical stress) and neurohumoral factors. On the other hand, cardiac hypertrophy is also known as a strong predictor for mortality and morbidity, and the most important single risk factor for heart failure. Despite numerous studies have been performed, the molecular mechanisms underlying cardiomyocyte hypertrophy, however, remain unclear. On the other hand, a lot of intracellular signaling pathways have been found to play important roles in hypertrophic processes of cardiomyocytes. The proline-rich tyrosine kinase 2 (Pyk2), is tyrosine phosphorylated and activated in response to elevation of [Ca2+]i or various stress signals. The signaling pathways downstream of the Pyk2 activation include MAPK cascades and phosphoinositide-3 kinase (PI3K)/Akt. This study is designed to investigated whether pressure overload augmented the expression and phosphorylation of Pyk2 in left ventricular myocardium developing hypertrophy in rats, we also investigated the effects of Atorvastatin and Irbesartan on Pyk2/Rac1 signalling pathway in pressure overload-induced cardiac hypertrophy.
     【Methods】Suprarenal abdominal aortic coarctation was performed to create pressure overload induced left ventricular hypertrophy model in rats. Rats were randomly assigned into 5 groups: 1) Sham group; 2) Atorvastatin (5 mg·kg-1·d-1) given orally by gastric gavage for 4 weeks; 3) Irbesartan (20 mg·kg-1·d-1) given orally by gastric gavage for 4 weeks; 4) Combining treatment group with Atorvastatin (5 mg·kg-1·d-1) and Irbesartan (20 mg·kg-1·d-1) given orally by gastric gavage for 4 weeks; and 5)Vehicle group. Before the animals were euthanized 4 weeks after surgery, hemodynamics parameters were recorded by carotid artery catheterization. Stained pathological section was observed under light microscope to measure cardiomyocyte diameter transversa and collagen volume fraction. Intracellular reactive oxygen species (ROS) levels were measured using 2′,7′-dichlorofluorescein (DCF) diacetate probes. Rac1 mRNA and Pyk2 mRNA expression were detected by RT-PCR, and their proteins as well as Pyk2 Tyr402 protein expression were assayed by Western blot.
     【Results】①All banded groups had higher LVMI, cardiomyocyte diameter transversa and collagen volume fraction than that in sham group, all banded groups also had higher intracellular ROS levels(P<0.05-0.01), and LVMI had a linear correlation with the level of ROS in vehicle group(P<0.05). Atorvastatin and Irbesartan had effective impact on attenuation of the increasing of these parameters(P<0.05-0.01).②Rac-1 and Pyk2 mRNA expression, as well as Rac-1, Pyk2 and Pyk2 Tyr402 protein expression were statistically increased in all banded groups than that in sham group(P<0.05-0.01). There is a linear correlation between LVMI and Pyk2 mRNA expression both in sham group and vehicle group(P<0.05-0.01).③Atorvastatin and Irbesartan groups had lower Rac-1 and Pyk2 mRNA expression, as well as Rac-1, Pyk2 and Pyk2 Tyr402 protein expression than that in vehicle group(P<0.05-0.01).④Compared with either drug alone, combined Atorvastatin and Irbesartan treatment had greater decreasing of LVMI, intracellular ROS levels, Rac-1 and Pyk2 mRNA expression, as well as Pyk2 Tyr402 protein expression(P<0.05-0.01).
     【Conclusion】①Oxidative stress plays important role in pressure overload induced left ventricular hypertrophy.②Pyk2/Rac-1 signalling pathway exert an important role in left ventricular hypertrophy progression, this may provide a potential therapeutic target for cardiac hypertrophy.③Both Atorvastatin and Irbesartan have effective impact on attenuation of pressure overload induced left ventricular hypertrophy. Part of this anti-hypertrophy effect may be attributed to their anti-oxidative properties, which was mediated by down-regulation of Pyk2/Rac-1 expression and phosphorylation. Dual therapy with Atorvastatin and Irbesartan produces an additive reduction in pressure overload induced left ventricular hypertrophy.
引文
1. Frey N, Katus HA, Olson EN, Hill JA. Hypertrophy of the heart: a new therapeutic target?. Circulation 2004;109:1580-9.
    2. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990;322:1561-6.
    3. Levy D, Anderson KM, Savage DD, Kannel WB, Christiansen JC, Castelli WP. Echocardiographically detected left ventricular hypertrophy: prevalence and risk factors. The Framingham Heart Study. Ann Intern Med 1988;108:7-13.
    4. Morita H, Seidman J, Seidman CE. Genetic causes of human heart failure. J Clin Invest 2005;115:518-26.
    5. MEERSON FZ. On the mechanism of compensatory hyperfunction and insufficiency of the heart. Cor Vasa 1961;3:161-77.
    6. Bers DM. Cardiac excitation-contraction coupling. Nature 2002;415:198-205.
    7. Armoundas AA, Wu R, Juang G, Marban E, Tomaselli GF. Electrical and structural remodeling of the failing ventricle. Pharmacol Ther 2001;92:213-30.
    8. Hill JA. Electrical remodeling in cardiac hypertrophy. Trends Cardiovasc Med 2003;13:316-22.
    9. Takimoto E, Kass DA. Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension 2007;49:241-8.
    10. Zhu W, Zou Y, Shiojima I, Kudoh S, Aikawa R, Hayashi D, et al. Ca2+/calmodulin-dependent kinase II and calcineurin play critical roles in endothelin-1-induced cardiomyocyte hypertrophy. J Biol Chem 2000;275:15239-45.
    11. Eble DM, Strait JB, Govindarajan G, Lou J, Byron KL, Samarel AM. Endothelin-induced cardiac myocyte hypertrophy: role for focal adhesion kinase. Am J Physiol Heart Circ Physiol 2000;278:H1695-707.
    12. Ivester CT, Kent RL, Tagawa H, Tsutsui H, Imamura T, Cooper G 4th, McDermott PJ. Electrically stimulated contraction accelerates protein synthesis rates in adult feline cardiocytes. Am J Physiol 1993;265:H666-74.
    13. Passier R, Zeng H, Frey N, Naya FJ, Nicol RL, McKinsey TA, et al. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest 2000;105:1395-406.
    14. Bayer AL, Ferguson AG, Lucchesi PA, Samarel AM. Pyk2 expression and phosphorylation in neonatal and adult cardiomyocytes. J Mol Cell Cardiol 2001;33:1017-30.
    15. Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 2006;7:589-600.
    16. Nakashima H, Suzuki H, Ohtsu H, Chao JY, Utsunomiya H, Frank GD, Eguchi S. Angiotensin II regulates vascular and endothelial dysfunction: recent topics of Angiotensin II type-1 receptor signaling in the vasculature. Curr Vasc Pharmacol 2006;4:67-78.
    17. Frank GD, Eguchi S, Motley ED, Sasaki T, Inagami T. Unique regulation of c-Jun N-terminal kinase by PYK2/CAK-beta in angiotensin II-stimulated vascular smooth muscle cells. Biochem Biophys Res Commun 2001;286:692-6.
    18. Bayer AL, Heidkamp MC, Patel N, Porter MJ, Engman SJ, Samarel AM. PYK2 expression and phosphorylation increases in pressure overload-induced left ventricular hypertrophy. Am J Physiol Heart Circ Physiol 2002;283:H695-706.
    19. Hirotani S, Higuchi Y, Nishida K, Nakayama H, Yamaguchi O, Hikoso S, et al. Ca(2+)-sensitive tyrosine kinase Pyk2/CAK beta-dependent signaling is essential for G-protein-coupled receptor agonist-induced hypertrophy. J Mol Cell Cardiol 2004;36:799-807.
    20. Heidkamp MC, Scully BT, Vijayan K, Engman SJ, Szotek EL, Samarel AM. PYK2 regulates SERCA2 gene expression in neonatal rat ventricular myocytes. Am J Physiol Cell Physiol 2005;289:C471-82.
    21. Schaub MC, Hefti MA, Harder BA, Eppenberger HM. Various hypertrophic stimuli induce distinct phenotypes incardiomyocytes. J Mol Med 1997;75:901-20.
    22. Pan M, Jing HM, Zhu JH, Liu ZH, Jiang WP, Yang XJ. Rho-kinase inhibitor may exert a role in preventing cardiac hypertrophy, independent of antihypertensive effects. Med Hypotheses 2007;68:234.
    23. Nakagami H, Liao JK. Statins and myocardial hypertrophy. Coron Artery Dis 2004;15:247-50.
    24. Takemoto M, Node K, Nakagami H, Liao Y, Grimm M, Takemoto Y, et al. Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy. J Clin Invest 2001;108:1429-37.
    25. Cirrincione GM, Boluyt MO, Hwang HS, Bleske BE. 3-HMG-Coenzyme A reductase inhibition and extracellular matrix gene expression in the pressure-overloaded rat heart. J Cardiovasc Pharmacol 2006;47:521-30.
    26. Bendall JK, Cave AC, Heymes C, Gall N, Shah AM. Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 2002;105:293-6.
    27. Nadruz W Jr, Lagosta VJ, Moreno H Jr, Coelho OR, Franchini KG. Simvastatin prevents load-induced protein tyrosine nitration in overloaded hearts. Hypertension 2004;43:1060-6.
    28. Luo JD, Zhang WW, Zhang GP, Guan JX, Chen X. Simvastatin inhibits cardiac hypertrophy and angiotensin-converting enzyme activity in rats with aortic stenosis. Clin Exp Pharmacol Physiol 1999;26:903-8.
    29. Patel R, Nagueh SF, Tsybouleva N, Abdellatif M, Lutucuta S, Kopelen HA, et al. Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation 2001;104:317-24.
    30. Senthil V, Chen SN, Tsybouleva N, Halder T, Nagueh SF, Willerson JT, et al. Prevention of cardiac hypertrophy by atorvastatin in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circ Res 2005;97:285-92.
    31. Lee TM, Chou TF, Tsai CH. Association of pravastatin and left ventricular mass in hypercholesterolemic patients: role of 8-iso-prostaglandin f2alpha formation. J Cardiovasc Pharmacol 2002;40:868-74.
    32. Nishikawa H, Miura S, Zhang B, Shimomura H, Arai H, Tsuchiya Y, et al. Statins induce the regression of left ventricular mass in patients with angina. Circ J 2004;68:121-5.
    33. Planavila A, Laguna JC, Vazquez-Carrera M. Atorvastatin improves peroxisome proliferator-activated receptor signaling in cardiac hypertrophy by preventing nuclear factor-kappa B activation. Biochim Biophys Acta 2005;1687:76-83.
    34. Liao JK. Statin therapy for cardiac hypertrophy and heart failure. J Investig Med 2004;52:248-53.
    35. Dahlof B. Left ventricular hypertrophy and angiotensin II antagonists. Am J Hypertens 2001;14:174-82.
    36. Kassab S, Garadah T, Abu-Hijleh M, Golbahar J, Senok S, Wazir J, Gumaa K. The angiotensin type 1 receptor antagonist valsartan attenuates pathological ventricular hypertrophy induced by hyperhomocysteinemia in rats. J Renin Angiotensin Aldosterone Syst 2006;7:206-11.
    37. Nemer M, Dali-Youcef N, Wang H, Aries A, Paradis P. Mechanisms of angiotensin II-dependent progression to heart failure. Novartis Found Symp 2006;274:58-68; discussion 68-72, 152-5, 272-6.
    38. D'Amore A, Black MJ, Thomas WG. The angiotensin II type 2 receptor causes constitutive growth of cardiomyocytes and does not antagonize angiotensin II type 1 receptor-mediated hypertrophy. Hypertension 2005;46:1347-54.
    39. Nakamura K, Fushimi K, Kouchi H, Mihara K, Miyazaki M, Ohe T, Namba M. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation 1998;98:794-9.
    40. Murasawa S, Matsubara H, Mori Y, Masaki H, Tsutsumi Y, Shibasaki Y, et al. Angiotensin II initiates tyrosine kinase Pyk2-dependent signalings leading to activation of Rac1-mediated c-Jun NH2-terminal kinase. J Biol Chem 2000;275:26856-63.
    1. van Wamel AJ, Ruwhof C, van der Valk-Kokshoom LE, Schrier PI, van der Laarse A. The role of angiotensin II, endothelin-1 and transforming growth factor-beta as autocrine/paracrine mediators of stretch-induced cardiomyocyte hypertrophy. Mol Cell Biochem 2001;218:113-24.
    2. Ruwhof C, van der Laarse A. Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovasc Res 2000;47:23-37.
    3. Hunter JJ, Chien KR. Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 1999;341:1276-83.
    4. Meijs MF, de Windt LJ, de Jonge N, Cramer MJ, Bots ML, Mali WP, Doevendans PA. Left ventricular hypertrophy: a shift in paradigm. Curr Med Chem 2007;14:157-71.
    5. Cooper G 4th, Kent RL, McGonigle P, Watanabe AM. Beta adrenergic receptor blockade of feline myocardium. Cardiac mechanics, energetics, and beta adrenoceptor regulation. J Clin Invest 1986;77:441-55.
    6. Palazzesi S, Musumeci M, Catalano L, Patrizio M, Stati T, Michienzi S, et al. Pressure overload causes cardiac hypertrophy in beta1-adrenergic and beta2-adrenergic receptor double knockout mice. J Hypertens 2006;24:563-71.
    7. Ohkusa T, Hisamatsu Y, Yano M, Kobayashi S, Tatsuno H, Saiki Y, et al. Altered cardiac mechanism and sarcoplasmic reticulum function in pressure overload-induced cardiac hypertrophy in rats. J Mol Cell Cardiol 1997;29:45-54.
    8. Gupta S, Sen S. Animal models for heart failure. Methods Mol Med 2006;129:97-114.
    9. Kassab S, Garadah T, Abu-Hijleh M, Golbahar J, Senok S, Wazir J, Gumaa K. The angiotensin type 1 receptor antagonist valsartan attenuates pathological ventricular hypertrophy induced by hyperhomocysteinemia in rats. J Renin Angiotensin Aldosterone Syst 2006;7:206-11.
    10. Kim S, Yoshiyama M, Izumi Y, Kawano H, Kimoto M, Zhan Y, Iwao H. Effects of combination of ACE inhibitor and angiotensin receptor blocker on cardiac remodeling, cardiac function, and survival in rat heart failure. Circulation 2001;103:148-54.
    11. Dahlof B. Left ventricular hypertrophy and angiotensin II antagonists. Am J Hypertens 2001;14:174-82.
    12. Yasunari K, Maeda K, Nakamura M, Watanabe T, Yoshikawa J, Hirohashi K. Left ventricular hypertrophy and angiotensin II receptor blocking agents. Curr Med Chem Cardiovasc Hematol Agents 2005;3:61-7.
    13. Lindholm LH, Ibsen H, Dahlof B, Devereux RB, Beevers G, de Faire U, et al. Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 2002;359:1004-10.
    14. Julius S, Kjeldsen SE, Weber M, Brunner HR, Ekman S, Hansson L, et al. Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amlodipine: the VALUE randomised trial. Lancet 2004;363:2022-31.
    15. Klingbeil AU, Schneider M, Martus P, Messerli FH, Schmieder RE. A meta-analysis of the effects of treatment on left ventricular mass in essential hypertension. Am J Med 2003;115:41-6.
