三种先天性肢端畸形的分子遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三种先天性肢端畸形的分子遗传学研究
     先天性肢端畸形在活产儿中的发生率约为0.5‰-1‰,主要包括指(趾)的数目、长度以及解剖形态的异常,是由于遗传进化过程中的变异或发育过程中的不良因素(如异常子宫内环境)所致。研究先天性肢端畸形,寻找并鉴定致病突变对于指导遗传咨询,了解肢端发育调控机制具有十分重要的意义和价值。本文分别对短/并指(趾)复合畸形、并多指(趾)畸形和缺指(趾)畸形三种先天性肢端畸形的四个家系进行了致病基因的突变筛查,并对其中一个表型罕见的短/并指(趾)复合畸形家系进行了致病突变的初步功能研究。
     第一部分一种新型短/并指(趾)复合畸形家系致病突变的研究
     短指(趾)畸形(Brachydactyly,BD)是由指(趾)骨、掌(跖)骨发育异常而导致的指(趾)的缩短畸形,可以作为独立性状单独出现,亦可成为某些综合征的表现之一。非综合征性BD可以分为A-E五种类型,其中B型短指(趾)(Brachydactylytype B,BDB)又可分为BDB1(MIM 113000)和BDB2(MIM 611377)两个亚型。BDB1以远节指(趾)骨短小、指(趾)甲发育不良、中节指(趾)骨发育不全、不同程度的指(趾)关节粘连以及伴有拇指(趾)宽大畸形为主要特征,是由位于染色体9q22的ROR2基因突变导致,其突变类型主要为杂合性无义突变和移码突变,集中分布于ROR2基因酪氨酸激酶结构域(Tyrosine kinase domain,TK)5'近端、TK区与跨膜区之间以及TK结构域3'远端、TK区与S/T1之间的两个区域内。并指(趾)畸形(Syndactyly,SD)是相邻指(趾)间皮肤软组织融合形成的手足畸形,伴有或不伴有指(趾)间的骨性融合,可分为I-V五种类型,其中Ⅰ型并指(趾)(SD1,MIM185900)是最常见的并指(趾)类型,主要表现为3、4指和2、3趾并指(趾),可发生于单侧,表现为不对称性。国外已将SD1定位于染色体2q34-36区域内,迄今尚未发现致病基因。
     本文首先对一种新型短/并指(趾)复合畸形家系进行了致病突变的筛查。以一个BDB1合并SD1的复合表型家系为研究对象,通过连锁分析,在染色体9q22附近的两个标记(D9S1815和D9S1841),获得最高LOD值2.71(θ=0),高度提示疾病表型与这两个位点之间可能存在连锁关系:然后通过PCR扩增ROR2基因外显子并直接测序的方法,在ROR2基因第九外显子内发现一个单碱基缺失突变c.2243delC,使突变蛋白失去C-末端两个丝/苏氨酸富集区(S/T1、S/T2)和脯氨酸富集区三个结构域,并产生一小段由24个氨基酸残基组成的新肽链;最后我们在家系所有成员中对该突变进行了酶切验证,进一步确认此突变为该复合肢端畸形家系所有患者共有的特点。
     在对ROR2基因突变导致BDB1合并SD1的初步功能研究中,我们首先分别构建了野生型(ROR2~WT)和突变型(ROR2~W749fsX24)GFP-ROR2融合表达载体,转染HeLa细胞系,观察融合蛋白的亚细胞定位情况,结果发现ROR2蛋白定位有所改变,即野生型ROR2蛋白主要分布于细胞质膜,而突变型ROR2则趋向分散于细胞质内。国内外迄今为止,未见关于突变ROR2蛋白亚细胞定位情况的报道。在对U2OS细胞的转染过程中还发现:ROR2~W749fsX24组细胞伪足形成与ROR2~WT组相近,明显多于ROR2~W749X组。接下来,我们根据国外关于ROR2能够与14-3-3β相互作用的先期报道,分别将野生型与突变型ROR2蛋白胞质内结构域克隆至相应的表达载体上,再通过酵母双杂交系统和哺乳动物双杂交系统检测野生型与突变型ROR2蛋白与14-3-3β的相互作用情况;同时,也利用野生型与突变型ROR2蛋白全长,联合14-3-3β,在体外进行免疫共沉淀的检测。经由以上方法均未发现野生型或突变型ROR2与14-3-3β相互作用的直接证据。
     总之,我们报道了一种新型BDB1合并SD1的复合表型家系,通过两点连锁分析将致病基因定位至染色体9q22,并对候选基因ROR2进行突变筛查,发现了一个新的ROR2单碱基缺失突变c.2243delC,同时观察到两个突变组细胞的伪足数目差异较大,即ROR2~W749fsX24组细胞伪足形成与ROR2~WT组相近,明显多于ROR2~W749X组;且发现ROR2~W749fsX24突变型蛋白亚细胞定位有所改变,这是首次关于突变ROR2蛋白亚细胞定位情况的报道。
     第二部分两个并多指(趾)畸形家系HOXD13基因致病突变的鉴定
     HOX基因在进化上高度保守,参与机体生长、分化等重要的生理过程。人类具有39个HOX基因,形成4个基因簇(HOXA-HOXD),分布于染色体7p15、17p21、12q13和2q31上。HOXD13基因位于HOXD基因簇5'最末端,包含两个外显子,编码335个氨基酸构成的转录因子。其第一外显子内含有一个45bp的不完全三核苷酸(GCN,N为A、C、G或T之一)重复序列,编码蛋白质N端15个丙氨酸残基。当丙氨酸延长至22-29个时,即可导致并多指(趾)(Synpolydactyly,SPD;MIM 186000)畸形。SPD属于非综合征性并指(趾)Ⅱ型,呈常染色体显性遗传,主要表现为第3、4指和第4、5趾的膜性并指(趾),并可在指(趾)蹼中发现部分或完全复制的额外的指(趾)。所有SPD患者均以并指(趾)为共有的主要表型,伴有或不伴有多指(趾)表现。
