脊髓小胶质细胞在炎性痛觉过敏中的作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:鞘内注射米诺环素对佐剂性关节炎性痛觉过敏的作用
     目的研究鞘内(i.t)注射米诺环素对完全氟氏佐剂(CFA)性关节炎性痛觉过敏的作用。方法1.行为学研究蛛网膜下腔置管成功的雄性SD大鼠,在右踝关节外侧皮下注射50μl CFA前30 min分别i.t生理盐水(NS)或12.5、25、50μg不同剂量的米诺环素,i.t每天1次,持续7d,观察后爪热刺激回缩潜伏期(PWTL)和机械缩足反射阈值(MWT)14d。CFA致炎后2d、6d,i.t米诺环素50μg,观察24h PWTL和MWT变化;右踝关节外侧皮下注射50μl NS前30min i.t米诺环素50μg、NS 20μ1,观察24 h的PWTL和MWT变化。2.形态学研究蛛网膜下腔置管成功的雄性SD大鼠分别i.t NS和米诺环素50μg后30min右踝关节外侧皮下注射CFA 50μl,i.t每天1次,持续7d,观察CFA后0、2、6d给药后4h和13d脊髓背角小胶质细胞标志物OX-42、星形胶质细胞标志物GFAP、神经元标志物Fos的表达。结果1.行为学研究结果i.t米诺环素不改变无炎症大鼠的PWTL和MWT;CFA致炎后PWTL缩短、MWT减小,米诺环素抑制致炎后PWTL缩短和MWT减小似呈剂量依赖性;预先及CFA致炎后2d米诺环素i.t可抑制PWTL缩短、MWT减小,第6d则无明显影响。2.形态学研究结果预先i.t米诺环素可以抑制CFA致炎后脊髓背角OX-42、GFAP、Fos的表达;CFA致炎后早期i.t米诺环素可以抑制脊髓背角OX-42、GFAP的表达;CFA致炎后后期i.t米诺环素可以减少脊髓背角OX-42表达,但不能抑制GFAP的表达。结论外周注射CFA可以诱导脊髓小胶质细胞激活;预先和反复鞘内注射米诺环素可以抑制脊髓小胶质细胞激活,减轻炎性痛觉过敏;脊髓小胶质细胞可能参与炎性痛觉过敏的调节。
     第二部分:鞘内注射米诺环素对CFA诱导的脊髓促炎性细胞因子表达的影响
     目的观察CFA诱导的外周炎症对脊髓促炎性细胞因子表达的影响和鞘内注射米诺环素的作用。方法蛛网膜下腔置管成功的雄性SD大鼠分别i.t NS和米诺环素30min后右踝关节外侧皮下注射CFA,i.t每天1次,持续7d,观察CFA后4h,2、6d、13d后爪PWTL和MWT的变化及CFA致炎后0,2、6d给药后4h和13d脊髓IL-1β、IL-6、TNF-α表达变化。结果CFA致炎后同侧后肢PTWL缩短和MWT减小,预先和反复i.t米诺环素抑制PTWL缩短和MWT的减小:CFA致炎后0,2、6d给药后4h和13d脊髓IL-1β、IL-6、TNF-α表达明显增加,预先和反复i.t米诺环素减少相应时点脊髓IL-1β、IL-6、TNF-α的表达水平。结论外周注射CFA诱导脊髓促炎性细胞因子分泌增加;预先和反复鞘内注射米诺环素可以减少外周炎症诱导的脊髓促炎性细胞因子分泌;脊髓小胶质细胞可能通过促炎性细胞因子介导炎性痛觉过敏。
     第三部分:鞘内注射米诺环素对CFA诱导的脊髓Pp38MAPK表达的影响
     目的观察CFA诱导的外周炎症对脊髓Pp38MAPK蛋白表达变化和米诺环素鞘内注射对其表达的影响。方法蛛网膜下腔置管成功的雄性SD大鼠分别i.t NS和米诺环素30min后右踝关节外侧皮下注射CFA,i.t每天1次,持续7d,观察CFA后4h、2、6、13d的PWTL和MWT的变化及CFA致炎后0,2、6d给药后4h和13d脊髓Pp38MAPK蛋白表达变化。结果CFA致炎后同侧后肢PTWL缩短和MWT减小,预先和反复i.t米诺环素可以抑制PTWL缩短和MWT的减小;CFA致炎后0、2、6d给药后4h和13d脊髓Pp38MAPK蛋白表达增加,预先和反复i.t米诺环素可以抑制相应时点脊髓Pp38MAPK的表达,但仍比基础值增加。结论外周注射CFA可以诱导脊髓Pp38MAPK表达增加;预先和反复鞘内注射米诺环素可以抑制CFA诱导的脊髓Pp38MAPK的表达;脊髓小胶质细胞可能通过p38MAPK调节炎性痛觉过敏。
PartⅠthe effect of intrathecal minocycline on CFA-induced arthritis inflammatory pain in rats.
     Objective To observe the effects of intrathecal(i.t) minocycline on inflammatory hyperalgesia in a rat model of CFA-induced arthritis.Methods 1.Behavioral response:After intrathecal catheter being implanted successfully between L_3 and L_4 vertebrae,adult male Sprague-dawley(SD) rats were pretreated with normal saline or 12.5,25,50μg different dose minocycline intrathecally 30 min prior to subcutaneously injection 50μl complete Freunds adjunvant(CFA) in the right tibio-tarsal joint.Intrathecal normal saline or minocycline was injected once daily for seven consecutive days.Paw withdrawal thermal latency(PWTL) and mechanical withdrawal threshold(MWT) were assessed for 14 successive days.Minocycline 50μg was been given intrathecally on day 2 and day 6 after CFA injection;Intrathecal minocycline 50μg or normal saline was injected 30 min prior to subcutaneously injection 50μl normal saline in the right tibio-tarsal joint.PWTL and MWT were assessed for 24 h.2.Morphologic study:Intrathecal normal saline or minocycline 50μg repectively 30 min prior to subcutaneously injection 50μl CFA in the right tibio-tarsal joint.Intrathecal normal saline or minocycline was injected once daily for seven consecutive days.The changes of spinal dorsal horn microglia,astroglia and neuron response to CFA-induced inflammatory pain were examined by immunohistochemisty methods of OX-42,GFAP and Fos after 4 hours following i.t normal saline or minocycline at 0,2,6 days and on 13 days.Results 1.In the behavioral responses detection:Intrathecal minocycline to noinflamed rats did not alter PWTL and MWT;PWTL was shortened and MWT was decreased after CFA-induced arthritis,pretreated and repeated intrathecal minocycline inhibited the shortening of PWTL and decreasing of MWT to seem in a does-dependent way in inflamed rats.Intrathecal minocycline 50μg inhibited reducing of PWTL and diminishing of MWT on day 2,but failed to alter on day 6 after CFA-induced inflammatory pain.2.Morphologic results:Pretreated and repeated intratheacl minocycline suppressed expressions of OX-42,GFAP and Fos in spinal dorsal horn after CFA-induced imflammatory pain.Intrathecal minocycline inhibited expression of OX-42 and GFAP on day 2,but failed to alter expression of GFAP on day 6 after CFA-induced arthritis.Conclusions Peripheral injection CFA induced spinal microglia activation;Pretreated and repeated intratheacl minocycline inhibited spinal microglia activation that could attenuate inflammatory hyperalgesia;Spinal microglia perhaps involved in inflammatory hyperalgesia.