    16. Takemoto M, Node K, Nakagami H, Liao Y, Grimm M, Takemoto Y, et al. Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy. J Clin Invest 2001;108:1429-37.
    17. Laufs U, Liao JK. Rapid effects of statins: from prophylaxis to therapy for ischemic stroke. Arterioscler Thromb Vasc Biol 2003;23:156-7.
    18. Bendall JK, Cave AC, Heymes C, Gall N, Shah AM. Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 2002;105:293-6.
    19. Wassmann S, Laufs U, Baumer AT, Muller K, Ahlbory K, Linz W, et al. HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species. Hypertension 2001;37:1450-7.
    20. Hirotani S, Otsu K, Nishida K, Higuchi Y, Morita T, Nakayama H, et al. Involvement of nuclear factor-kappaB and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy. Circulation 2002;105:509-15.
    21. Stilli D, Bocchi L, Berni R, Zaniboni M, Cacciani F, Chaponnier C, et al. Correlation of alpha-skeletal actin expression, ventricular fibrosis and heart function with the degree of pressure overload cardiac hypertrophy in rats. Exp Physiol 2006;91:571-80.
    22. Rothermel BA, Berenji K, Tannous P, Kutschke W, Dey A, Nolan B, et al. Differential activation of stress-response signaling in load-induced cardiac hypertrophy and failure. Physiol Genomics 2005;23:18-27.
    23. Massart PE, Donckier J, Kyselovic J, Godfraind T, Heyndrickx GR, Wibo M. Carvedilol and lacidipine prevent cardiac hypertrophy and endothelin-1 gene overexpression after aortic banding. Hypertension 1999;34:1197-201.
    24. Bouloumie A, Bauersachs J, Linz W, Scholkens BA, Wiemer G, Fleming I, Busse R. Endothelial dysfunction coincides with an enhanced nitric oxide synthase expression and superoxide anion production. Hypertension 1997;30:934-41.
    25.钟明,张供,张运,张薇,王勇,马骁,等.舒张性心力衰竭动物模型的建立及超声心动图监测.中国医学影像技术2001;17(2):130-132.
    26.胡咏梅,李法琦,罗羽慧,余江恒.腹主动脉缩窄大鼠模型制作及临床意义.重庆医科大学学报2004;29(3):322-324.
    27. Tonnessen T, Christensen G, Oie E, Holt E, Kjekshus H, Smiseth OA, et al. Increased cardiac expression of endothelin-1 mRNA in ischemic heart failure in rats. Cardiovasc Res 1997;33:601-10.
    28. Urata H, Healy B, Stewart RW, Bumpus FM, Husain A. Angiotensin II-forming pathways in normal and failing human hearts. Circ Res 1990;66:883-90.
    29. Kaschina E, Unger T. Angiotensin AT1/AT2 receptors: regulation, signalling and function. Blood Press 2003;12:70-88.
    30. Bruckschlegel G, Holmer SR, Jandeleit K, Grimm D, Muders F, Kromer EP, et al. Blockade of the renin-angiotensin system in cardiac pressure-overload hypertrophy in rats. Hypertension 1995;25:250-9.
    31. Murakami M, Inada Y, Tazawa S, Nakao K, Komatsu H. Effects of the new angiotensin receptor antagonist dipotassium (Z)-2-[[5-ethyl-3-[2'-(1H-tetrazol-5-yl)biphenyl-4-yl] methyl-1,3,4-thiadiazoline-2-ylidene]aminocarbonyl]-1-cy clopentencarbox ylate on experimental cardiac hypertrophy and acute left ventricular failure. Arzneimittelforschung 1997;47:1099-103.
    32. Mukawa H, Toki Y, Miyazaki Y, Matsui H, Okumura K, Ito T. Angiotensin II type 2 receptor blockade partially negates antihypertrophic effects of type 1 receptor blockade on pressure-overload rat cardiac hypertrophy. Hypertens Res 2003;26:89-95.
    33.姜庆军,徐耕,朱有法.伊贝沙坦和培垛普利对大鼠压力负荷性心肌肥厚的影响.中国病理生理杂志2004;20(5):827-31.
    34.葛长江,胡申江,吕树铮,陈韵岱.伊贝沙坦逆转高血压左心室肥厚的细胞学机制.中华老年心脑血管病杂志2006;8(1):51-53.
    35. McDonald KM, Garr M, Carlyle PF, Francis GS, Hauer K, Hunter DW, et al. Relative effects of alpha 1-adrenoceptor blockade, converting enzyme inhibitor therapy, and angiotensin II subtype 1 receptor blockade on ventricular remodeling in the dog. Circulation 1994;90:3034-46.
    36. Segar JL, Scholz TD, Bedell KA, Smith OM, Huss DJ, Guillery EN. Angiotensin AT1 receptor blockade fails toattenuate pressure-overload cardiac hypertrophy in fetal sheep. Am J Physiol 1997;273:R1501-8.
    37. Harada K, Komuro I, Shiojima I, Hayashi D, Kudoh S, Mizuno T, et al. Pressure overload induces cardiac hypertrophy in angiotensin II type 1A receptor knockout mice. Circulation 1998;97:1952-9.
    38. Baba HA, Iwai T, Bauer M, Irlbeck M, Schmid KW, Zimmer HG. Differential effects of angiotensin II receptor blockade on pressure-induced left ventricular hypertrophy and fibrosis in rats. J Mol Cell Cardiol 1999;31:445-55.
    39. Taylor K, Patten RD, Smith JJ, Aronovitz MJ, Wight J, Salomon RN, Konstam MA. Divergent effects of angiotensin-converting enzyme inhibition and angiotensin II-receptor antagonism on myocardial cellular proliferation and collagen deposition after myocardial infarction in rats. J Cardiovasc Pharmacol 1998;31:654-60.
    40. Mizuno K, Tani M, Hashimoto S, Niimura S, Sanada H, Watanabe H, et al. Effects of losartan, a nonpeptide angiotensin II receptor antagonist, on cardiac hypertrophy and the tissue angiotensin II content in spontaneously hypertensive rats. Life Sci 1992;51:367-74.
    41. Nunez E, Hosoya K, Susic D, Frohlich ED. Enalapril and losartan reduced cardiac mass and improved coronary hemodynamics in SHR. Hypertension 1997;29:519-24.
    42. Everett AD, Tufro-McReddie A, Fisher A, Gomez RA. Angiotensin receptor regulates cardiac hypertrophy and transforming growth factor-beta 1 expression. Hypertension 1994;23:587-92.
    43. Sim MK, Chen WS. Effects of losartan on angiotensin receptors in the hypertrophic rat heart. Regul Pept 2006;137:140-6.
    44. Zhang GX, Ohmori K, Nagai Y, Fujisawa Y, Nishiyama A, Abe Y, Kimura S. Role of AT1 receptor in isoproterenol-induced cardiac hypertrophy and oxidative stress in mice. J Mol Cell Cardiol 2007;42:804-11.
    45. Berenji K, Drazner MH, Rothermel BA, Hill JA. Does load-induced ventricular hypertrophy progress to systolic heart failure?. Am J Physiol Heart Circ Physiol 2005;289:H8-H16.
    46. Senbonmatsu T, Saito T, Landon EJ, Watanabe O, Price E Jr, Roberts RL, et al. A novel angiotensin II type 2 receptor signaling pathway: possible role in cardiac hypertrophy. EMBO J 2003;22:6471-82.
    47. Nouet S, Amzallag N, Li JM, Louis S, Seitz I, Cui TX, et al. Trans-inactivation of receptor tyrosine kinases by novel angiotensin II AT2 receptor-interacting protein, ATIP. J Biol Chem 2004;279:28989-97.
    48. Fabre JE, Rivard A, Magner M, Silver M, Isner JM. Tissue inhibition of angiotensin-converting enzyme activity stimulates angiogenesis in vivo. Circulation 1999;99:3043-9.
    49. Silvestre JS, Tamarat R, Senbonmatsu T, Icchiki T, Ebrahimian T, Iglarz M, et al. Antiangiogenic effect of angiotensin II type 2 receptor in ischemia-induced angiogenesis in mice hindlimb. Circ Res 2002;90:1072-9.
    50. Silvestre JS, Bergaya S, Tamarat R, Duriez M, Boulanger CM, Levy BI. Proangiogenic effect of angiotensin-converting enzyme inhibition is mediated by the bradykinin B(2) receptor pathway. Circ Res 2001;89:678-83.
    51. Everett AD, Fisher A, Tufro-McReddie A, Harris M. Developmental regulation of angiotensin type 1 and 2 receptor gene expression and heart growth. J Mol Cell Cardiol 1997;29:141-8.
    52. Sato A, Suzuki H, Nakazato Y, Shibata H, Inagami T, Saruta T. Increased expression of vascular angiotensin II type
    1A receptor gene in glucocorticoid-induced hypertension. J Hypertens 1994;12:511-6.
    53. Kitami Y, Okura T, Marumoto K, Wakamiya R, Hiwada K. Differential gene expression and regulation of type-1 angiotensin II receptor subtypes in the rat. Biochem Biophys Res Commun 1992;188:446-52.
    54. Luft FC. Angiotensin II, the AT2 receptor, and nuclear factor-kappaB activation. Kidney Int 2002;61:2272-3.
    55. Levy BI. How to explain the differences between renin angiotensin system modulators. Am J Hypertens 2005;18:134S-141S.
    56. Shepherd J, Cobbe SM, Ford I, Isles CG, Lorimer AR, MacFarlane PW, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl JMed 1995;333:1301-7.
    57. Influence of pravastatin and plasma lipids on clinical events in the West of Scotland Coronary Prevention Study (WOSCOPS). Circulation 1998;97:1440-5.
    58. Wagner AH, Kohler T, Ruckschloss U, Just I, Hecker M. Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation. Arterioscler Thromb Vasc Biol 2000;20:61-9.
    59. Crisby M, Nordin-Fredriksson G, Shah PK, Yano J, Zhu J, Nilsson J. Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization. Circulation 2001;103:926-33.
    60. Stalker TJ, Lefer AM, Scalia R. A new HMG-CoA reductase inhibitor, rosuvastatin, exerts anti-inflammatory effects on the microvascular endothelium: the role of mevalonic acid. Br J Pharmacol 2001;133:406-12.
    61. Bauersachs J, Galuppo P, Fraccarollo D, Christ M, Ertl G. Improvement of left ventricular remodeling and function by hydroxymethylglutaryl coenzyme a reductase inhibition with cerivastatin in rats with heart failure after myocardial infarction. Circulation 2001;104:982-5.
    62. Hayashidani S, Tsutsui H, Shiomi T, Suematsu N, Kinugawa S, Ide T, et al. Fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation 2002;105:868-73.
    63. Dechend R, Fiebeler A, Park JK, Muller DN, Theuer J, Mervaala E, et al. Amelioration of angiotensin II-induced cardiac injury by a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor. Circulation 2001;104:576-81.
    64. Llevadot J, Murasawa S, Kureishi Y, Uchida S, Masuda H, Kawamoto A, et al. HMG-CoA reductase inhibitor mobilizes bone marrow--derived endothelial progenitor cells. J Clin Invest 2001;108:399-405.
    65. Luo JD, Zhang WW, Zhang GP, Guan JX, Chen X. Simvastatin inhibits cardiac hypertrophy and angiotensin-converting enzyme activity in rats with aortic stenosis. Clin Exp Pharmacol Physiol 1999;26:903-8.
    66. Nadruz W Jr, Lagosta VJ, Moreno H Jr, Coelho OR, Franchini KG. Simvastatin prevents load-induced protein tyrosine nitration in overloaded hearts. Hypertension 2004;43:1060-6.
    67.张铖,叶平,王兆君,张秀锦.阿托伐他汀对压力负荷增加引起大鼠心肌肥厚的影响.中国药学杂志2005;40(4):271-273.
    68. Davignon J. Beneficial cardiovascular pleiotropic effects of statins. Circulation 2004;109:III39-43.
    69. Nakagami H, Liao JK. Statins and myocardial hypertrophy. Coron Artery Dis 2004;15:247-50.
    70. Nakagami H, Jensen KS, Liao JK. A novel pleiotropic effect of statins: prevention of cardiac hypertrophy by cholesterol-independent mechanisms. Ann Med 2003;35:398-403.
    71. Pan J, Singh US, Takahashi T, Oka Y, Palm-Leis A, Herbelin BS, Baker KM. PKC mediates cyclic stretch-induced cardiac hypertrophy through Rho family GTPases and mitogen-activated protein kinases in cardiomyocytes. J Cell Physiol 2005;202:536-53.
    72. Satoh M, Ogita H, Takeshita K, Mukai Y, Kwiatkowski DJ, Liao JK. Requirement of Rac1 in the development of cardiac hypertrophy. Proc Natl Acad Sci U S A 2006;103:7432-7.
    73. Takimoto E, Kass DA. Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension 2007;49:241-8.
    74. Ritchie RH, Delbridge LM. Cardiac hypertrophy, substrate utilization and metabolic remodelling: cause or effect?. Clin Exp Pharmacol Physiol 2006;33:159-66.
    75. Li HL, Huang Y, Zhang CN, Liu G, Wei YS, Wang AB, et al. Epigallocathechin-3 gallate inhibits cardiac hypertrophy through blocking reactive oxidative species-dependent and -independent signal pathways. Free Radic Biol Med 2006;40:1756-75.
    76. Hall A. Rho GTPases and the actin cytoskeleton. Science 1998;279:509-14.
    77. Luo JD, Zhang WW, Zhang GP, Zhong BH, Ou HJ. Effects of simvastatin on activities of endogenous antioxidant enzymes and angiotensin-converting enzyme in rat myocardium with pressure-overload cardiac hypertrophy. Acta Pharmacol Sin 2002;23:124-8.
    78. Grip O, Janciauskiene S, Lindgren S. Atorvastatin activates PPAR-gamma and attenuates the inflammatory response in human monocytes. Inflamm Res 2002;51:58-62.
    79. Emanueli C, Monopoli A, Kraenkel N, Meloni M, Gadau S, Campesi I, et al. Nitropravastatin stimulates reparative neovascularisation and improves recovery from limb Ischaemia in type-1 diabetic mice. Br J Pharmacol 2007;150:873-82.
    80. Kureishi Y, Luo Z, Shiojima I, Bialik A, Fulton D, Lefer DJ, et al. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat Med 2000;6:1004-10.
    81. Hernandez-Perera O, Perez-Sala D, Navarro-Antolin J, Sanchez-Pascuala R, Hernandez G, Diaz C, Lamas S. Effects of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, atorvastatin and simvastatin, on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular endothelial cells. J Clin Invest 1998;101:2711-9.
    82. Lee TM, Lin MS, Chou TF, Chang NC. Additive effects of combined blockade of AT1 receptor and HMG-CoA reductase on left ventricular remodeling in infarcted rats. Am J Physiol Heart Circ Physiol 2006;291:H1281-9.
    83. Habib A, Shamseddeen I, Nasrallah MS, Antoun TA, Nemer G, Bertoglio J, et al. Modulation of COX-2 expression by statins in human monocytic cells. FASEB J 2007;[Epub ahead of print].
    84. Kannel WB. Risk stratification in hypertension: new insights from the Framingham Study. Am J Hypertens 2000;13:3S-10S.
    85. Sander GE, Giles TD. Hypertension and lipids: lipid factors in the hypertension syndrome. Curr Hypertens Rep 2002;4:458-63.