     本研究的研究对象为两个SPD家系。患者表型多样,且表现度不一,除具有典型SPD表现外,家系1的一名患者还具有双手轴前多指,双足轴后多趾的罕见表型,此为国际首例SPD合并轴前多指的病例报道;家系2患者还同时具有D型和E型短指(趾)的特征,亦为比较罕见的SPD类型。我们通过PCR扩增测序以及T-A克隆测序的方法,对整个HOXD13基因进行了突变筛查,在上述两个家系中均检测出HOXD13基因的多聚丙氨酸链延展突变,增加的丙氨酸残基数目分别为7个和9个,与国外先期报道相一致。同时,通过T-A克隆测序,明确了两个插入突变的具体插入位置以及增加的丙氨酸残基的碱基组成,为更好地理解SPD发病机制提供理论依据。上述结果也为丰富SPD的表现度变异提供了宝贵的资料。
     第三部分缺指(趾)畸形致病突变的研究
     缺指(趾)(Ectrodactyly,ECD)又称手足裂畸形(Split-hand/split-foot malformation,SHFM),是一种严重影响患者精细活动的先天性肢端畸形,以手足正中裂隙、并指(趾)以及指(趾)骨和掌(跖)骨发育不全为主要特征,可呈现出龙虾爪或独指(趾)的典型表现。SHFM可以单独发生,亦可伴随有其它四肢骨骼的畸形或其它器官的发育异常。SHFM具有高度的遗传异质性,截至目前,共发现六个遗传位点与之密切相关,分别为:SHFM1(MIM 183600),定位于7q21;SHFM2(MIM 313350),定位于Xq26;SHFM3(MIM 600095),定位于10q24.3;SHFM4(MIM 605289),定位于3q27;SHFM5(MIM 606708),定位于2q31以及一个新近报道的遗传位点8q21.11-q22.3。除了SHFM3位点致病突变为染色体10q24区域内约0.5Mb的DNA串联重复;SHFM4位点的致病突变为TP63基因点突变外,其他类型的SHFM均未找到相关致病基因或致病突变。
     本研究以一个本课题组前期收集的SHFM家系为研究对象,对其进行致病突变的筛查。首先补充完成了高分辨率染色体核型分析,未见异常。之后根据前期微卫星标记的连锁分析结果,将染色体7q21.3位点上SHFM1的最小关键区域内DLX5、DLX6基因及其附近染色体区域作为重点筛查范围。通过PCR扩增测序,将DLX6基因上游至DLX5基因5'末端约40kb的区间范围全部测通,共发现20个碱基改变,其中14个为已知的SNP,其余6个为未知的碱基改变,并未发现明显的致病突变。同时,我们还在SHFM1关键区端粒侧约100kb范围内,选择物种间高度保守的序列元件对患者基因组DNA进行实时荧光定量PCR检测,亦未发现明显的DNA拷贝数目的异常。结合PCR扩增测序和实时荧光定量PCR发现的SNP分布情况,初步推测在chr7:96,469,328-96,474,996范围内有产生缺失突变的可能。
Molecular Genetic Studies of Three Congenital Limb Malformations
     Congenital limb malformations occur in 1 in 500 to 1 in 1000 human live births, including the alterations of the number,length and anatomic morphology of the digits.The major causes are the abnormal genetic programming and the infaust factors during the development,such as the poor uterine environment.The identification of the responsible gene mutations is important for genetic counseling and the understanding of the mechanisms controlling limb development.In this paper,we performed the molecular genetic studies in three pedigrees with different kinds of congenital limb malformations including brachydactyly type B1(BDB1) combinds syndactyly typel(SD1),synpolydactyly (SPD) and split-hand/split-foot malformation(SHFM).