     PartⅡThe effect of Intratheacl minocycline on CFA-induced spinal proinflammatory cytokines in the rat
     Objective To investigate the expression levels of spinal proinflammatory cytokines in CFA-induced arthritis rats and the effect of intratheacl minocycline.Methods After intrathecal catheter being implanted successfully between L_3 and L_4 vertebrae, adult male Sprague-dawley(SD) rats were pretreated with normal saline or minocycline 50μg 30 min prior to subcutaneously injection of 50μl CFA in the right tibio-tarsal joint,intrathecal normal saline or minocycline was injected once daily for seven consecutive days.PWTL and MWT were assessed on 4h,2,6,13 days.The changes of spinal proinflammatory cytokines IL-1β、IL-6、TNF-αlevels were examined by ELISA analysis after 4 hours following intrathecal normal saline at 0,2, 6 days and on 13 days.after CFA injection.Results PWTL was shortened and MWT was decreased after CFA-induced inflammatory pain,pretreated and repeated intratheacl minocycline inhibited shortening of PWTL and decreasing of MWT. Expressions levels of IL-1β,IL-6 and TNF-αin the spine cord increased after 4 hours following intrathecal normal saline at 0,2,6 days and on 13 days after CFA injection, pretreated and repeated intratheacl minocycline markedly reduced increaseing of spinal IL-1β,IL-6 and TNF-αlevels in corresponding time point.Conclusions Peripheral injection CFA could induce the increasing of spinal proinflammatory cytokines levels;Pretreated and repeated intratheacl minocycline could reduce the increasing of CFA-induced spinal proinflammatory cytokines;Spinal microglia perhaps mediate the inflammatory hyperalgesia by proinflammatory cytokines.
     PartⅢThe effect of Intratheacl minocycline on CFA-induced spinal Pp38MAPK in the rat
     Objective To investigate the expression of spinal Pp38MAPK in CFA-induced arthritis rats and the effect of intratheacl minocycline.Methods After intrathecal catheter being implanted successfully between L_3 and L_4 vertebrae,adult male Sprague-dawley(SD) rats were pretreated with normal saline or minocycline 50μg 30 min prior to subcutaneously injection 50μl CFA in the right tibio-tarsal joint, intrathecal normal saline or minocycline was injected once daily for seven consecutive days.PWTL and MWT were assessed on 4h,2,6,13 days after CFA injection.The changes of expression of spinal Pp38MAPK(phosphorylated p38 mitogen-activated protein kinase) were examined by Western blot analysis after 4 hours following i.t normal saline or minocycline on 0,2,6 days and on 13 days after CFA injection.Results PWTL was shortened and MWT was decreased after CFA-induced inflammatory pain,pretreated and repeated intratheacl minocycline inhibited shortening of PWTL and decreasing of MWT;Sham rats expressed low level Pp38MAPK;Expression of Pp38MAPK in the spine cord was increased after 4 hours following i.t normal saline or minocycline on 0,2,6 days and on 13 days after CFA injection,pretreated and repeated intrathecal minocycline markedly reduced up-regulation of Pp38MAPK levels of spinal cord in corresponding time point,but is increased compared with baseline level.Conclusions Peripheral injection CFA could induce the expression increasing of spinal Pp38MAPK;Pretreated and repeated intrathecal minocycline could inhibit expression of CFA-induced spinal Pp38MAPK; Spinal microglia perhaps mediated the inflammatory hyperalgesia by p38MAPK pathway.
引文
1. Julius D, Basbaum AI. Molecular mechanisms of nociception. Nature, 2001,413(6852): 203-10.
    