    86. Ginsberg HN, Stalenhoef AF. The metabolic syndrome: targeting dyslipidaemia to reduce coronary risk. J Cardiovasc Risk 2003;10:121-8.
    87. Giordano FJ. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 2005;115:500-8.
    88. Nordberg J, Arner ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 2001;31:1287-312.
    89. Hassoun PM, Yu FS, Zulueta JJ, White AC, Lanzillo JJ. Effect of nitric oxide and cell redox status on the regulation of endothelial cell xanthine dehydrogenase. Am J Physiol 1995;268:L809-17.
    90. Cote CG, Yu FS, Zulueta JJ, Vosatka RJ, Hassoun PM. Regulation of intracellular xanthine oxidase by endothelial-derived nitric oxide. Am J Physiol 1996;271:L869-74.
    91. Shinyashiki M, Pan CJ, Lopez BE, Fukuto JM. Inhibition of the yeast metal reductase heme protein fre1 by nitric oxide (NO): a model for inhibition of NADPH oxidase by NO. Free Radic Biol Med 2004;37:713-23.
    92. Sabri A, Hughie HH, Lucchesi PA. Regulation of hypertrophic and apoptotic signaling pathways by reactive oxygen species in cardiac myocytes. Antioxid Redox Signal 2003;5:731-40.
    93. Wei S, Rothstein EC, Fliegel L, Dell'Italia LJ, Lucchesi PA. Differential MAP kinase activation and Na(+)/H(+) exchanger phosphorylation by H(2)O(2) in rat cardiac myocytes. Am J Physiol Cell Physiol 2001;281:C1542-50.
    94. Aikawa R, Nagai T, Tanaka M, Zou Y, Ishihara T, Takano H, et al. Reactive oxygen species in mechanical stress-induced cardiac hypertrophy. Biochem Biophys Res Commun 2001;289:901-7.
    95. Kwon SH, Pimentel DR, Remondino A, Sawyer DB, Colucci WS. H(2)O(2) regulates cardiac myocyte phenotype via concentration-dependent activation of distinct kinase pathways. J Mol Cell Cardiol 2003;35:615-21.
    96. Xiao L, Pimental DR, Amin JK, Singh K, Sawyer DB, Colucci WS. MEK1/2-ERK1/2 mediates alpha1-adrenergicreceptor-stimulated hypertrophy in adult rat ventricular myocytes. J Mol Cell Cardiol 2001;33:779-87.
    97. Tanaka K, Honda M, Takabatake T. Redox regulation of MAPK pathways and cardiac hypertrophy in adult rat cardiac myocyte. J Am Coll Cardiol 2001;37:676-85.
    98. Delbosc S, Cristol JP, Descomps B, Mimran A, Jover B. Simvastatin prevents angiotensin II-induced cardiac alteration and oxidative stress. Hypertension 2002;40:142-7.
    99. Amin JK, Xiao L, Pimental DR, Pagano PJ, Singh K, Sawyer DB, Colucci WS. Reactive oxygen species mediate alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes. J Mol Cell Cardiol 2001;33:131-9.
    100. Cheng TH, Cheng PY, Shih NL, Chen IB, Wang DL, Chen JJ. Involvement of reactive oxygen species in angiotensin II-induced endothelin-1 gene expression in rat cardiac fibroblasts. J Am Coll Cardiol 2003;42:1845-54.
    101. Sorescu D, Griendling KK. Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure. Congest Heart Fail 2002;8:132-40.
    102. Siwik DA, Pagano PJ, Colucci WS. Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am J Physiol Cell Physiol 2001;280:C53-60.
    103. Spinale FG. Bioactive peptide signaling within the myocardial interstitium and the matrix metalloproteinases. Circ Res 2002;91:1082-4.
    104. MacCarthy PA, Grieve DJ, Li JM, Dunster C, Kelly FJ, Shah AM. Impaired endothelial regulation of ventricular relaxation in cardiac hypertrophy: role of reactive oxygen species and NADPH oxidase. Circulation 2001;104:2967-74.
    105. Date MO, Morita T, Yamashita N, Nishida K, Yamaguchi O, Higuchi Y, et al. The antioxidant N-2-mercaptopropionyl glycine attenuates left ventricular hypertrophy in in vivo murine pressure-overload model. J Am Coll Cardiol 2002;39:907-12.
    106. Byrne JA, Grieve DJ, Bendall JK, Li JM, Gove C, Lambeth JD, et al. Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II-induced cardiac hypertrophy. Circ Res 2003;93:802-5.
    107. Heymes C, Bendall JK, Ratajczak P, Cave AC, Samuel JL, Hasenfuss G, Shah AM. Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol 2003;41:2164-71.
    108. Touyz RM, Yao G, Viel E, Amiri F, Schiffrin EL. Angiotensin II and endothelin-1 regulate MAP kinases through different redox-dependent mechanisms in human vascular smooth muscle cells. J Hypertens 2004;22:1141-9.
    109. Taniyama Y, Griendling KK. Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 2003;42:1075-81.
    110. Iwai M, Chen R, Li Z, Shiuchi T, Suzuki J, Ide A, et al. Deletion of angiotensin II type 2 receptor exaggerated atherosclerosis in apolipoprotein E-null mice. Circulation 2005;112:1636-43.
    111. Suzuki J, Iwai M, Li Z, Li JM, Min LJ, Ide A, et al. Effect of combination of calcium antagonist, azelnidipine, and AT1 receptor blocker, olmesartan, on atherosclerosis in apolipoprotein E-deficient mice. J Hypertens 2005;23:1383-9.
    112. Ejiri J, Inoue N, Tsukube T, Munezane T, Hino Y, Kobayashi S, et al. Oxidative stress in the pathogenesis of thoracic aortic aneurysm: protective role of statin and angiotensin II type 1 receptor blocker. Cardiovasc Res 2003;59:988-96.
    113. Guo P, Nishiyama A, Rahman M, Nagai Y, Noma T, Namba T, et al. Contribution of reactive oxygen species to the pathogenesis of left ventricular failure in Dahl salt-sensitive hypertensive rats: effects of angiotensin II blockade. J Hypertens 2006;24:1105-114.
    114. Nishio M, Sakata Y, Mano T, Yoshida J, Ohtani T, Takeda Y, et al. Therapeutic effects of angiotensin II type 1 receptor blocker at an advanced stage of hypertensive diastolic heart failure. J Hypertens 2007;25:455-61.
    1. Zhu W, Zou Y, Shiojima I, Kudoh S, Aikawa R, Hayashi D, et al. Ca2+/calmodulin-dependent kinase II and calcineurin play critical roles in endothelin-1-induced cardiomyocyte hypertrophy. J Biol Chem 2000;275:15239-45.
    2. Eble DM, Strait JB, Govindarajan G, Lou J, Byron KL, Samarel AM. Endothelin-induced cardiac myocyte hypertrophy: role for focal adhesion kinase. Am J Physiol Heart Circ Physiol 2000;278:H1695-707.
    3. Ivester CT, Kent RL, Tagawa H, Tsutsui H, Imamura T, Cooper G 4th, McDermott PJ. Electrically stimulated contraction accelerates protein synthesis rates in adult feline cardiocytes. Am J Physiol 1993;265:H666-74.
    4. Passier R, Zeng H, Frey N, Naya FJ, Nicol RL, McKinsey TA, et al. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest 2000;105:1395-406.
    5. Bayer AL, Ferguson AG, Lucchesi PA, Samarel AM. Pyk2 expression and phosphorylation in neonatal and adult cardiomyocytes. J Mol Cell Cardiol 2001;33:1017-30.
    6. Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 2006;7:589-600.
    7. Nakashima H, Suzuki H, Ohtsu H, Chao JY, Utsunomiya H, Frank GD, Eguchi S. Angiotensin II regulates vascular and endothelial dysfunction: recent topics of Angiotensin II type-1 receptor signaling in the vasculature. Curr Vasc Pharmacol 2006;4:67-78.
    8. Frank GD, Eguchi S, Motley ED, Sasaki T, Inagami T. Unique regulation of c-Jun N-terminal kinase by PYK2/CAK-beta in angiotensin II-stimulated vascular smooth muscle cells. Biochem Biophys Res Commun 2001;286:692-6.
    9. Bayer AL, Heidkamp MC, Patel N, Porter MJ, Engman SJ, Samarel AM. PYK2 expression and phosphorylation increases in pressure overload-induced left ventricular hypertrophy. Am J Physiol Heart Circ Physiol 2002;283:H695-706.
    10. Hirotani S, Higuchi Y, Nishida K, Nakayama H, Yamaguchi O, Hikoso S, et al. Ca(2+)-sensitive tyrosine kinase Pyk2/CAK beta-dependent signaling is essential for G-protein-coupled receptor agonist-induced hypertrophy. J Mol Cell Cardiol 2004;36:799-807.
    11. Heidkamp MC, Scully BT, Vijayan K, Engman SJ, Szotek EL, Samarel AM. PYK2 regulates SERCA2 gene expression in neonatal rat ventricular myocytes. Am J Physiol Cell Physiol 2005;289:C471-82.
    12. Schaub MC, Hefti MA, Harder BA, Eppenberger HM. Various hypertrophic stimuli induce distinct phenotypes in cardiomyocytes. J Mol Med 1997;75:901-20.
    13. Hunter JJ, Chien KR. Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 1999;341:1276-83.
    14. Sugden PH. Signaling pathways activated by vasoactive peptides in the cardiac myocyte and their role in myocardial pathologies. J Card Fail 2002;8:S359-69.
    15. Laufs U, Kilter H, Konkol C, Wassmann S, Bohm M, Nickenig G. Impact of HMG CoA reductase inhibition on small GTPases in the heart. Cardiovasc Res 2002;53:911-20.
    16. Thorburn J, Xu S, Thorburn A. MAP kinase- and Rho-dependent signals interact to regulate gene expression but not actin morphology in cardiac muscle cells. EMBO J 1997;16:1888-900.
    17. Clerk A, Pham FH, Fuller SJ, Sahai E, Aktories K, Marais R, et al. Regulation of mitogen-activated protein kinases in cardiac myocytes through the small G protein Rac1. Mol Cell Biol 2001;21:1173-84.
    18. Delawary M, Nakazawa T, Tezuka T, Sawa M, Iino Y, Takenawa T, Yamamoto T. Molecular characterization of a novel RhoGAP, RRC-1 of the nematode Caenorhabditis elegans. Biochem Biophys Res Commun 2007.
    19. Clerk A, Sugden PH. Small guanine nucleotide-binding proteins and myocardial hypertrophy. Circ Res 2000;86:1019-23.
    20. Finkel T. Myocyte hypertrophy: the long and winding RhoA'd. J Clin Invest 1999;103:1619-20.
    21. Pracyk JB, Tanaka K, Hegland DD, Kim KS, Sethi R, Rovira II, et al. A requirement for the rac1 GTPase in the signal transduction pathway leading to cardiac myocyte hypertrophy. J Clin Invest 1998;102:929-37.
    22. Sussman MA, Welch S, Walker A, Klevitsky R, Hewett TE, Price RL, et al. Altered focal adhesion regulation correlates with cardiomyopathy in mice expressing constitutively active rac1. J Clin Invest 2000;105:875-86.
    23. Higuchi Y, Otsu K, Nishida K, Hirotani S, Nakayama H, Yamaguchi O, et al. The small GTP-binding protein Rac1 induces cardiac myocyte hypertrophy through the activation of apoptosis signal-regulating kinase 1 and nuclear factor-kappa B. J Biol Chem 2003;278:20770-7.
    24. Sah VP, Minamisawa S, Tam SP, Wu TH, Dorn GW 2nd, Ross J Jr, et al. Cardiac-specific overexpression of RhoA results in sinus and atrioventricular nodal dysfunction and contractile failure. J Clin Invest 1999;103:1627-34.
    25. Pan J, Singh US, Takahashi T, Oka Y, Palm-Leis A, Herbelin BS, Baker KM. PKC mediates cyclic stretch-induced cardiac hypertrophy through Rho family GTPases and mitogen-activated protein kinases in cardiomyocytes. J Cell Physiol 2005;202:536-53.
    26. Satoh M, Ogita H, Takeshita K, Mukai Y, Kwiatkowski DJ, Liao JK. Requirement of Rac1 in the development of cardiac hypertrophy. Proc Natl Acad Sci U S A 2006;103:7432-7.
    27. Murasawa S, Matsubara H, Mori Y, Masaki H, Tsutsumi Y, Shibasaki Y, et al. Angiotensin II initiates tyrosine kinase Pyk2-dependent signalings leading to activation of Rac1-mediated c-Jun NH2-terminal kinase. J Biol Chem 2000;275:26856-63.
    28. Kodama H, Fukuda K, Takahashi T, Sano M, Kato T, Tahara S, et al. Role of EGF Receptor and Pyk2 in endothelin-1-induced ERK activation in rat cardiomyocytes. J Mol Cell Cardiol 2002;34:139-50.
    29. Liang Q, Molkentin JD. Redefining the roles of p38 and JNK signaling in cardiac hypertrophy: dichotomy between cultured myocytes and animal models. J Mol Cell Cardiol 2003;35:1385-94.
    30. Sabri A, Govindarajan G, Griffin TM, Byron KL, Samarel AM, Lucchesi PA. Calcium- and protein kinase C-dependent activation of the tyrosine kinase PYK2 by angiotensin II in vascular smooth muscle. Circ Res 1998;83:841-51.
    31. Tang H, Zhao ZJ, Landon EJ, Inagami T. Regulation of calcium-sensitive tyrosine kinase Pyk2 by angiotensin II in endothelial cells. Roles of Yes tyrosine kinase and tyrosine phosphatase SHP-2. J Biol Chem 2000;275:8389-96.
    32. Huckle WR, Dy RC, Earp HS. Calcium-dependent increase in tyrosine kinase activity stimulated by angiotensin II. Proc Natl Acad Sci U S A 1992;89:8837-41.
    33. Wilm M, Shevchenko A, Houthaeve T, Breit S, Schweigerer L, Fotsis T, Mann M. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 1996;379:466-9.
    34. Satoh K, Ichihara K, Landon EJ, Inagami T, Tang H. 3-Hydroxy-3-methylglutaryl-CoA reductase inhibitors block calcium-dependent tyrosine kinase Pyk2 activation by angiotensin II in vascular endothelial cells. involvement of geranylgeranylation of small G protein Rap1. J Biol Chem 2001;276:15761-7.
    35. Ping P, Zhang J, Pierce WM Jr, Bolli R. Functional proteomic analysis of protein kinase C epsilon signaling complexes in the normal heart and during cardioprotection. Circ Res 2001;88:59-62.
    36. Dikic I, Tokiwa G, Lev S, Courtneidge SA, Schlessinger J. A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature 1996;383:547-50.
    37. Li X, Dy RC, Cance WG, Graves LM, Earp HS. Interactions between two cytoskeleton-associated tyrosine kinases: calcium-dependent tyrosine kinase and focal adhesion tyrosine kinase. J Biol Chem 1999;274:8917-24.
    38. Blaukat A, Ivankovic-Dikic I, Gronroos E, Dolfi F, Tokiwa G, Vuori K, Dikic I. Adaptor proteins Grb2 and Crkcouple Pyk2 with activation of specific mitogen-activated protein kinase cascades. J Biol Chem 1999;274:14893-901.
    39. Zhu WZ, Wang SQ, Chakir K, Yang D, Zhang T, Brown JH, et al. Linkage of beta1-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca2+/calmodulin kinase II. J Clin Invest 2003;111:617-25.
    40. Akhter SA, Luttrell LM, Rockman HA, Iaccarino G, Lefkowitz RJ, Koch WJ. Targeting the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science 1998;280:574-7.
    41. Dessy C, Matsuda N, Hulvershorn J, Sougnez CL, Sellke FW, Morgan KG. Evidence for involvement of the PKC-alpha isoform in myogenic contractions of the coronary microcirculation. Am J Physiol Heart Circ Physiol 2000;279:H916-23.
    42. Kuppuswamy D, Kerr C, Narishige T, Kasi VS, Menick DR, Cooper G 4th. Association of tyrosine-phosphorylated c-Src with the cytoskeleton of hypertrophying myocardium. J Biol Chem 1997;272:4500-8.
    43. Sadoshima J, Izumo S. Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J 1993;12:1681-92.
    44. Takeishi Y, Huang Q, Abe J, Glassman M, Che W, Lee JD, et al. Src and multiple MAP kinase activation in cardiac hypertrophy and congestive heart failure under chronic pressure-overload: comparison with acute mechanical stretch. J Mol Cell Cardiol 2001;33:1637-48.
    45. Wang Y, Huang S, Sah VP, Ross J Jr, Brown JH, Han J, Chien KR. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem 1998;273:2161-8.
    46. Takeishi Y, Ping P, Bolli R, Kirkpatrick DL, Hoit BD, Walsh RA. Transgenic overexpression of constitutively active protein kinase C epsilon causes concentric cardiac hypertrophy. Circ Res 2000;86:1218-23.
    47. Melendez J, Turner C, Avraham H, Steinberg SF, Schaefer E, Sussman MA. Cardiomyocyte apoptosis triggered by RAFTK/pyk2 via Src kinase is antagonized by paxillin. J Biol Chem 2004;279:53516-23.
    48. Litvak V, Tian D, Shaul YD, Lev S. Targeting of PYK2 to focal adhesions as a cellular mechanism for convergence between integrins and G protein-coupled receptor signaling cascades. J Biol Chem 2000;275:32736-46.
    49. Takahashi T. Pyk2/CAKbeta signaling: a novel Ca(2+)-dependent pathway leading to cardiac hypertrophy. J Mol Cell Cardiol 2004;36:791-3.
    50. Hunyady L, Catt KJ. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol Endocrinol 2006;20:953-70.
    1. Pan M, Jing HM, Zhu JH, Liu ZH, Jiang WP, Yang XJ. Rho-kinase inhibitor may exert a role in preventing cardiac hypertrophy, independent of antihypertensive effects. Med Hypotheses 2007;68:234.
    2. Nakagami H, Liao JK. Statins and myocardial hypertrophy. Coron Artery Dis 2004;15:247-50.
    3. Takimoto E, Kass DA. Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension 2007;49:241-8.
    4. Takemoto M, Node K, Nakagami H, Liao Y, Grimm M, Takemoto Y, et al. Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy. J Clin Invest 2001;108:1429-37.
    5. Cirrincione GM, Boluyt MO, Hwang HS, Bleske BE. 3-HMG-Coenzyme A reductase inhibition and extracellular matrix gene expression in the pressure-overloaded rat heart. J Cardiovasc Pharmacol 2006;47:521-30.
    6. Bendall JK, Cave AC, Heymes C, Gall N, Shah AM. Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 2002;105:293-6.
    7. Nadruz W Jr, Lagosta VJ, Moreno H Jr, Coelho OR, Franchini KG. Simvastatin prevents load-induced protein tyrosine nitration in overloaded hearts. Hypertension 2004;43:1060-6.
    8. Luo JD, Zhang WW, Zhang GP, Guan JX, Chen X. Simvastatin inhibits cardiac hypertrophy and angiotensin-converting enzyme activity in rats with aortic stenosis. Clin Exp Pharmacol Physiol 1999;26:903-8.
    9. Patel R, Nagueh SF, Tsybouleva N, Abdellatif M, Lutucuta S, Kopelen HA, et al. Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation 2001;104:317-24.
    10. Senthil V, Chen SN, Tsybouleva N, Halder T, Nagueh SF, Willerson JT, et al. Prevention of cardiac hypertrophy by atorvastatin in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circ Res 2005;97:285-92.
    11. Lee TM, Chou TF, Tsai CH. Association of pravastatin and left ventricular mass in hypercholesterolemic patients: role of 8-iso-prostaglandin f2alpha formation. J Cardiovasc Pharmacol 2002;40:868-74.
    12. Nishikawa H, Miura S, Zhang B, Shimomura H, Arai H, Tsuchiya Y, et al. Statins induce the regression of left ventricular mass in patients with angina. Circ J 2004;68:121-5.
    13. Liao JK. Statin therapy for cardiac hypertrophy and heart failure. J Investig Med 2004;52:248-53.
    14. Planavila A, Laguna JC, Vazquez-Carrera M. Atorvastatin improves peroxisome proliferator-activated receptor signaling in cardiac hypertrophy by preventing nuclear factor-kappa B activation. Biochim Biophys Acta 2005;1687:76-83.
    15. Kim S, Yoshiyama M, Izumi Y, Kawano H, Kimoto M, Zhan Y, Iwao H. Effects of combination of ACE inhibitor and angiotensin receptor blocker on cardiac remodeling, cardiac function, and survival in rat heart failure. Circulation 2001;103:148-54.
    16. Dahlof B. Left ventricular hypertrophy and angiotensin II antagonists. Am J Hypertens 2001;14:174-82.
    17. Yasunari K, Maeda K, Nakamura M, Watanabe T, Yoshikawa J, Hirohashi K. Left ventricular hypertrophy and angiotensin II receptor blocking agents. Curr Med Chem Cardiovasc Hematol Agents 2005;3:61-7.
    18. Kassab S, Garadah T, Abu-Hijleh M, Golbahar J, Senok S, Wazir J, Gumaa K. The angiotensin type 1 receptor antagonist valsartan attenuates pathological ventricular hypertrophy induced by hyperhomocysteinemia in rats. J Renin Angiotensin Aldosterone Syst 2006;7:206-11.
    19. Lindholm LH, Ibsen H, Dahlof B, Devereux RB, Beevers G, de Faire U, et al. Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 2002;359:1004-10.
    20. Julius S, Kjeldsen SE, Weber M, Brunner HR, Ekman S, Hansson L, et al. Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amlodipine: the VALUE randomised trial. Lancet 2004;363:2022-31.
    21. Klingbeil AU, Schneider M, Martus P, Messerli FH, Schmieder RE. A meta-analysis of the effects of treatment on left ventricular mass in essential hypertension. Am J Med 2003;115:41-6.
    22. Nakamura K, Fushimi K, Kouchi H, Mihara K, Miyazaki M, Ohe T, Namba M. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation 1998;98:794-9.
    23. Hirotani S, Higuchi Y, Nishida K, Nakayama H, Yamaguchi O, Hikoso S, et al. Ca(2+)-sensitive tyrosine kinase Pyk2/CAK beta-dependent signaling is essential for G-protein-coupled receptor agonist-induced hypertrophy. J Mol Cell Cardiol 2004;36:799-807.
    24. Murasawa S, Matsubara H, Mori Y, Masaki H, Tsutsumi Y, Shibasaki Y, et al. Angiotensin II initiates tyrosine kinase Pyk2-dependent signalings leading to activation of Rac1-mediated c-Jun NH2-terminal kinase. J Biol Chem 2000;275:26856-63.
    25. Litvak V, Tian D, Shaul YD, Lev S. Targeting of PYK2 to focal adhesions as a cellular mechanism for convergence between integrins and G protein-coupled receptor signaling cascades. J Biol Chem 2000;275:32736-46.
    26. Melendez J, Turner C, Avraham H, Steinberg SF, Schaefer E, Sussman MA. Cardiomyocyte apoptosis triggered by RAFTK/pyk2 via Src kinase is antagonized by paxillin. J Biol Chem 2004;279:53516-23.
    27. Zhu WZ, Wang SQ, Chakir K, Yang D, Zhang T, Brown JH, et al. Linkage of beta1-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca2+/calmodulin kinase II. J Clin Invest 2003;111:617-25.
    28. Wang Y, Huang S, Sah VP, Ross J Jr, Brown JH, Han J, Chien KR. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem 1998;273:2161-8.
    29. Takeishi Y, Huang Q, Abe J, Glassman M, Che W, Lee JD, et al. Src and multiple MAP kinase activation in cardiac hypertrophy and congestive heart failure under chronic pressure-overload: comparison with acute mechanical stretch. J Mol Cell Cardiol 2001;33:1637-48.
    30. Sadoshima J, Izumo S. Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J 1993;12:1681-92.
    31. Kuppuswamy D, Kerr C, Narishige T, Kasi VS, Menick DR, Cooper G 4th. Association of tyrosine-phosphorylated c-Src with the cytoskeleton of hypertrophying myocardium. J Biol Chem 1997;272:4500-8.
    32. Dessy C, Matsuda N, Hulvershorn J, Sougnez CL, Sellke FW, Morgan KG. Evidence for involvement of the PKC-alpha isoform in myogenic contractions of the coronary microcirculation. Am J Physiol Heart Circ Physiol 2000;279:H916-23.
    33. Akhter SA, Luttrell LM, Rockman HA, Iaccarino G, Lefkowitz RJ, Koch WJ. Targeting the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science 1998;280:574-7.
    34. Ping P, Zhang J, Pierce WM Jr, Bolli R. Functional proteomic analysis of protein kinase C epsilon signaling complexes in the normal heart and during cardioprotection. Circ Res 2001;88:59-62.
    35. Blaukat A, Ivankovic-Dikic I, Gronroos E, Dolfi F, Tokiwa G, Vuori K, Dikic I. Adaptor proteins Grb2 and Crk couple Pyk2 with activation of specific mitogen-activated protein kinase cascades. J Biol Chem 1999;274:14893-901.
    36. Takahashi T. Pyk2/CAKbeta signaling: a novel Ca(2+)-dependent pathway leading to cardiac hypertrophy. J Mol Cell Cardiol 2004;36:791-3.
    37. Takeishi Y, Ping P, Bolli R, Kirkpatrick DL, Hoit BD, Walsh RA. Transgenic overexpression of constitutivelyactive protein kinase C epsilon causes concentric cardiac hypertrophy. Circ Res 2000;86:1218-23.
    38. Sabri A, Govindarajan G, Griffin TM, Byron KL, Samarel AM, Lucchesi PA. Calcium- and protein kinase C-dependent activation of the tyrosine kinase PYK2 by angiotensin II in vascular smooth muscle. Circ Res 1998;83:841-51.
    39. Satoh K, Ichihara K, Landon EJ, Inagami T, Tang H. 3-Hydroxy-3-methylglutaryl-CoA reductase inhibitors block calcium-dependent tyrosine kinase Pyk2 activation by angiotensin II in vascular endothelial cells. involvement of geranylgeranylation of small G protein Rap1. J Biol Chem 2001;276:15761-7.
    40. Eguchi S, Iwasaki H, Inagami T, Numaguchi K, Yamakawa T, Motley ED, et al. Involvement of PYK2 in angiotensin II signaling of vascular smooth muscle cells. Hypertension 1999;33:201-6.
    41. Daou GB, Srivastava AK. Reactive oxygen species mediate Endothelin-1-induced activation of ERK1/2, PKB, and Pyk2 signaling, as well as protein synthesis, in vascular smooth muscle cells. Free Radic Biol Med 2004;37:208-15.
    42. Ritchie RH, Delbridge LM. Cardiac hypertrophy, substrate utilization and metabolic remodelling: cause or effect?. Clin Exp Pharmacol Physiol 2006;33:159-66.
    43. Li HL, Huang Y, Zhang CN, Liu G, Wei YS, Wang AB, et al. Epigallocathechin-3 gallate inhibits cardiac hypertrophy through blocking reactive oxidative species-dependent and -independent signal pathways. Free Radic Biol Med 2006;40:1756-75.
    44. van Buul JD, Anthony EC, Fernandez-Borja M, Burridge K, Hordijk PL. Proline-rich tyrosine kinase 2 (Pyk2) mediates vascular endothelial-cadherin-based cell-cell adhesion by regulating beta-catenin tyrosine phosphorylation. J Biol Chem 2005;280:21129-36.
    45. Higuchi Y, Otsu K, Nishida K, Hirotani S, Nakayama H, Yamaguchi O, et al. The small GTP-binding protein Rac1 induces cardiac myocyte hypertrophy through the activation of apoptosis signal-regulating kinase 1 and nuclear factor-kappa B. J Biol Chem 2003;278:20770-7.
    46. Taylor JM, Rovin JD, Parsons JT. A role for focal adhesion kinase in phenylephrine-induced hypertrophy of rat ventricular cardiomyocytes. J Biol Chem 2000;275:19250-7.
    47. Alfakih K, Reid S, Hall A, Sivananthan MU. The assessment of left ventricular hypertrophy in hypertension. J Hypertens 2006;24:1223-30.
    48. Tang H, Zhao ZJ, Landon EJ, Inagami T. Regulation of calcium-sensitive tyrosine kinase Pyk2 by angiotensin II in endothelial cells. Roles of Yes tyrosine kinase and tyrosine phosphatase SHP-2. J Biol Chem 2000;275:8389-96.
    49. Huckle WR, Dy RC, Earp HS. Calcium-dependent increase in tyrosine kinase activity stimulated by angiotensin II. Proc Natl Acad Sci U S A 1992;89:8837-41.
    50. Wilm M, Shevchenko A, Houthaeve T, Breit S, Schweigerer L, Fotsis T, Mann M. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 1996;379:466-9.
    51. Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature 1990;343:425-30.
    52. Hughes AD. The role of isoprenoids in vascular smooth muscle: potential benefits of statins unrelated to cholesterol lowering. J Hum Hypertens 1996;10:387-90.
    53. Wassmann S, Laufs U, Baumer AT, Muller K, Ahlbory K, Linz W, et al. HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species. Hypertension 2001;37:1450-7.
    54. Luo JD, Zhang WW, Zhang GP, Zhong BH, Ou HJ. Effects of simvastatin on activities of endogenous antioxidant enzymes and angiotensin-converting enzyme in rat myocardium with pressure-overload cardiac hypertrophy. Acta Pharmacol Sin 2002;23:124-8.
    55. Hunter JJ, Chien KR. Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 1999;341:1276-83.
    1. Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med. 1996; 335: 1001–1009.
    2. Vaughan CJ, Gotto AM Jr, Basson CT. The evolving role of statins in the management of atherosclerosis. J Am Coll Cardiol 2000; 35:1–10.
    3. United States Food and Drug Administration. Center for drug evaluation and research. Drugs @ FDA (http://www.accessdata.fda.gov/scripts/cder/drugsatfda).
    4. Shepherd J, Cobbe SM, Ford I, Isles CG, Lorimer AR, MacFarlane PW, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N Engl J Med 1995; 333:1301–1307.
    5. West of Scotland Coronary Prevention Study Group. Influence of pravastatin and plasma lipids on clinical events in the West of Scotland Coronary Prevention Study (WOSCOPS). Circulation 1998;97:1440– 5.