    2. Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science, 2000,288(5472): 1765-9.
    
    3. Watkins LR, Maier SF. Glia: a novel drug discovery target for clinical pain. Nat Rev Drug Discov, 2003,2(12): 973-85
    
    4. He F, Suna YE, Glial cells more than support cells? Int J Biochem Cell Biol. 2007,39(4): 661-5
    
    5. Ledeboer A, Sloane EM, Milligan ED, et al. Minocycline attenuates mechanical allodynia and proinfiammatory cytokine expression in rat models of pain facilitation.Pain, 2005, 115(1-2): 71-83
    
    6. Hua XY, Svensson CI, Matsui T, et al. Intrathecal minocycline attenuates peripheral inflammation-induced hyperalgesia by inhibiting p38 MAPK in spinal microglia. Eur J Neurosci, 2005,22(10): 2431-40
    
    7. DeLeo JA, Yezierski RP. The role of neuroinflammation and neuroimmune activation in persistent pain. Pain, 2001,90(1-2): 1-6.
    
    8. Watkins LR, Milligan ED, Maier SF. Glial activation: a driving force for pathological pain. Trends Neurosci, 2001, 24(8): 450-55.
    
    9. Andersson AK, Ronnback L, Hansson E. Lactate induces tumour necrosis factor-a lpha, interleukin-6 and interleukin-1beta release in microglial- and astroglial-enriched primarycultures. J Neurochem, 2005, 93(5): 1327-33.
    
    10. Persson M, Brantefiord M, Hansson E. Ronnback L. Lipopolysaccharide increases microglial GLT-1 expression and glutamate uptake capacity in vitro by a mechanism dependent on TNF-alpha. Glia, 2005, 51(2): 111-20.
    
    11. DeLeo JA,Colburn RW,Rickman AJ. Cytokine and growth factor immunohistochemical spinal profiles in two animal models of mononeuropathy. Brain Res, 1997, 759(1): 50-7.
    12. Sweitzer SM, Colburn RW, Rutkowski M, Deleo JA. Acute peripheral inflammation induces moderate glial activation and spinal IL-1 beta expression that correlates with pain behavior in the rat. Brain Res, 1999, 829(1-2): 209-21
    
    13. Shi Y, Gaestel M. In the cellular garden of forking paths: how p38 MAPKs signal for downstream assistance. Biol Chem, 2002, 383(10): 1519-36.
    
    14. Clark AR, Dean JL, Saklatvala J. Posttranscriptional regulation of gene expression by mitogen activated protein kinase p38. FEBS Lett, 2003, 546(1): 37-44.
    
    15. Jin SX, Zhuang ZY, Woolf CJ, et al. P38 Mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J Neurosci, 2003, 23(10):4017-22.
    
    16. Svensson CI, Marsala M, Westerlund A, et al. Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing. J Neurochem, 2003, 86(6): 1534-44.
    
    17. Kim SY, Bae JC, Kim JY, et al. Activation of p38 MAP kinase in the rat dorsal root ganglia and spinal cord following peripheral inflammation and nerve injury.Neuroreport 2002,13(18): 2483-6.
    
    18. Tsuda M, Mizokoshi A, Shigemoto-Mogami Y, et al. Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia, 2004, 45(1): 89-95.
    
    19. Piao AG, Cho IH, Park CK. Activation of glia and microglial p38 MAPK in medullary dorsal horn contributes to tactile hypersensitivity following trigeminal sensory nerve injury. Pain, 2006, 121(3): 219-31.
    
    20. Mcmahon SB, Cafferty WB, Marchand F. Immune and glial cell factors as pain mediators and modulators. Exp Neurol, 2005, 192(2): 444-62.
    