    6. Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344: 1383–1389.
    7. LIPID Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med. 1998; 339:1349–1357.
    8. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002; 360:7–22.
    9. Vaughan CJ, Murphy MB, Buckley BM. Statins do more than just lower cholesterol. Lancet 1996; 348:1079–1082.
    10. Lefer AM, Campbell B, Shin YK, Scalia R, Hayward R, Lefer DJ. Simvastatin preserves the ischemic-reperfused myocardium in normocholesterolemic rat hearts. Circulation 1999; 100:178–184.
    11. keda Y, Young LH, Lefer AM. Rosuvastatin, a new HMG-CoA reductase inhibitor, protects ischemic reperfused myocardium in normocholesterolemic rats. J Cardiovasc Pharmacol 2003; 41:649–656.
    12. Osborne JA, Lento PH, Siegfried MR, Stahl GL, Fusman B, Lefer AM. Cardiovascular effects of acute hypercholesterolemia in rabbits. Reversal with lovastatin treatment. J Clin Invest 1989; 83:465–473.
    13. Scalia R, Gooszen ME, Jones SP, Hoffmeyer M, Rimmer DM 3rd, Trocha SD, et al. Simvastatin exerts both anti-inflammatory and cardioprotective effects in apolipoprotein E-deficient mice. Circulation 2001; 103:2598–2603.
    14. Lefer DJ, Scalia R, Jones SP, Sharp BR, Hoffmeyer MR, Farvid AR, et al. HMG-CoA reductase inhibition protects the diabetic myocardium from ischemia-reperfusion injury. FASEB J 2001; 15:1454–1456.
    15. Ueda Y, Kitakaze M, Komamura K, Minamino T, Asanuma H, Sato H, et al. Pravastatin restored the infarct size-limiting effect of ischemic preconditioning blunted by hypercholesterolemia in the rabbit model of myocardial infarction. J Am Coll Cardiol 1999; 34:2120–2125.
    16. Bell RM, Yellon DM. Atorvastatin, administered at the onset of reperfusion, and independent of lipid lowering, protects the myocardium by up-regulating a pro-survival pathway. J Am Coll Cardiol 2003; 41:508–515.
    17. Di Napoli P, Antonio Taccardi A, Grilli A, Spina R, Felaco M, Barsotti A, et al. Simvastatin reduces reperfusion injury by modulating nitric oxide synthase expression: an ex vivo study in isolated working rat hearts. Cardiovasc Res 2001; 51:283–293.
    18. Emanueli C, Monopoli A, Kraenkel N, Meloni M, Gadau S, Campesi I, et al. Nitropravastatin stimulates reparative neovascularisation and improves recovery from limb Ischaemia in type-1 diabetic mice. Br J Pharmacol 2007; 150:873–882.
    19. Hori Y, Kikuchi A, Isomura M, Katayama M, Miura Y, Fujioka H, et al. Post-translational modifications of the C-terminal region of the rho protein are important for its interaction with membranes and the stimulatory and inhibitory GDP/GTP exchange proteins. Oncogene 1991; 6: 515–522.
    20. Kato K, Cox AD, Hisaka MM, Graham SM, Buss JE, Der CJ. Isoprenoid addition to Ras protein is the critical modification for its membrane association and transforming activity. Proc Natl Acad Sci USA 1992; 89:6403–6407.
    21. Laufs U, Liao JK. Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J Biol Chem 1998; 273: 24266–24271.
    22. Eto M, Barandier C, Rathgeb L, Kozai T, Joch H, Yang Z, et al. Thrombin suppresses endothelial nitric oxide synthase and up-regulates endothelinconverting enzyme-1 expression by distinct pathways: role of Rho/ROCK and mitogen-activated protein kinase. Circ Res 2001; 89:583–590.
    23. Takemoto M, Sun J, Hiroki J, Shimokawa H, Liao JK. Rho-kinase mediates hypoxia-induced down-regulation of endothelial nitric oxide synthase. Circulation 2002; 106:57–62.
    24. Kureishi Y, Luo Z, Shiojima I, Bialik A, Fulton D, Lefer DJ, et al. The HMGCoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat Med 2000; 7:1004–1010.
    25. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 1999; 399:597–601.
    26. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 1999; 399:601–605.
    27. Eto M, Kozai T, Cosentino F, Joch H, Luscher TF. Statin prevents tissue factor expression in human endothelial cells: role of Rho/Rho-kinase and Akt pathways. Circulation 2002; 105:1756–1759.
    28. Ming XF, Viswambharan H, Barandier C, Ruffieux J, Kaibuchi K, Rusconi S, et al. Rho GTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells. Mol Cell Biol 2002; 22:8467–8477.
    29. Schwartz GG, Olsson AG, Ezekowitz MD, Ganz P, Oliver MF, Waters D, et al. Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: the MIRACL study: a randomized controlled trial. JAMA 2001; 285:1711–1718.
    30. Aronow HD, Topol EJ, Roe MT, Houghtaling PL,Wolski KE, Lincoff AM, et al. Effect of lipid-lowering therapy on early mortality after acute coronary syndromes: an observational study. Lancet 2001; 357:1063–1068.
    31. Stenestrand U,Wallentin L. Early statin treatment following acute myocardial infarction and 1-year survival. JAMA 2001; 285:430–436.
    32. Kleemann R, Princen HMG, Emeis JJ, et al. Rosuvastatin reduces atherosclerosis development beyond and independent of its plasma cholesterol-lowering effect in APOE*3-Leiden transgenic mice: evidence for anti-inflammatory effects of rosuvastatin. Circulation 2003;108:1368– 74.
    33. Ridker PM, Rifai N, Pfeffer MA, Sacks F, Braunwald E. Long-term effects of pravastatin on plasma concentration of C-reactive protein. Circulation 1999;100:230– 5.
    34. Albert MA, Danielson E, Rifai N, Ridker PM, PRINCE Investigators. Effect of statin therapy on C-reactive protein levels: the pravastatin inflammation/CRP evaluation (PRINCE): a randomized trial and cohort study. JAMA 2001;286:64–70.
    35. Ridker PM, Cannon CP, Morrow D, et al. C-reactive protein levels and outcomes after statin therapy. N Engl J Med 2005; 352:20– 8.
    36. Nissen SE, Tuzcu EM, Schoenhagen P, et al. Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N Engl J Med 2005;352:29– 38.
    37. Abramson J, Wright JM. Are lipid-lowering guidelines evidence-based? Lancet 2007;369:168-9.
    38. Pan M, Zhu JH, Jiang WP, Liu ZH, Li HM, Yu XH, et al. Inflammation: A possible pathogenic link to atrial fibrillation. Med Hypotheses 2006; 67: 1305-1307.
    39. Frustaci A, Chimenti C, Bellocci F, Morgante E, Russo MA, Maseri A. Histological substrate of atrial biopsies in patients with lone atrial fibrillation. Circulation 1997;96:1180–1184.
    40. Bruins P, te Velthuis H, Yazdanbakhsh AP et al: Activation of the complement system during and after cardiopulmonary bypass surgery: postsurgery activation involves C-reactive protein and is associated with postoperative arrhythmia. Circulation, 1997; 96:3542-3548.
    41. Aviles RJ, Martin DO, Apperson-Hansen C, et al. Inflammation as a risk factor for atrial fibrillation. Circulation 2003;108:3006–3010.
    42. Maisel WH, Rawn JD, Stevenson WG: Atrial fibrillation after cardiac surgery. Ann Intern Med, 2001; 135: 1061-1073.
    43. Soucier R, Silverman D, Abordo M et al: Propafenone versus ibutilide for post operative atrial fibrillation following cardiac surgery: neither strategy improves outcomes compared to rate control alone (the PIPAF study). Med Sci Monit, 2003; 9: PI19-23.
    44. Chung MK, Martin DO, Sprecher D, Wazni O, Kanderian A, Carnes CA, Bauer JA, Tchou PJ, Niebauer MJ, Natale A, Van Wagoner DR. C-reactive protein elevation in patients with atrial arrhythmias: inflammatory mechanisms and persistence of atrial fibrillation. Circulation 2001;104:2886–2891.
    45. Young-Xu Y, Jabbour S, Goldberg R, et al. Usefulness of statin drugs in protecting against atrial fibrillation in patients with coronary artery disease. Am J Cardiol 2003; 92:1379–1383.
    46. Siu C-W, Lau C-P, Tse H-F. Prevention of atrial fibrillation recurrence by statin therapy in patients with lone atrial fibrillation after successful cardioversion. Am J Cardiol 2003; 92:1343–1345.
    47. Amar D, Zhang H, Heerdt PM, et al. Statin use is associated with a reduction in atrial fibrillation after noncardiac thoracic surgery independent of C-reactive protein. Chest 2005; 128:3421–3427.
    48. Notarbartolo A, Davi G, Averna M, et al. Inhibition of thromboxane biosynthesis and plateletfunction by simvastatin in type IIa hypercholesterolemia. Arterioscler Thromb Vasc Biol 1995;15:247–51.
    49. Mazeaud MM, Driss F, Le Quan Sang KH. Biochemical and functional alterations associated with hypercholesterolemia in platelets from hypertensive patients. Atherosclerosis 1992;94:201– 11.
    50. Lacoste L, Lam JYT, Hung J, Letchacovski G, Solymoss CB, Waters D. Hyperlipidemia and coronary disease: correction of the increased thrombogenic potential with cholesterol reduction. Circulation 1995; 92:3172– 7.
    51. Habib A, Shamseddeen I, Nasrallah MS, Antoun TA, Nemer G, Bertoglio J, et al. Modulation of COX-2 expression by statins in human monocytic cells. FASEB J 2007; 22: [Epub ahead of print].
    52. Laufs U, Gertz K, Huang P, et al. Atorvastatin upregulates type III nitric oxide synthase in thrombocytes, decreases platelet activation and protects from cerebral ischemia in normocholesterolemic mice. Stroke 2000;31:2442– 9.
    53. Bourcier T, Libby P. HMG-CoA reductase inhibitors reduce plasminogen activator inhibitor-1 expression by human vascular smooth muscle and endothelial cells. Arterioscler Thromb Vasc Biol 2000;20:556– 62.
    54. Van der Wal AC, Becker AE, Van der Loos CM, Das PK. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant morphology. Circulation 1994;89:36–44.
    55. Davies M, Richardson P, Woolf N. Risk of thrombosis in human atherosclerotic plaques: the role of extracellular lipid, macrophages, and smooth muscle cell content. Br Heart J 1993;69:377– 81.
    56. Moreno PR, Falk E, Palacios IF, Newell JB, Fuster V, Fallon JT. Macrophage infiltration in acute coronary syndromes: implications for plaque rupture. Circulation 1994;90:775–8.
    57. Willerson J, Hillis M, Winniford M, Buja LM. Speculation regarding mechanisms responsible for acute ischemic heart disease syndrome. J Am Coll Cardiol 1986;8:245–50.
    58. Libby P. Molecular bases of the acute coronary syndromes. Circulation 1995;91:2844– 50.
    59. Liao JK. Beyond lipid lowering: the role of statins in vascular protection. Int J Cardiol 2002;86:5– 18.
    60. Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med 1999;340:115– 26.
    61. Williams JK, Sukhova GK, Herrington DM, Libby P. Pravastatin has cholesterol-lowering independent effects on the artery wall of atherosclerotic monkeys. J Am Coll Cardiol 1998;31:684– 91.
    62. Schachinger V, Britten MB, Zeiher AM. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 2000; 101:1899–1906.
    63. Halcox JP, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA, et al. Prognostic value of coronary vascular endothelial dysfunction. Circulation 2002; 106:653–658.
    64. Brevetti G, Silvestro A, Schiano V, Chiariello M. Endothelial dysfunction and cardiovascular risk prediction in peripheral arterial disease: additive value of flow-mediated dilation to ankle-brachial pressure index. Circulation 2003; 108:2093–2098.
    65. Balletshofer BM, Rittig K, Enderle MD, Volk A, Maerker E, Jacob S, et al. Endothelial dysfunction is detectable in young normotensive first-degree relatives of subjects with type II diabetes in association with insulin resistance. Circulation 2000; 101:1780–1784.
    66. Sata M, Walsh K. Oxidized LDL activates fas-mediated endothelial cell apoptosis. J Clin Invest 1998; 102:1682–1689.
    67. Vita JA, Yeung AC,Winniford M, Hodgson JM, Treasure CB, Klein JL, et al. Effect of cholesterol-lowering therapy on coronary endothelial vasomotor function in patients with coronary artery disease. Circulation 2000; 102:846–851.
    68. Wolfrum S, Jensen KS, Liao JK. Endothelium-dependent effects of statins. Arterioscler Thromb Vasc Biol 2003; 23:729–736.
    69. Heeschen C, Hamm CW, Laufs U, Bohm M, Snapinn S, White HD. Withdrawal of statins in patients with acute coronary syndromes. Circulation 2003; 107:e27.
    70. Laufs U, Endres M, Custodis F, Gertz K, Nickenig G, Liao JK, et al. Suppression of endothelial nitric oxide production after withdrawal of statin treatment is mediated by negative feedback regulation of rho GTPase gene transcription. Circulation 2000; 102:3104–3110.
    71. Ikeda Y, Young LH, Lefer AM. Rosuvastatin, a new HMG-CoA reductase inhibitor, protects ischemic reperfused myocardium in normocholesterolemic rats. J Cardiovasc Pharmacol 2003; 41:649–656.
    72. Wolfrum S, Grimm M, Heidbreder M, Dendorfer A, Katus HA, Liao JK, et al. Acute reduction of myocardial infarct size by a hydroxymethyl glutaryl coenzyme A reductase inhibitor is mediated by endothelial nitric oxide synthase. J Cardiovasc Pharmacol 2003; 41:474–480.
    73. Yamawaki H, Haendeler J, Berk BC. Thioredoxin: a key regulator of cardiovascular homeostasis. Circ Res 2003; 93:1029–1033.
    74. Haendeler J, Hoffmann J, Tischler V, Berk BC, Zeiher AM, Dimmeler S. Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nat Cell Biol 2002; 4:743–749.
    75. Haendeler J, Hoffmann J, Zeiher AM. Statin-mediated S-nitrosylation of thioredoxin: a novel mechanism of reducing ROS production in endothelial cells. Circulation 2003; 108: IV.
    76. Shishehbor MH, Brennan ML, Aviles RJ, Fu X, Penn MS, Sprecher DL, et al. Statins promote potent systemic antioxidant effects through specific inflammatory pathways. Circulation 2003; 108:426–431.
    77. Rueckschloss U, Galle J, Holtz J, Zerkowski HR, Morawietz H. Induction of NAD(P)H oxidase by oxidized low-density lipoprotein in human endothelial cells: anti-oxidative potential of hydroxymethylglutaryl coenzyme A reductase inhibitor therapy. Circulation 2001; 104:1767–1772.
    78. Wassmann S, Laufs U, Muller K, Konkol C, Ahlbory K, Baumer AT, et al. Cellular antioxidant effects of atorvastatin in vitro and in vivo. Arterioscler Thromb Vasc Biol 2002; 22:300–305.
    79. Takemoto M, Node K, Nakagami H, Liao Y, Grimm M, Takemoto Y, et al. Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy. J Clin Invest 2001; 108:1429–1437.