    21. Raghavendra V, Tanga F, Deleo JA. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J Pharmacol Exp Ther, 2003, 306(2): 624-30
    22. Raghavendra V, Tanga FY, Deleo JA. Complete freunds adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS. Eur J Neurosci, 2004, 20(2): 467-73
    
    23. Zhang J, Hoffert C, Vu HK, et al. Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models. Eur J neurosci,2003,17(12): 2750-54
    
    24. Wu Y, Willcockson HH, Maixner W, et al. Suramin inhibits spinal cord microglia activation and long-term hyperalgesia inducedby formalin injection. J Pain, 2004, 5(1):48-55
    
    25. Clark AK, Gentry C, Bradbury EJ, et al. Role of spinal microglia in rat models of peripheral nerve injury and inflammation. Eur J pain, 2007,11(2): 223-30.
    
    26. Sun S, Cao H, Han M, et al. New evidence for the involvement of spinal fractalkine receptor in pain facilitation and spinal glial activation in rat model of monoarthritis.Pain 2007,129(1-2): 64-75
    
    27. Tikka T, Fiebich BL, Goldsteins G, et al. Minocycline, a tetracycline derivative,is neuroprotective against excitotoxicity by inhibiting activation,proliferation of microglia. J Neurosci, 2001, 21(8): 2580-88
    
    28. Yrjanheikki J, Keinanen R, Pellikka M, et al. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci USA,1998, 95(26): 15769-74
    
    29. Tikka TM, Koistinaho JE. Minocycline provides neuroprotection against N-Methyl-D-aspartate Neurotoxicity by Inhibiting Microglia. J Immunol, 2001,166(12): 7527-33.
    
    30. Zhang SC, Goetz BD, Duncan ID. Suppression of activated microglia promotes survival and function of transplanted oligodendroglial progenitors. Glia, 2003, 41(2):191-8.
    
    31. Owolabi SA, Saab CY. Fractalkine and minocycline alter neuronal activity in the spinal cord dorsal horn. FEBS Lette, 2006, 580 (18): 4306-10.
    32.Yong VW,Wells J,Giuliani F,et al.The promise of minocycline in neurology.Lancet Neurol,2004,3(12):744-51.
    33.Colpaert FC.Evidence that adjuvant arthritis in the rat is associated with chronic pain.Pain,1987,28:201-22.
    34.Chillingworth NL,Donaldson LF.Characterisation of a Freund's complete adjuvant-induced model of chronic arthritis in mice.J Neurosci Methods,2003,128:45-52
    35.Hernandez-Diaz S,Garcia-Rodriguez LA.Epidemiologic assessment of the safety of conventional nonsteroidal anti-inflammatory drugs.Am J Med.2001,110 Suppl 3A:20S-7S.
    36.Strand V,Hochberg MC.The risk of cardiovascular thrombotic events with selective cyclooxygenase-2 inhibitors.Arthritis Rheum.2002,47:349-55.
    37.Altman RD,Hochberg MC,Moskowitz RW,et al.Recommendations for the medical management of osteoarthritis of the hip and knee:2000 update.American College of RheumatologySubcommittee on Osteoarthritis Guidelines.Arthritis Rheum,2000,43(7):1905-15.
    38.Zhuang ZY,Gerner P,Woolf CJ,Ji RR.ERK is sequentially activated in neurons,microglia,and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model.Pain,2005,114(1-2):149-59.
    39.Marchand F,Perretti M,Mcmahon SB.Role of the immune system in chronic pain.Nat Rev Neurosci.2005,6(7):521-32.
    40.杨建平,蒋豪,吴珏.大鼠脊髓蛛网膜下腔埋管并长期留置操作的改进.中华麻醉学杂志,1993,13(2):110-2
    41.Hargreaves K,Dubner R,Brown F.A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia.Pain,1988,32(1):77-88.
    42.Chaplan SR,Bach FW,Pogrel JW,et al.Quantitative assessment of tactile allodynia in the rat paw.J Neurosci Methods,1994,53(1):55-63
    43.Colburn RW,Rickman AJ,Deleo JA.The effect of site and type of nerve injury on spinal glial activation and neuropathic pain behavior. Exp Neurol, 1999, 157(2):289-304.
    
    44. Raivich G. Like cops on the beat: the active role of resting microglia. Trends Neurosci,2005, 28(11): 571-73
    
    45. Tsuda M, Shigemoto-mogami Y, Koizumi S, et al. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature, 2003,424(6950): 778-83.
    
    46. Coull JA, Beggs S, Boudreau D, et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature, 2005, 438(7070):1017-21
    
    47. Narita M, Yoshida T, Nakajima M, et al. Direct evidence for spinal cord microglia in the development of a neuropathic pain-like state in mice. J Neurochem, 2006, 97:1337-48.
    