    80. Laufs U, Liao JK. Rapid effects of statins: from prophylaxis to therapy for ischemic stroke. Arterioscler Thromb Vasc Biol 2003; 23:156–157.
    81. Wierzbicki AS, Reynolds TM. Statins and fractures. Lancet 2001; 357: 1887–1889.
    82. Pare G, Krust A, Karas RH, Dupont S, Aronovitz M, Chambon P, et al. Estrogen receptor-alpha mediates the protective effects of estrogen against vascular injury. Circ Res 2002; 90:1087–1092.
    83. Mendelsohn ME, Karas RH. The protective effects of estrogen on the cardiovascular system. N Engl J Med 1999; 340:1801–1811.
    84. Urbich C, Dernbach E, Zeiher AM, Dimmeler S. Double-edged role of statins in angiogenesis signaling. Circ Res 2002; 90:737–744.
    85. Skaletz-Rorowski A, Lutchman M, Kureishi Y, Lefer DJ, Faust JR,Walsh K. HMG-CoA reductaseinhibitors promote cholesterol-dependent Akt/PKB translocation to membrane domains in endothelial cells. Cardiovasc Res 2003; 57:253–264.
    86. Weis M, Heeschen C, Glassford AJ, Cooke JP. Statins have biphasic effects on angiogenesis. Circulation 2002; 105:739–745.
    87. Laufs U, Kilter H, Konkol C,Wassmann S, Bohm M, Nickenig G. Impact of HMG CoA reductase inhibition on small GTPases in the heart. Cardiovasc Res 2002; 53:911–920.
    88. Isner JM, Asahara T. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest 1999; 103: 1231–1236.
    89. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000; 6:389–395.
    90. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275:964–796.
    91. Bhattacharya V, McSweeney PA, Shi Q, Bruno B, Ishida A, Nash R, et al. Enhanced endothelialization and micro-vessel formation in polyester grafts seeded with CD34( + ) bone marrow cells. Blood 2000; 95:581–585.
    92. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+ ) cells identifies a population of functional endothelial precursors. Blood 2000; 95:952–958.
    93. Deschaseaux F, Selmani Z, Falcoz PE, Mersin N, Meneveau N, Penfornis A, et al. Two types of circulating endothelial progenitor cells in patients receiving long term therapy by HMG-CoA reductase inhibitors. Eur J Pharmacol 2007; [Epub ahead of print].
    94. Schatteman GC, Hanlon HD, Jiao C, Dodds SG, Christy BA. Blood derived angioblasts accelerate blood-flow restoration in diabetic mice. J Clin Invest 2000; 106:571–578.
    95. Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 2001; 89:E1–E7.
    96. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA 2000; 97: 3422–3427.
    97. Assmus B, Schachinger V, Teupe C, Britten M, Lehmann R, Dobert N, et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation 2002; 106:3009–3017.
    98. Schachinger V, Tonn T, Dimmeler S, Zeiher AM. Bone-marrow-derived progenitor cell therapy in need of proof of concept: design of the REPAIR-AMI trial. Nat Clin Pract Cardiovasc Med 2006; 3 Suppl 1:S23-28.
    99. Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Mesquita CT, et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003; 107:2294–2302.
    100. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 2002; 360:427–435.
    101. Llevadot J, Murasawa S, Kureishi Y, Uchida S, Masuda H, Kawamoto A, et al. HMG-CoA reductase inhibitor mobilizes bone marrow-derived endothelial progenitor cells. J Clin Invest 2001; 108:399–405.
    102. Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Ihling C, Technau-Ihling K, et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 2003; 9:1370–1376.
    103. Kalka C, Masuda H, Takahashi T, Gordon R, Tepper O, Gravereaux E, et al. Vascular endothelial growth factor (165) gene transfer augments circulating endothelial progenitor cells in human subjects. Circ Res 2000; 86:1198–1202.
    104. Walter DH, Rittig K, Bahlmann FH, Kirchmair R, Silver M, Murayama T, et al. Statin therapy accelerates re-endothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation 2002; 105:3017–3024.
    105. Werner N, Priller J, Laufs U, Endres M, Bohm M, Dirnagl U, et al. Bone marrow-derived progenitor cells modulate vascular re-endothelialization and neointimal formation: effect of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition. Arterioscler Thromb Vasc Biol 2002; 22:1567–1572.
    106. Eliceiri BP, Cheresh DA. The role of alpha v integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J Clin Invest 1999; 103:1227–1230.
    107. Iwakura A, Luedemann C, Shastry S, Hanley A, Kearney M, Aikawa R, et al. Estrogen-mediated, endothelial nitric oxide synthase-dependent mobilization of bone marrow-derived endothelial progenitor cells contributes to re-endothelialization after arterial injury. Circulation 2003; 108:3115–3121.
    108. Losordo DW, Isner JM, Diaz-Sandoval LJ. Endothelial recovery: the next target in restenosis prevention. Circulation 2003; 107:2635–2637.
    109. Gulati R, Jevremovic D, Peterson TE,Witt TA, Kleppe LS, Mueske CS, et al. Autologous culture-modified mononuclear cells confer vascular protection after arterial injury. Circulation 2003; 108:1520–1526.
    110. Werner N, Junk S, Laufs U, Link A,Walenta K, Bohm M, et al. Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ Res 2003; 93:e17–e24.
    111. Griese DP, Ehsan A, Melo LG, Kong D, Zhang L, Mann MJ, et al. Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts: implications for cell-based vascular therapy. Circulation 2003; 108:2710–2715.
    112. Fujiyama S, Amano K, Uehira K, Yoshida M, Nishiwaki Y, Nozawa Y, et al. Bone marrow monocyte lineage cells adhere on injured endothelium in a monocyte chemo-attractant protein-1-dependent manner and accelerate re-endothelialization as endothelial progenitor cells. Circ Res 2003; 93:980–989.
    113. Assmus B, Urbich C, Aicher A, Hofmann WK, Haendeler J, Rossig L, et al. HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes. Circ Res 2003; 92:1049–1055.
    114. Badorff C, Brandes RP, Popp R, Rupp S, Aicher A, Fleming I, et al. Transdifferentiation of blood-clerived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 2003; 107: 1024-1032.
    115. Anversa P, Nadal-Ginard B. Myocyte renewal and ventricular remodelling. Nature 2002; 415:240–243.
    116. Vassilopoulos G, Wang PR, Russell DW. Transplanted bone marrow regenerates liver by cellfusion. Nature 2003; 422:901–904.
    117. Rupp S, Badorff C, Koyanagi M, Urbich C, Fichtlscherer S, Aicher A, et al. Statin therapy in patients with coronary artery disease improves the impaired endothelial progenitor cell differentiation into cardiomyogenic cells. Basic Res Cardiol 2004; 99:61–68.
    118. Witztum JL, Steinberg D. The oxidative modification hypothesis of atherosclerosis: does it hold for humans? Trends Cardiovasc Med 2001; 11:93–102.
    119. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases. The role of oxidant stress. Circ Res 2000; 87:840–844.
    120. Cai H, Griendling KK, Harrison DG. The vascular NAD[P]H oxidases as therapeutic targets cardiovascular diseases. Trends Pharmacol Sci 2003; 24:471–478.
    121. Fattman CL, Schaefer LM, Oury TD. Extracellular superoxide dismutase in biology and medicine. Free Radic Biol Med 2003; 35:236–256.
    122. Hoen PAC, Van der Lans CAC, Van Eck M, Bijsterbosch MK, Van Berkel TJC, Twisk J. Aorta of ApoE-deficient mice responds to atherogenic stimuli by a prelesional increase and subsequent decrease in the expression of antioxidant enzymes. Circ Res 2003; 93:262–269.
    123. Wolin MS. Interactions of oxidants with vascular signaling systems. Arterioscler Thromb Vasc Biol 2000; 20:1430–1442.
    124. Shishehbor MH, Aviles RJ, Brennan ML, Fu XM, Goormastic M, Pearce GL, et al. Association of nitrotyrosine levels with cardiovascular disease and modulation by statin therapy. JAMA 2003; 289:1675–1680.
    125. Van Tits L, De Graaf J, Hak-Lemmers H, Bredie S, Demacker P, Holvoet P, et al. Increased levels of low-density lipoprotein oxidation in patients with familial hypercholesterolemia and in end-stage renal disease patients on hemodialysis. Laboratory Investigation 2003; 83:13–21.
    126. Hsu RM, Devaraj S, Jialal I. Autoantibodies to oxidized low density lipoprotein in patients with Type 2 diabetes mellitus. Clin Chim Acta 2002; 317:145–150.
    127. Ujihara N, Sakka Y, Takeda M, Hirayama M, Ishii A, Tomonaga O, et al. Association between plasma oxidized low-density lipoprotein and diabetic nephropathy. Diabetes Res Clin Pract 2002; 58:109–114.
    128. Holvoet P, Harris TB, Tracy RP, Verhamme P, Newman AB, Rubin SM, et al. Association of high coronary heart disease risk status with circulating oxidized LDL in the well-functioning elderly. Findings from the health, aging, and body composition study. Arterioscler Thromb Vasc Biol 2003; 23:1444–1448.
    129. Sigurdardottir V, Fagerberg B, Hulthe J. Circulating oxidized low-density lipoprotein (LDL) is associated with risk factors of the metabolic syndrome and LDL size in clinically healthy 58-year-old men (AIR study). J Intern Med 2002; 252:440–447.
    130. Ehara S, Ueda M, Naruko T, Haze K, Itoh A, Otsuka M, et al. Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. Circulation 2001; 103: 1955–1960.
    131. Miyazaki H, Matsuoka H, Itabe H, Usui M, Ueda S, Okuda S, et al. Hemodialysis impairs endothelial function via oxidative stress. Effects of vitamin E-coated dialyzer. Circulation 2000; 101:1002–1006.
    132. Hulthe J, Fagerberg B. Circulating oxidized LDL is associated with subclinical atherosclerosis development and inflammatory cytokines (AIR study). Arterioscler Thromb Vasc Biol 2002;22:1162–1167.
    133. Wentworth P, Jr., Nieva J, Takeuchi C, Galve R, Wentworth AD, Dilley RB, et al. Evidence for ozone formation in human atherosclerotic arteries. Science 2003; 302:1053–1056.
    134. Girona J, La Ville AE, Sola` R, Plana N, Masana L. Simvastatin decreases aldehyde production derived from lipoprotein oxidation. Am J Cardiol 1999; 83:846–851.
    135. Aviram M, Rosenblat M, Bisgaier CL, Newton RS. Atorvastatin and gemfibrozil metabolites, but not the parent drugs, are potent antioxidants against lipoprotein oxidation. Atherosclerosis 1998; 138:271–280.
    136. Mackness MI, Mackness B, Durrington PN, Fogelman AM, Berliner J, Lusis AJ, et al. Paraoxonase and coronary heart disease. Curr Opin Lipidol 1998; 9:319–324.
    137. Deakin S, Leviev I, Guernier S, James RW. Simvastatin modulates expression of the PON1 gene and increases serum paraoxonase. A role for sterol regulatory element-binding protein-2. Arterioscler Thromb Vasc Biol 2003; 23:2083–2089.
    138. Tomas M, Sent? M, Garcia-Faria F, Vila J, Torrents A, Covas M, et al. Effect of simvastatin therapy on paraoxonase activity and related lipoproteins in familial hypercholesterolemic patients. Arterioscler Thromb Vasc Biol 2000; 20:2113–2119.
    139. Franzoni F, Quinones-Galvan A, Regoli F, Ferrannini E, Galetta F. A comparative study of the in vitro antioxidant activity of statins. Int J Cardiol 2003; 90:317–321.
    140. Yamamoto A, Hoshi K, Ichihara K. Fluvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase, scavenges free radicals and inhibits lipid peroxidation in rat liver microsomes. Eur J Pharmacol 1998; 361:143–149.
    141. Mason RP. Direct antioxidant effect of atorvastatin and an active metabolite: a comparative analysis. Circulation 1999; 100:I-541 (abstract).
    142. Dever G, Spickett CM, Kennedy S, Rush C, Tennant G, Monopoli A, Wainwright CL. The nitric oxide-donating pravastatin derivative, NCX 6550 [(1S-[1alpha(betaS*, deltaS*), 2alpha, 6alpha, 8beta-(R*), 8a alpha])-1,2,6,7,8,8a-Hexahydro-beta, delta, 6-trihydroxy-2-methyl-8-(2-methyl-1-oxobutoxy)-1-naphtalene-heptanoic acid 4-(nitrooxy)butyl ester]], reduces splenocyte adhesion and reactive oxygen species generation in normal and atherosclerotic mice. J Pharmacol Exp Ther 2007; 320: 419-426.
    143. Kaneyuki U, Ueda S, Yamagishi S, Kato S, Fujimura T, Shibata R, et al. Pitavastatin inhibits lysophosphatidic acid-induced proliferation and monocyte chemoattractant protein-1 expression in aortic smooth muscle cells by suppressing Rac-1-mediated reactive oxygen species generation. Vascul Pharmacol 2007; 46:286-292.
    144. Hong H, Zeng JS, Kreulen DL, Kaufman DI, Chen AF. Atorvastatin protects against cerebral infarction via inhibition of NADPH oxidase-derived superoxide in ischemic stroke. Am J Physiol Heart Circ Physiol 2006;291:H2210-215.
    145. Hernandez-Presa MA, Mart?n-Ventura JL, Ortego M, Gomez-Hernandez A, Tunon J, Hernandez-Vargas P, et al. Atorvastatin reduces the expression of cyclooxygenase-2 in a rabbit model of atherosclerosis and in cultured vascular smooth muscle cells. Atherosclerosis 2002; 160:49–58.
    146. Morawietz H, Erbs S, Holtz J, Schubert A, Krekler M, Goettsch W, et al. Endothelial Protection, AT1 blockade and Cholesterol-Dependent Oxidative Stress: the EPAS trial. Circulation 2006; 114(1 Suppl):I296-301.
    147. Wassmann S, Laufs U, Mu¨ller K, Konkol C, Ahlbory K, Ba¨umer AT, et al. Cellular antioxidant effects of atorvastatin in vitro and in vivo. Arterioscler Thromb Vasc Biol 2002; 22:300–305.
    148. Molcanyiova A, Stancakova A, Javorsky M, Tkac I. Beneficial effect of simvastatin treatment on LDL oxidation and antioxidant protection is more pronounced in combined hyperlipidemia than in hypercholesterolemia. Pharmacol Res 2006;54:203-207.
    149. Niwa Y, Iwai N. Nanomaterials induce oxidized low-density lipoprotein cellular uptake in macrophages and platelet aggregation. Circ J 2007;71:437-444.
    150. Hofnagel O, Luechtenborg B, Eschert H, Weissen-Plenz G, Severs NJ, Robenek H. Pravastatin inhibits expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in Watanabe heritable hyperlipidemic rabbits: a new pleiotropic effect of statins. Arterioscler Thromb Vasc Biol 2006;26:604-410.
    151. Pietsch A, Erl W, Lorenz RL. Lovastatin reduces expression of the combined adhesion and scavenger receptor CD36 in human monocytic cells. Biochem Pharmacol 1996; 52:433–439.