    48. Colovic M, Caccia S. Liquid chromatographic determination of minocycline in brain-to-plasma distribution studies in the rat. J chromatogr B Analyt Technol Biomed Life Sci, 2003, 791(1-2): 337-43
    
    49. Eddleston M, Mucke L. Molecular profile of reactive astrocytes-implications for their role in neurologic disease. Neuroscience, 1993, 54 (1): 15-36
    
    50. Eliasson C, Sahlgren C, Berthold CH, et al. Intermediatfilament protein partnership in astrocytes. J Biol Chem, 1999, 274 (34): 23996-24006
    
    51. Tanga FY, Raghavendra V, Deleo JA. Quantitative real-time RT-PCR assessment of spinal microglial and astrocytic activation markers in a rat model of neuropathic pain.Neurochem Int, 2004, 45(2-3): 397-407.
    
    52. DeLeo JA, Tanga FY, Tawfik VL. Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia. Neuroscientist, 2004, 10(1): 40-52.
    
    53. Meller ST, Dykstra C, Grzybycki D, et al. The possible role of glia in nociceptive processing and hyperalgesia in the spinal cord of the rat. Neuropharmacology, 1994,33(11): 1471-8.
    
    54. Watkins LR, Martin D, Ulrich P, et al. Evidence for the involvement of spinal cord glia in subcutaneous formalin induced hyperalgesia in the rat. Pain, 1997, 71(3):225-35.
    
    55. Munglani R, Hunt SP. Molecular biology of pain. Br J Anaesth, 1995, 75(2):186-92.
    
    56. Winkelstein BA, DeLeo JA. Nerve root injury severity differentially modulates spinal glial activation in a rat lumbar radiculopathy model: considerations for persistent pain.Brain Res, 2002, 956(2): 294-301
    
    57. Colburn RW, Deleo JA, Rickman AJ, et al. Dissociation of microglial activation and neuropathic pain behaviors following peripheral nerve injury in the rat. J Neuroimmunol, 1997, 79(2): 163-75.
    
    58. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science, 2005, 308(5726): 1314-18
    
    59. Tsuda M, Inoue K, Salter MW. Neuropathic pain and spinal microglia: a big problem from molecules in "small" glia. Trends Neurosci. 2005, 28(2): 101-7
    
    60. Watkins LR, Milligan ED, Maier SF. Glial activation: a driving force for pathological pain. Trends Neurosci, 2001, 24(8): 450-55
    
    61. Sweitzer S, Martin D, Deleo JA. Intrathecal interleukin-1 receptor antagonist in combination with soluble tumor necrosis factor receptor exhibits an anti-allodynic action in a rat model of neuropathic pain. Neuroscience, 2001,103(2): 529-39.
    
    62. Okamoto K, Martin DP, Schmelzer JD, et al. Pro- and anti-inflammatory cytokine gene expression in rat sciatic nerve chronic constriction injury model of neuropathic pain. Exp Neurol, 2001, 169(2): 386-91
    
    63. Shubayev VI, Myers RR. Anterograde TNF alpha transport from rat dorsal root ganglion to spinal cord and injured sciatic nerve. Neurosci Lett. 2002, 320(1-2):99-101
    
    64. Inoue K.The function of microglia through purinergic receptors: Neuropathic pain and cytokine release. Pharmacol Ther, 2006, 109(1-2): 210-26
    
    65. Samad TA, Moore KA, Sapirstein A, et al. Interleukin-1 beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature, 2001, 410(6827): 471-5.
    
    66. Harris ED Jr. Rheumatoid arthritis. Pathophysiology and implications for therapy. N Engl J Med, 1990, 322(18): 1277-89.
    
    67. Reiber H, Suckling AJ, Rumsby MG. The effect of Freund's adjuvants on blood-cerebrospinal fluid barrier permeability. J Neurol Sci, 1984, 63(1): 55-61.
    
    68. Bao L, Zhu Y, Elhassan AM, et al. Adjuvant-induced arthritis: IL-1β, IL-6 and TNF-alpha are up-regulated in the spinal cord. Neuroreport, 2001,12(18): 3905-8
    
    69. Arruda JL, Colbum RW, Rickman AJ, et al. Increase of interleukin- 6 mRNA in the spinal cord following peripheral nerve injury in the rat: potential role of IL-6 in neuropathic pain. Brain Res Mol Brain Res, 1998, 62(2): 228-35.
    
    70. Webster SD, Park M, Fonseca MI, et al. Structural and fuctional evidence for microglial expression of ClqR(P). the Clq receptor that enhance phagocytosis. J leukoc Bio, 2000, 67(1): 109-16
    
    71. Raivich G, Bohatschek M, Kloss CU, et al. Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Brain Res Rev, 1999, 30(1): 77-105.
    
    72. Rothwell NJ. Cytokines: killers in the brain? J Physiol (Lond), 1999, 514:3-17.
    
    73. Watkins LR, Hutchinson MR, Ledeboer A, et al. Glia as the "bad guys":implications for improving clinical pain control and the clinical utility of opioids. Brain Behav Immun, 2007, 21(2): 131-46.
    
    74. Alexander GM, van Rijn MA, van Hilten JJ, et al. Changes in cerebrospinal fluid levels of proinflammatory cytokines in CRPS. Pain, 2005, 116(3): 213-9.
    
    75. Backonja M, Muller D, Coe C. Neuropathic pain and levels of cytokines and IL-10 in the blood and cerebrospinal fluid. In: Proceedings of the11th World Congress on Pain.2006,1647-P150.
    
    76. Ono K, Han J. The p38 signal transduction pathway: activation and function. Cell Signal, 2000, 12(1): 1-13.
    
    77. Robinson MJ, Cobb MH. Mitogen-activated protein kinase path-ways. Curr Opin Cell Bio, 1997, 9(2): 180-186.
    
    78. Svensson CI, Fitzsimmons B, Azizi S, et al. Spinal p38beta isoform mediates tissue injury-induced hyperalgesia and spinal sensitization. J Neurochem, 2005, 92(6):1508-20.
    
    79. Svensson CI, Hua XY, Protter AA, et al. Spinal p38 MAP kinase is necessary for NMDA-induced spinal PGE2 release and thermal hyperalgesia. Neuroreport, 2003,14(8): 1153-7.
    
    80. Ji RR, Samad TA, Jin SX, et al. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPVl levels and maintains heat hyperalgesia.Neuron, 2002, 36(1): 57-68.
    
    81. Sweitzer SM, Peters MC, Ma JY, et al. Peripheral and central p38 MAPK mediates capsaicin-induced hyperalgesia. Pain, 2004, 111(3): 278-85.
    
    82. Sung CS, Wen ZH, Chang WK, et al. Inhibition of p38 mitogen-activated protein kinase attenuates interleukin-1β-induced thermal hyperalgesia and inducible nitric oxide synthase expression in the spinal cord. J Neurochem, 2005, 94(3): 742-52.
    
    83. Ganju P, Davis A, Patel S, et al. p38 Stress activated protein kinase inhibitor reverses bradykinin B(1) receptormediated component of inflammatory hyperalgesia.Eur J Pharmacol, 2001, 421(3): 191-99.
    
    84. Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated rotein kinase:Conservation of a three-kinase module from yeast to human. Physiol Rev, 1999, 79(1):143-80.
    
    85. Han J, Lee JD, Bibbs I, et al. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science, 1994,265(5173): 807-11.
    
    86. Jiang Y, Gram H, Zhao M, et al. Characterization of the structure and function of the fourth member of p38 group mitogen- activated protein kinsases p38 delta. J Biol Chem, 1997, 272(48): 30122-8.
    
    87. Li Z, Jiang Y, Ulevitch RJ, Han J. The primary structure of p38 gamma: A new member of p38 of MAP kinases. Biochem Biophys Res Commun, 1996, 228(2): 334-40.
    
    88. Piao CS, Che Y, Han PL, et al. Delayed and differential induction of p38 MAPK isoforms in microglia and astrocytes in the brain after transient global ischemia. Brain Res Mol Brain Res, 2002,107 (2): 137-44.
    
    89. Ji RR, Woolf CJ. Neuronal plasticity and signal transduction in nociceptive neurons:Implications for the initiation and maintenance of pathological pain. Neurobiol Dis,2001,8(1): 1-10.
    
    90. Adams JL, Badger Am, Kumar S, et al. P38 MAP kinase: molecular target for the inhibition of proinflammatory cytokinase. Prog Med Chem, 2001, 38:1-60.
    
    91. Schafers M, Svensson CI, Sommer C, Sorkin LS. Tumor necrosis factor-alpha induces mechanical allodynia after spinal nerve ligation by activation of p38 MAPK in primary sensory neurons. J Neurosci, 2003, 23(7): 2517-21.
    
    92. Hanisch UK. Microglia as a source and target of cytokines. Glia, 2002,40(2): 140-55
    1 Watkins LR, Maier SF. Glia:a novel drug discovery target for clinical pain. Nat Rev Drug Discov, 2003, 2(12): 973-85.
    
    2 Tsuda M, Shigemoto-mogami Y, Koizumi S, et al. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature, 2003, 424(6950): 778-83.
    
    3 Wieseler-frank J, Maier SF, Watkins LR. Glial activation and pathological pain.Neurochem Int, 2004, 45(2-3): 389-95.
    
    4 Jin SX, Zhuang ZY, Woolf CJ, et al. P38Mitogen-activated protein kinase is Activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J Neuroscience, 2003, 23(10):4017-22.
    