    152. Umetani N, Kanayama Y, Okamura M, Negoro N, Takeda T. Lovastatin inhibits gene expression of type-I scavenger receptor in THP-1 human macrophages. Biochim Biophys Acta Lipids Lipid Metab 1996; 1303: 199–206.
    153. Fuhrman B, Koren L, Volkova N, Keidar S, Hayek T, Aviram M. Atorvastatin therapy in hypercholesterolemic patients suppresses cellular uptake of oxidized-LDL by differentiating monocytes. Atherosclerosis 2002; 164: 179–185.
    154. Senokuchi T, Matsumura T, Sakai M, Yano M, Taguchi T, Matsuo T, et al. Statins suppress oxidized low density lipoprotein-induced macrophage proliferation by inactivation of the small G protein-p38 MAPK pathway. J Biol Chem 2005; 280:6627-6633.
    155. Wang R, Town T, Gokarn V, Flavell RA, Chandawarkar RY. HSP70 enhances macrophage phagocytosis by interaction with lipid raft-associated TLR-7 and upregulating p38 MAPK and PI3K pathways. J Surg Res 2006;136:58-69.
    156. Bae JS, Yang L, Rezaie AR. Receptors of the protein C activation and activated protein C signaling pathways are colocalized in lipid rafts of endothelial cells. Proc Natl Acad Sci U S A 2007;104:2867-2872.
    157. Asai T, Kushiro T, Fujita H, Kanmatsuse K. Different effects on inhibition of cardiac hypertrophy in spontaneously hypertensive rats by monotherapy and combination therapy of adrenergic receptor antagonists and/or the angiotensin II type 1 receptor blocker under comparable blood pressure reduction. Hypertens Res 2005; 28:79-87.
    158. Pan M, Zhu JH, Liu ZH, Jiang WP, Cui ZC, Yu XH, et al. Angiotensin- converting enzyme gene 2350 G/A polymorphism is associated with left ventricular hypertrophy but not essential hypertension. Hypertens Res 2007; 30: 31-37.
    159. Pan M, Jing HM, Zhu JH, Liu ZH, Jiang WP, Yang XJ. Rho-Kinase inhibitor may exert a role in preventing cardiac hypertrophy, independent of antihypertensive effects. Med Hypotheses 2007; 68:234.
    160. Kassab S, Garadah T, Abu-Hijleh M, Golbahar J, Senok S, Wazir J, et al. The angiotensin type 1 receptor antagonist valsartan attenuates pathological ventricular hypertrophy induced by hyperhomocysteinemia in rats. J Renin Angiotensin Aldosterone Syst 2006;7:206-211.
    161. Chen S, Khan ZA, Karmazyn M, Chakrabarti S. Role of endothelin-1, sodium hydrogen exchanger-1 and mitogen activated protein kinase (MAPK) activation in glucose-inducedcardiomyocyte hypertrophy. Diabetes Metab Res Rev 2006; [Epub ahead of print].
    162. Ito G, Okai T, Fujino G, Takeda K, Ichijo H, Katada T, Iwatsubo T. GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson's disease. Biochemistry 2007; 46:1380-1388.
    163. Loirand G, Guerin P, Pacaud P. Rho kinases in cardiovascular physiology and pathophysiology. Circ Res 2006;98:322-334.
    164. Sah VP, Minamisawa S, Tam SP,Wu TH, Dorn GW, Ross J, Jr., et al. Cardiacspecific over-expression of RhoA results in sinus and atrioventricular nodal dysfunction and contractile failure. J Clin Invest 1999; 103:1627–1634.
    165. Pan J, Singh US, Takahashi T, Oka Y, Palm-Leis A, Herbelin BS, et al. PKC mediates cyclic stretch-induced cardiac hypertrophy through Rho family GTPases and mitogen-activated protein kinases in cardiomyocytes. J Cell Physiol 2005; 202:536-553.
    166. Satoh M, Ogita H, Takeshita K, Mukai Y, Kwiatkowski DJ, Liao JK. Requirement of Rac1 in the development of cardiac hypertrophy. Proc Natl Acad Sci U S A 2006;103: 7432-7437.
    167. Sussman MA, Welch S, Walker A, Klevitsky R, Hewett TE, Price RL, et al. Altered focal adhesion regulation correlates with cardiomyopathy in mice expressing constitutively active rac1. J Clin Invest 2000; 105:875–886.
    168. Van Aelst L, D’Souza-Schorey C. Rho GTPases and signaling networks. Genes Dev 1997; 11:2295–2322.
    169. Hall A. Rho GTPases and the actin cytoskeleton. Science 1998; 279: 509–514.
    170. Dechend R, Fiebeler A, Park JK, Muller DN, Theuer J, Mervaala E, et al. Amelioration of angiotensin II-induced cardiac injury by a 3-hydroxy-3- methylglutaryl coenzyme a reductase inhibitor. Circulation 2001; 104:576–581.
    171. Li HL, Huang Y, Zhang CN, Liu G, Wei YS, Wang AB, et al. Epigallocathechin-3 gallate inhibits cardiac hypertrophy through blocking reactive oxidative species-dependent and -independent signal pathways. Free Radic Biol Med 2006;40: 1756-1775.
    172. Ritchie RH, Delbridge LM. Cardiac hypertrophy, substrate utilization and metabolic remodelling: cause or effect? Clin Exp Pharmacol Physiol 2006;33: 159-166.
    173. Takimoto E, Kass DA. Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension 2007;49: 241-248.
    174. Takenaka H, Kihara Y, Iwanaga Y, Onozawa Y, Toyokuni S, Kita T. Angiotensin II, oxidative stress, and extracellular matrix degradation during transition to LV failure in rats with hypertension. J Mol Cell Cardiol 2006;41:989-997.
    175. Akasaki T, Ohya Y, Kuroda J, Eto K, Abe I, Sumimoto H, Iida M. Increased expression of gp91phox homologues of NAD(P)H oxidase in the aortic media during chronic hypertension: involvement of the renin-angiotensin system. Hypertens Res 2006;29:813-820.
    176. Begonja AJ, Gambaryan S, Geiger J, Aktas B, Pozgajova M, Nieswandt B, et al. Platelet NAD(P)H-oxidase-generated ROS production regulates alphaIIbbeta3-integrin activation independent of the NO/cGMP pathway. Blood 2005;106:2757-2760.
    177. Moe KT, Aulia S, Jiang F, Chua YL, Koh TH, Wong MC, et al. Differential upregulation of Nox homologues of NADPH oxidase by tumor necrosis factor-alpha in human aortic smooth muscle and embryonic kidney cells. J Cell Mol Med 2006;10:231-239.
    178. Marumo T, Schini-Kerth VB, Fisslthaler B, Busse R. Platelet-derived growth factor-stimulatedsuperoxide anion production modulates activation of transcription factor NF-kB and expression of monocyte chemoattractant protein 1 in human aortic smooth muscle cells. Circulation 1997; 96: 2361–2367.
    179. Bendall JK, Cave AC, Heymes C, Gall N, Shah AM. Pivotal role of a gp91phox-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 2002; 105:293–296.
    180. Lee TM, Chou TF, Tsai CH. Association of pravastatin and left ventricular mass in hypercholesterolemic patients: role of 8-iso-prostaglandin F-alpha formation. J Cardiovasc Pharmacol 2002; 40:868–874.
    181. Wassmann S, Laufs U, Baumer AT, Muller K, Ahlbory K, Linz W, et al. HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species. Hypertension 2001;37:1450-1457.
    182. Luo JD, Zhang WW, Zhang GP, Zhong BH, Ou HJ. Effects of simvastatin on activities of endogenous antioxidant enzymes and angiotensin-converting enzyme in rat myocardium with pressure-overload cardiac hypertrophy. Acta Pharmacol Sin 2002;23:124-128.
    183. Krum H, Ashton E, Reid C, Kalff V, Rogers J, Amarena J, et al. Double-blind, randomized, placebo-controlled study of high-dose HMG CoA reductase inhibitor therapy on ventricular remodeling, pro-inflammatory cytokines and neurohormonal parameters in patients with chronic systolic heart failure. J Card Fail 2007;13:1-7.
    184. Node K, Fujita M, Kitakazi M, Hori M, Liao JK. Short-term statin therapy improves cardiac function and symptoms in patients with idiopathic dilated cardiomyopathy. Circulation 2003;108:839–843.
    185. Horwich TB, Maclellan WR, Fonarow GC. Statin therapy is associated with improved survival in ischemic and non-ischemic heart failure. J Am Coll Cardiol 2004;43:642– 648.
    186. Khush KK, Waters DD, Bittner V, Deedwania PC, Kastelein JJ, Lewis SJ, et al. Effect of high-dose atorvastatin on hospitalizations for heart failure: subgroup analysis of the Treating to New Targets (TNT) study. Circulation 2007;115:576-583.
    187. Emberson JR, Ng LL, Armitage J, Bowman L, Parish S, Collins R (Heart Protection Study Collaborative Group). N-terminal Pro-B-type natriuretic peptide, vascular disease risk, and cholesterol reduction among 20,536 patients in the MRC/BHF heart protection study. J Am Coll Cardiol 2007;49:311-319.
    1. Frank GD, Eguchi S, Motley ED, Sasaki T, Inagami T. Unique regulation of c-Jun N-terminal kinase by PYK2/CAK-beta in angiotensin II-stimulated vascular smooth muscle cells. Biochem Biophys Res Commun 2001;286:692-6.
    2. Zheng C, Xing Z, Bian ZC, Guo C, Akbay A, Warner L, Guan JL. Differential regulation of Pyk2 and focal adhesion kinase (FAK). The C-terminal domain of FAK confers response to cell adhesion. J Biol Chem 1998;273:2384-9.
    3. Inazawa J, Sasaki H, Nagura K, Kakazu N, Abe T, Sasaki T. Precise localization of the human gene encoding cell adhesion kinase beta (CAK beta/PYK2) to chromosome 8 at p21.1 by fluorescence in situ hybridization. Hum Genet 1996;98:508-10.
    4. Xiong WC, Macklem M, Parsons JT. Expression and characterization of splice variants of PYK2, a focal adhesion kinase-related protein. J Cell Sci 1998;111 ( Pt 14):1981-91.
    5. Andreev J, Simon JP, Sabatini DD, Kam J, Plowman G, Randazzo PA, Schlessinger J. Identification of a new Pyk2 target protein with Arf-GAP activity. Mol Cell Biol 1999;19:2338-50.
    6. Sasaki H, Nagura K, Ishino M, Tobioka H, Kotani K, Sasaki T. Cloning and characterization of cell adhesion kinase beta, a novel protein-tyrosine kinase of the focal adhesion kinase subfamily. J Biol Chem 1995;270:21206-19.
    7. Lyons PD, Dunty JM, Schaefer EM, Schaller MD. Inhibition of the catalytic activity of cell adhesion kinase beta by protein-tyrosine phosphatase-PEST-mediated dephosphorylation. J Biol Chem 2001;276:24422-31.
    8. Hiregowdara D, Avraham H, Fu Y, London R, Avraham S. Tyrosine phosphorylation of the related adhesion focal tyrosine kinase in megakaryocytes upon stem cell factor and phorbol myristate acetate stimulation and its association with paxillin. J Biol Chem 1997;272:10804-10.
    9. Stanzione R, Picascia A, Chieffi P, Imbimbo C, Palmieri A, Mirone V, et al. Variations of proline-rich kinase Pyk2 expression correlate with prostate cancer progression. Lab Invest 2001;81:51-9.
    10. Miyazaki T, Takaoka A, Nogueira L, Dikic I, Fujii H, Tsujino S, et al. Pyk2 is a downstream mediator of the IL-2 receptor-coupled Jak signaling pathway. Genes Dev 1998;12:770-5.
    11. Li J, Avraham H, Rogers RA, Raja S, Avraham S. Characterization of RAFTK, a novel focal adhesion kinase, and its integrin-dependent phosphorylation and activation in megakaryocytes. Blood 1996;88:417-28.
    12. Takaoka A, Tanaka N, Mitani Y, Miyazaki T, Fujii H, Sato M, et al. Protein tyrosine kinase Pyk2 mediates the Jak-dependent activation of MAPK and Stat1 in IFN-gamma, but not IFN-alpha, signaling. EMBO J 1999;18:2480-8.
    13. Lev S, Moreno H, Martinez R, Canoll P, Peles E, Musacchio JM, et al. Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature 1995;376:737-45.
    14. Eguchi S, Iwasaki H, Inagami T, Numaguchi K, Yamakawa T, Motley ED, et al. Involvement of PYK2 in angiotensin II signaling of vascular smooth muscle cells. Hypertension 1999;33:201-6.
    15. Olivares-Reyes JA, Shah BH, Hernandez-Aranda J, Garcia-Caballero A, Farshori MP, Garcia-Sainz JA, Catt KJ. Agonist-induced interactions between angiotensin AT1 and epidermal growth factor receptors. Mol Pharmacol 2005;68:356-64.
    16. Li X, Yu H, Graves LM, Earp HS. Protein kinase C and protein kinase A inhibit calcium-dependent but not stress-dependent c-Jun N-terminal kinase activation in rat liver epithelial cells. J Biol Chem 1997;272:14996-5002.
    17. Sabri A, Govindarajan G, Griffin TM, Byron KL, Samarel AM, Lucchesi PA. Calcium- and protein kinaseC-dependent activation of the tyrosine kinase PYK2 by angiotensin II in vascular smooth muscle. Circ Res 1998;83:841-51.
    18. Corvol JC, Valjent E, Toutant M, Enslen H, Irinopoulou T, Lev S, et al. Depolarization activates ERK and proline-rich tyrosine kinase 2 (PYK2) independently in different cellular compartments in hippocampal slices. J Biol Chem 2005;280:660-8.
    19. Maudsley S, Naor Z, Bonfil D, Davidson L, Karali D, Pawson AJ, et al. Pyk2 mediates GnRH signalling to a specific ERK-sensitive transcriptional locus in the luteinizing hormone {beta}-subunit gene. Mol Endocrinol 2007.
    20. Shah BH, Baukal AJ, Shah FB, Catt KJ. Mechanisms of extracellularly regulated kinases 1/2 activation in adrenal glomerulosa cells by lysophosphatidic acid and epidermal growth factor. Mol Endocrinol 2005;19:2535-48.
    21. Tokiwa G, Dikic I, Lev S, Schlessinger J. Activation of Pyk2 by stress signals and coupling with JNK signaling pathway. Science 1996;273:792-4.
    22. Hodges RR, Rios JD, Vrouvlianis J, Ota I, Zoukhri D, Dartt DA. Roles of protein kinase C, Ca2+, Pyk2, and c-Src in agonist activation of rat lacrimal gland p42/p44 MAPK. Invest Ophthalmol Vis Sci 2006;47:3352-9.
    23. Schlaepfer DD, Hauck CR, Sieg DJ. Signaling through focal adhesion kinase. Prog Biophys Mol Biol 1999;71:435-78.
    24. McMullen M, Keller R, Sussman M, Pumiglia K. Vascular endothelial growth factor-mediated activation of p38 is dependent upon Src and RAFTK/Pyk2. Oncogene 2004;23:1275-82.
    25. Sekimoto H, Eipper-Mains J, Pond-Tor S, Boney CM. (alpha)v(beta)3 integrins and Pyk2 mediate insulin-like growth factor I activation of Src and mitogen-activated protein kinase in 3T3-L1 cells. Mol Endocrinol 2005;19:1859-67.