    5 Watkins LR, Maier SF. Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. Physiol Rev, 2002, 82(4): 981-1011.
    
    6 Ji RR, Wen YR. Neural-Glial Interaction in the Spinal Cord for the Development and Maintenance of Nerve Injury-Induced Neuropathic Pain. Drug Dev Res, 2006, 67:331-38.
    
    7 Vilhard F . Microglia: Phagocyte and glia cell. Int J biochem Cell boil, 2005, 37:17-21.
    
    8 Stoll G, Jander S. The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol, 1999, 58(3): 233-47.
    
    9 Nakajima K, Kohsaka S. Microglia: activation and their significance in the central nervous system. J Biochem (Tokyo), 2001, 130(2): 169-175.
    
    10 Inoue K. The function of microglia through purinergic receptors:Neuropathic pain and cytokine release. Pharmacol Ther, 2006, 109(1-2): 210-26.
    
    11 Cuadros MA, Navascues J. The origin and differentiation of microglial cells during development. Prog Neurobiol, 1998, 56(2): 173-89
    
    12 Ji RR, Samad TA, Jin SH, et al. P38MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia.Neuron, 2002, 36(1): 57-68.
    13 DeLeo JA, Tanga FY, Tawfik VL. Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia. Neuroscientist, 2004,10(1): 40-52.
    
    14 Rock RB, Gekker G, Hu SX, et al. Role of microglia in central nervous system infection.Clin Microbiol Rev, 2004,17(4): 942-64.
    
    15 Verge GM, Milligan ED, Maier SF, Watkins LR. Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions. Eur J Neurosci, 2004, 20(5): 1150-60.
    
    16 Coull JA, Beggs S, Boudreau D, et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature, 2005,438(7070): 1017-21
    
    17 Tanga FY, Nutile-McMenemy N, Deleo JA. The CNS role of toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc Natl Acad Sci USA, 2005, 102(16):5856-61.
    
    18 Zhuang ZY, Gerner P, Woolf CJ, Ji RR. ERK is sequentially activated in neurons,microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain, 2005,114(1-2): 149-59.
    
    19 Clark AK, Gentry C, Bradbury EJ, et al. Role of spinal microglia in rat models of peripheral nerve injury and inflammation. Eur J Pain,2006,11(2): 223-30.
    
    20 Ledeboer A, Sloane EM, Milligan ED, et al. Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation.Pain, 2005, 115(1-2): 71-83.
    
    21 Raghavendra V, Tanga FY, Deleo JA. Complete Freund's adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS. Eur J Neurosci, 2004, 20(2): 467-73.
    
    22 Hua XY, Svensson CI, Matsui T, et al. Intrathecal minocycline attenuates peripheral inflammation-induced hyperalgesia by inhibiting p38 MAPK in spinal microglia. Eur J Neurosci, 2005, 22(10): 2431-40
    
    23 Wu Y, Willcockson HH, Maixner W, Light AR. Suramin inhibits spinal cord microglia activation and long-term hyperalgesia induced by formaline injection. J Pain, 2004, 5(1): 48-55.
    
    24 Mcmahon SB, Cafferty WB, Marchand F. Immune and glial cell factors as pain mediators and modulators. Exp Neurol, 2005; 192(2): 444-62.
    
    25 Svensson CI, Marsala M, Westerlund A, et al. Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing. J Neurochem, 2003, 86(6): 1534-44.
    
    26 Tsuda M, Inoue K, Salter MW. Neuropathic pain and spinal microglia: a big problem from molecules in "small" glia. Trends Neurosci, 2005, 28(2): 101-7
    
    27 Wieseler-Frank J, Maier SF, Watkins LR. Central proinflammatory cytokines and pain enhancement. Neurosignals, 2005, 14(4): 166-74
    
    28 Sun S, Cao H, Han M, et al. New evidence for the involvement of spinal fractalkine receptor in pain facilitation and spinal glial activation in rat model of monoarthritis.Pain 2007 ,129(1-2): 64-75
    
    29 Zhang FY, Wan Y, Zhang ZK, et al. Peripheral Formalin Injection Induces Long-Lasting Increases in Cyclooxygenase 1 Expression by Microglia in the Spinal Cord. J Pain, 2007, 8(2):110-7
    
    30 Cho IH, Chung YM, Park CK, et al. Systemic administration of minocycline inhibits formalin-induced inflammatory pain in rat. Brain res, 2006, 1072(1): 208-14.
    
    31 Ji RR, Strichartz G. Cell signaling and the genesis of neuropathic pain. Sci STKE,2004:reE14.
    
    32 Raghavendra V, Tanga FY, Deleo JA. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J Pharmacol Exp Ther, 2003, 306(2): 624-30
    
    33 Tsuda M, Mizokoshi A, Shigemoto-mogami Y, et al. Activation of P38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia, 2004, 45(1): 89-95.
    
    34 Narita M, Yoshida T, Nakajima M, et al. Direct evidence for spinal cord microglia in the development of a neuropathic pain-like state in mice. J Neurochem, 2006, 97: 1337-48.
    
    35 Coyle DE. Partial peripheral nerve injury leads to activation of astroglia and microglia which parallels the development of allodynic behavior. Glia, 1998,23: 75-83.
    
    36 Banati RB, Cagnin A, Brooks DJ, et al. Long-term trans-synaptic glial responses in the human halamus after peripheral nerve injury. NeuroReport, 2001,12(16): 3439-42.
    
    37 Colburn RW, Rickman AJ, Deleo JA. The effect of site and type of nerve injury on spinal glial activation and neuropathic pain behavior. Exp Neurol, 1999, 157(2):289-304.
    
    38 Watkins LR, Milligan ED, Maier SF. Glial activation: a driving force for pathological pain. Trends Neurosci, 2001,24(8): 450-55.
    
    39 Milligan ED, Zapata V, Chacur M, et al. Evidence that exogenous and endogenous fractalkine can induce spinal nociceptive facilitation in rats. Eur J Neurosci, 2004,20(9): 2294-302.
    
    40 Hains BC, Waxman SG. Activated Microglia Contribute to the Maintenance of Chronic Pain after Spinal Cord Injury. J Neurosci, 2006,26(16): 4308-17.
    
    41 Inoue K. Microglia activation by purines and pyrimidines. Glia, 2002,40(2): 156-63.
    
    42 Abbracchio MP, Boeynaems JM, Barnard EA, et al. Characterization of the UDP-glucose receptor (re-named here the P2Y14 receptor) adds diversity to the P2Y receptor family. Trends Pharmacol Sci, 2003,24(2): 52-5.
    
    43 Perry VH, Gordon S. Microglia and macrophages in nervous system. Trends Neurosci,1998, 133(3): 159-62.
    
    44 Chessell IP, Hatcher JP, Bountra C, et al. Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain, 2005, 114(3): 386-96.
    
    45 Trang T, Beggs S, Salter MW. Purinoceptors in microglia and neuropathic pain.Pflugers Arch, 2006, 452(5): 645-52.
    
    46 Svensson CI, Fitzsimmons B, Azizi S, et al. Spinal P38β isform mediates tissue injury-induced hyperalgesia and spinal sensitization. J Neurochem, 2005, 92(6):1508-20.
    47 Svensson CI, Hua XY, Protter AA, et al. Spinal P38 MAP kimase is necessary for NMDA-induced spinal PGE2 release and thermal hyperalgesia. Neuroreport, 2003,14(8):1153-57.
    
    48 Eugenin EA, Eckardt D, Theis M, et al. Microglia at brain stab wounds express connexin 43 and in vitro form fuctional gap junctions after treatment with interferon-gamma and necrosis factor-alpha. Proc Nati Acad Sci, 2001,98(7): 4190-95.
    
    49 Abbadie C, Lindia JA, Cumiskey AM, et al. Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2. Proc Natl Acad Sci USA, 2003, 100(13):7947-52.
    
    50 Zhang J, Hoffert C, vu Hk, et al. Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models. Eur J Neurosci, 2003,17(12): 2750-54.
    
    51 Cravatt BF, Lichtman AH, The endogenous cannabinoid system and its role in nociceptive behavior. J Neurobiol, 2004, 61(1): 149-60.
    
    52 Sweitzer SM, White KA, Dutta C, DeLeo JA. The differential role of spinal MHC class II and cellular adhesion molecules in peripheral inflammatory versus neuropathic pain in rodents. J Neuroimmunol. 2002,125(1-2): 82-93.
    
    53 Chapman GA, Moores K, Harrison D, et al. Fractalkine cleavage from neuronal membranes represents an acute event in the inflammatory response to excitotoxic brain damage. J Neurosci, 2000, 20(15): RC87(1-5).
    
    54 Harrison JK, Jiang Y, Chen S, et al. Proc Natl Acad Sci USA, 1998, 95(18): 10896-901.
    
    55 Lindia JA, McGowan E, Jochnowitz N, Catherine Abbadie. Induction of CX3CL1 Expression in Astrocytes and CX3CR1 in Microglia in the Spinal Cord of a Rat Model of Neuropathic Pain. J Pain, 2005, 6(7): 434-38.
    
    56 Milligan E, Zapata V, Schoeniger D, et al. An initial investigation of spinal mechanisms underlying pain enhancement induced by fractalkine, a neuronally released chemokine. Eur J Neurosci 2005, 22(11): 2775-82.
    
    57 Tanga FY, Raghavendra V, DeLeo JA. Quantitative real-time RT-PCR assessment of spinal microglial and astrocytic activation markers in a rat model of neuropathic pain.Neurochem Int, 2004, 45: 397-407.
    
    58 Watkins LR, Hutchinson MR, Ledeboer A, et al. Glia as the "bad guys":implications for improving clinical pain control and the clmical utility of opioids. Brain Behav Immun,2007, 21(2): 131-46.