    26. Shah BH, Farshori MP, Catt KJ. Neuropeptide-induced transactivation of a neuronal epidermal growth factor receptor is mediated by metalloprotease-dependent formation of heparin-binding epidermal growth factor. J Biol Chem 2004;279:414-20.
    27. Keogh RJ, Houliston RA, Wheeler-Jones CP. Thrombin-stimulated Pyk2 phosphorylation in human endothelium is dependent on intracellular calcium and independent of protein kinase C and Src kinases. Biochem Biophys Res Commun 2002;294:1001-8.
    28. Murasawa S, Mori Y, Nozawa Y, Masaki H, Maruyama K, Tsutsumi Y, et al. Role of calcium-sensitive tyrosine kinase Pyk2/CAKbeta/RAFTK in angiotensin II induced Ras/ERK signaling. Hypertension 1998;32:668-75.
    29. Tang H, Zhao ZJ, Landon EJ, Inagami T. Regulation of calcium-sensitive tyrosine kinase Pyk2 by angiotensin II in endothelial cells. Roles of Yes tyrosine kinase and tyrosine phosphatase SHP-2. J Biol Chem 2000;275:8389-96.
    30. Yin G, Yan C, Berk BC. Angiotensin II signaling pathways mediated by tyrosine kinases. Int J Biochem Cell Biol 2003;35:780-3.
    31. Wang D, Yu X, Brecher P. Nitric oxide inhibits angiotensin II-induced activation of the calcium-sensitive tyrosine kinase proline-rich tyrosine kinase 2 without affecting epidermal growth factor receptor transactivation. J Biol Chem 1999;274:24342-8.
    32. Dougherty CJ, Kubasiak LA, Frazier DP, Li H, Xiong WC, Bishopric NH, Webster KA. Mitochondrial signals initiate the activation of c-Jun N-terminal kinase (JNK) by hypoxia-reoxygenation. FASEB J 2004;18:1060-70.
    33. Dikic I, Tokiwa G, Lev S, Courtneidge SA, Schlessinger J. A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature 1996;383:547-50.
    34. Guo J, Sabri A, Elouardighi H, Rybin V, Steinberg SF. Alpha1-adrenergic receptors activate AKT via a Pyk2/PDK-1 pathway that is tonically inhibited by novel protein kinase C isoforms in cardiomyocytes. Circ Res 2006;99:1367-75.
    35. Ohnishi H, Yamamori S, Ono K, Aoyagi K, Kondo S, Takahashi M. A src family tyrosine kinase inhibitsneurotransmitter release from neuronal cells. Proc Natl Acad Sci U S A 2001;98:10930-5.
    36. Chauhan D, Hideshima T, Pandey P, Treon S, Teoh G, Raje N, et al. RAFTK/PYK2-dependent and -independent apoptosis in multiple myeloma cells. Oncogene 1999;18:6733-40.
    37. Kedzierska K, Vardaxis NJ, Jaworowski A, Crowe SM. FcgammaR-mediated phagocytosis by human macrophages involves Hck, Syk, and Pyk2 and is augmented by GM-CSF. J Leukoc Biol 2001;70:322-8.
    38. Sasaki K, Chiba K. Induction of apoptosis in starfish eggs requires spontaneous inactivation of MAPK (extracellular signal-regulated kinase) followed by activation of p38MAPK. Mol Biol Cell 2004;15:1387-96.
    39. Huang C, Borchers CH, Schaller MD, Jacobson K. Phosphorylation of paxillin by p38MAPK is involved in the neurite extension of PC-12 cells. J Cell Biol 2004;164:593-602.
    40. Le HT, Maksumova L, Wang J, Pallen CJ. Reduced NMDA receptor tyrosine phosphorylation in PTPalpha-deficient mouse synaptosomes is accompanied by inhibition of four src family kinases and Pyk2: an upstream role for PTPalpha in NMDA receptor regulation. J Neurochem 2006;98:1798-809.
    41. Tian D, Litvak V, Lev S. Cerebral ischemia and seizures induce tyrosine phosphorylation of PYK2 in neurons and microglial cells. J Neurosci 2000;20:6478-87.
    42. Strappazzon F, Torch S, Trioulier Y, Blot B, Sadoul R, Verna JM. Survival response-linked Pyk2 activation during potassium depletion-induced apoptosis of cerebellar granule neurons. Mol Cell Neurosci 2007;34:355-65.
    43. Jeon SH, Oh SW, Kang UG, Ahn YM, Bae CD, Park JB, Kim YS. Electroconvulsive shock increases the phosphorylation of Pyk2 in the rat hippocampus. Biochem Biophys Res Commun 2001;282:1026-30.
    44. Li X, Dy RC, Cance WG, Graves LM, Earp HS. Interactions between two cytoskeleton-associated tyrosine kinases: calcium-dependent tyrosine kinase and focal adhesion tyrosine kinase. J Biol Chem 1999;274:8917-24.
    45. Girault JA, Costa A, Derkinderen P, Studler JM, Toutant M. FAK and PYK2/CAKbeta in the nervous system: a link between neuronal activity, plasticity and survival?. Trends Neurosci 1999;22:257-63.
    46. Pandey P, Avraham S, Kumar S, Nakazawa A, Place A, Ghanem L, et al. Activation of p38 mitogen-activated protein kinase by PYK2/related adhesion focal tyrosine kinase-dependent mechanism. J Biol Chem 1999;274:10140-4.
    47. Pei L, Li Y, Yan JZ, Zhang GY, Cui ZC, Zhu ZM. Changes and mechanisms of protein-tyrosine kinase and protein-tyrosine phosphatase activities after brain ischemia/reperfusion. Acta Pharmacol Sin 2000;21:715-20.
    48. Liu Y, Zhang G, Gao C, Hou X. NMDA receptor activation results in tyrosine phosphorylation of NMDA receptor subunit 2A(NR2A) and interaction of Pyk2 and Src with NR2A after transient cerebral ischemia and reperfusion. Brain Res 2001;909:51-8.
    49. Nakagawa-Yagi Y, Choi DK, Ogane N, Shimada S, Seya M, Momoi T, et al. Discovery of a novel compound: insight into mechanisms for acrylamide-induced axonopathy and colchicine-induced apoptotic neuronal cell death. Brain Res 2001;909:8-19.
    50. Takagi C, Ueki K, Ikeuchi H, Kuroiwa T, Kaneko Y, Tsukada Y, et al. Increased expression of cell adhesion kinase beta in human and rat crescentic glomerulonephritis. Am J Kidney Dis 2002;39:174-82.
    51. Ghosh PM, Mikhailova M, Bedolla R, Kreisberg JI. Arginine vasopressin stimulates mesangial cell proliferation by activating the epidermal growth factor receptor. Am J Physiol Renal Physiol 2001;280:F972-9.
    52. Zhang Z, Avraham H, Cohen DM. Urea and NaCl differentially regulate FAK and RAFTK/PYK2 in mIMCD3 renal medullary cells. Am J Physiol 1998;275:F447-51.
    53. Picascia A, Stanzione R, Chieffi P, Kisslinger A, Dikic I, Tramontano D. Proline-rich tyrosine kinase 2 regulates proliferation and differentiation of prostate cells. Mol Cell Endocrinol 2002;186:81-7.
    54. Wang X, Yang Y, Guo X, Sampson ER, Hsu CL, Tsai MY, et al. Suppression of androgen receptor transactivation by Pyk2 via interaction and phosphorylation of the ARA55 coregulator. J Biol Chem 2002;277:15426-31.
    55. Forest V, Campos L, Vergnon JM, Cornillon J, Guyotat D. Characterization of the focal adhesion complex in human non-small cell lung cancer cell lines. Anticancer Res 2005;25:4135-9.
    56. Rocic P, Govindarajan G, Sabri A, Lucchesi PA. A role for PYK2 in regulation of ERK1/2 MAP kinases and PI 3-kinase by ANG II in vascular smooth muscle. Am J Physiol Cell Physiol 2001;280:C90-9.
    57. Matsubara H, Shibasaki Y, Okigaki M, Mori Y, Masaki H, Kosaki A, et al. Effect of angiotensin II type 2 receptor on tyrosine kinase Pyk2 and c-Jun NH2-terminal kinase via SHP-1 tyrosine phosphatase activity evidence from vascular-targeted transgenic mice of AT2 receptor. Biochem Biophys Res Commun 2001;282:1085-91.
    58. Frank GD, Motley ED, Inagami T, Eguchi S. PYK2/CAKbeta represents a redox-sensitive tyrosine kinase in vascular smooth muscle cells. Biochem Biophys Res Commun 2000;270:761-5.
    59. Frank GD, Saito S, Motley ED, Sasaki T, Ohba M, Kuroki T, et al. Requirement of Ca(2+) and PKCdelta for Janus kinase 2 activation by angiotensin II: involvement of PYK2. Mol Endocrinol 2002;16:367-77.
    60. Rocic P, Lucchesi PA. Down-regulation by antisense oligonucleotides establishes a role for the proline-rich tyrosine kinase PYK2 in angiotensin ii-induced signaling in vascular smooth muscle. J Biol Chem 2001;276:21902-6.
    61. Rocic P, Griffin TM, McRae CN, Lucchesi PA. Altered PYK2 phosphorylation by ANG II in hypertensive vascular smooth muscle. Am J Physiol Heart Circ Physiol 2002;282:H457-65.
    62. Daou GB, Srivastava AK. Reactive oxygen species mediate Endothelin-1-induced activation of ERK1/2, PKB, and Pyk2 signaling, as well as protein synthesis, in vascular smooth muscle cells. Free Radic Biol Med 2004;37:208-15.
    63. Palen DI, Ouhtit A, Belmadani S, Lucchesi PA, Matrougui K. Hydrogen peroxide acts as relaxing factor in human vascular smooth muscle cells independent of map-kinase and nitric oxide. Front Biosci 2006;11:2526-34.
    64. Ohtsu H, Mifune M, Frank GD, Saito S, Inagami T, Kim-Mitsuyama S, et al. Signal-crosstalk between Rho/ROCK and c-Jun NH2-terminal kinase mediates migration of vascular smooth muscle cells stimulated by angiotensin II. Arterioscler Thromb Vasc Biol 2005;25:1831-6.
    65. Lin K, Wang D, Sadee W. Serum response factor activation by muscarinic receptors via RhoA. Novel pathway specific to M1 subtype involving calmodulin, calcineurin, and Pyk2. J Biol Chem 2002;277:40789-98.
    66. Shi CS, Sinnarajah S, Cho H, Kozasa T, Kehrl JH. G13alpha-mediated PYK2 activation. PYK2 is a mediator of G13alpha -induced serum response element-dependent transcription. J Biol Chem 2000;275:24470-6.
    67. Booden MA, Siderovski DP, Der CJ. Leukemia-associated Rho guanine nucleotide exchange factor promotes G alpha q-coupled activation of RhoA. Mol Cell Biol 2002;22:4053-61.
    68. Murasawa S, Matsubara H, Mori Y, Masaki H, Tsutsumi Y, Shibasaki Y, et al. Angiotensin II initiates tyrosine kinase Pyk2-dependent signalings leading to activation of Rac1-mediated c-Jun NH2-terminal kinase. J Biol Chem 2000;275:26856-63.
    69. Eble DM, Strait JB, Govindarajan G, Lou J, Byron KL, Samarel AM. Endothelin-induced cardiac myocyte hypertrophy: role for focal adhesion kinase. Am J Physiol Heart Circ Physiol 2000;278:H1695-707.
    70. Zhu W, Zou Y, Shiojima I, Kudoh S, Aikawa R, Hayashi D, et al. Ca2+/calmodulin-dependent kinase II and calcineurin play critical roles in endothelin-1-induced cardiomyocyte hypertrophy. J Biol Chem 2000;275:15239-45.
    71. Ivester CT, Kent RL, Tagawa H, Tsutsui H, Imamura T, Cooper G 4th, McDermott PJ. Electrically stimulated contraction accelerates protein synthesis rates in adult feline cardiocytes. Am J Physiol 1993;265:H666-74.
    72. Passier R, Zeng H, Frey N, Naya FJ, Nicol RL, McKinsey TA, et al. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest 2000;105:1395-406.
    73. Bayer AL, Ferguson AG, Lucchesi PA, Samarel AM. Pyk2 expression and phosphorylation in neonatal and adult cardiomyocytes. J Mol Cell Cardiol 2001;33:1017-30.
    74. Hirotani S, Higuchi Y, Nishida K, Nakayama H, Yamaguchi O, Hikoso S, et al. Ca(2+)-sensitive tyrosine kinasePyk2/CAK beta-dependent signaling is essential for G-protein-coupled receptor agonist-induced hypertrophy. J Mol Cell Cardiol 2004;36:799-807.
    75. Higuchi Y, Otsu K, Nishida K, Hirotani S, Nakayama H, Yamaguchi O, et al. The small GTP-binding protein Rac1 induces cardiac myocyte hypertrophy through the activation of apoptosis signal-regulating kinase 1 and nuclear factor-kappa B. J Biol Chem 2003;278:20770-7.
    76. Nakamura K, Fushimi K, Kouchi H, Mihara K, Miyazaki M, Ohe T, Namba M. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation 1998;98:794-9.
    77. Houser SR, Piacentino V 3rd, Weisser J. Abnormalities of calcium cycling in the hypertrophied and failing heart. J Mol Cell Cardiol 2000;32:1595-607.
    78. Zhu WZ, Wang SQ, Chakir K, Yang D, Zhang T, Brown JH, et al. Linkage of beta1-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca2+/calmodulin kinase II. J Clin Invest 2003;111:617-25.
    79. Heidkamp MC, Scully BT, Vijayan K, Engman SJ, Szotek EL, Samarel AM. PYK2 regulates SERCA2 gene expression in neonatal rat ventricular myocytes. Am J Physiol Cell Physiol 2005;289:C471-82.
    80. Nishida K, Otsu K. The role of apoptosis signal-regulating kinase 1 in cardiomyocyte apoptosis. Antioxid Redox Signal 2006;8:1729-36.
    81. Melendez J, Turner C, Avraham H, Steinberg SF, Schaefer E, Sussman MA. Cardiomyocyte apoptosis triggered by RAFTK/pyk2 via Src kinase is antagonized by paxillin. J Biol Chem 2004;279:53516-23.
    82. Litvak V, Tian D, Shaul YD, Lev S. Targeting of PYK2 to focal adhesions as a cellular mechanism for convergence between integrins and G protein-coupled receptor signaling cascades. J Biol Chem 2000;275:32736-46.
    83. Avraham H, Park SY, Schinkmann K, Avraham S. RAFTK/Pyk2-mediated cellular signalling. Cell Signal 2000;12:123-33.
    84. Pixley FJ, Stanley ER. CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol 2004;14:628-38.
    85. Ivankovic-Dikic I, Gronroos E, Blaukat A, Barth BU, Dikic I. Pyk2 and FAK regulate neurite outgrowth induced by growth factors and integrins. Nat Cell Biol 2000;2:574-81.
    86. Pixley FJ, Lee PS, Condeelis JS, Stanley ER. Protein tyrosine phosphatase phi regulates paxillin tyrosine phosphorylation and mediates colony-stimulating factor 1-induced morphological changes in macrophages. Mol Cell Biol 2001;21:1795-809.