     PartⅠ:Detection and Functional Analysis of a Pathogenic Mutation
     Associated with a Novel complex malformation with BDB1 and SD1
     Brachydactyly(BD) refers to shortening of the fingers or toes due to hypoplasia or aplasia of metacarpals(metatarsals) or phalanges,which can occur as an isolated trait or in association with other malformations.Isolated BD has been categorized to five types, among which the brachydactyly type B(BDB) can be further divided into two subtypes, which are BDB1(MIM 113000) and BDB2(MIM 611377).The prominent features of BDB1 are hypoplasia or absence of the distal phalanges and nails,hypoplastic middle phalanges and symphalangism.Nonsense and frameshift mutations,either proximal or distal with respect to the tyrosine kinase domain in ROR2,have been identified to be the main cause of this disease.Syndactyly refers to the fusion of soft tissues of fingers and/or toes with or without the fusion of bones.It can be divided into five types,and the most common one is syndactyly typeⅠ(SD1,MIM 185900).SD1 has been linked to chromosome 2q34-36,manifested as complete or partial webbing between the 3~(rd) and 4~(th) fingers associated with the 2~(nd) and 3~(rd) toes.It can occur on both sides of the limb,and can also appear asymmetry.Till now,no genes have been reported to be associated with it.
     We identified a three-generation Chinese Han family with complex phenotypes of BDB1 and SD1.Two-point linkage analysis was performed and a maximal LOD score of 2.71 was obtained for the markers D9S1815 and D9S1841,showing the great possibility of linkage between the positions and this disease.We then directly sequenced the 8~(th) and 9~(th) exons of ROR2 gene and found a 1-bp deletion,c.2243delC,in exon 9,which leads to a frame shift mutation at Trp749 and predicts a truncated protein with 24 novel amino acids before the first stop codon.This mutation was further confirmed by restriction analysis among all the family members.
     During the functional analysis of this novel mutation,we constructed the ROR2~(WT)/ ROR2~(W749fsX24)-GFP-fusion expression vector to observe the subcellular location of these two proteins.With the use of HeLa cells as targeting transfected cells,we noticed that ROR2~(WT) was located in the cytoplasma membrane while ROR2~(W749fsX24) was scattered throughout the cytoplasm.When we use U2OS cells,we found that the filopodia of ROR2~( W749fsX24) were much more than those of ROR2~(W749X).To investigate the interaction between ROR2~(WT)/ROR2~(W749fsX24)and 14-3-3β,we performed both yeast two-hybrid assay and mammalian two-hybrid assay by using the cytoplasmic part of ROR2~(WT)/ ROR2~( W749fsX24)and the full length of 14-3-3β.Immunoprecipitation was also used as a test in vitro.No obvious clues of interactions between the two proteins were found.
     In conclusion,we report a new limb malformation of BDB1 associated with SDL The disease gene in this family was mapped to 9q22 by two-point linkage analysis and a novel mutation,c.2243delC,was identified by directly sequencing of ROR2 gene,which is the first report of this mutation internationally.Further functional analysis reveals that there's obvious differences in the subcellular location between ROR2~(WT) and ROR2~(W749fsX24),and filopodia formation between ROR2~(W749X) and ROR2~(W749fsX24),which give us the inspiration that ROR2~(WT),ROR2~(W749fsX) and ROR2~(W749fsX24)may play different roles in cells or even during the limb development.Further study should be done to confirm this.
     PartⅡ:Mutation Identifications of HOXD13 gene in Two Chinese
     Families with Synpolydactyly
     The HOX genes encode a highly conservative family of transcriptional factors,which play a fundamental role in embryonic morphogenesis.In human,as in most vertebrates, there are 39 HOX genes organized into four clusters named HOXA through HOXD,which are believed to have arisen from a single ancestral cluster by duplication and divergence. The four clusters are distributed on different chromosomes including 7p15,17p21,12q13 and 2q31.HOXD 13 gene is located at the 5' end of HOXD cluster,containing two coding exons and encoding 335 amino acids.There is an imperfect GCN(N=A or C or G of T) triplet repeats in exon 1,encoding a 15-residue polyalanine tract.The expansion of this repeat,resulting in an additional 7-14 alanine residues,would lead to synpolydactyly(SPD, MIM 186000).SPD is a rare,dominantly- inherited limb malformation,which belongs to Syndactyly typeⅡ.Typically,patients have 3~(th)/4~(th) fingers and 4~(th)/5~(th) toes syndactyly,with partial or complete digit duplications of the digits in the syndactylous web.All patients, with or without polydactyly,will have syndactyly.
     The subject of this study is two SPD families with incomplete penetrance and variable expressivity as the common traits.One affected individual in family 1 has the rare phenotype of pre-axial polydactyly in hands and post-axial polydactyly in feet.This is the first report of SPD associated with pre-axial polydactyly in the world so far.The affected individuals in family 2 also have the phenotype of BDD and BDE.This is also a rare case of SPD.We found a 7-alanin expansion in the patients in family 1 and a 9-alanin expansion in family 2 using T-A cloning and sequencing of HOXD13 gene.Meanwhile,the exact insertion site and the specific constitution of the bases in additional alanine residues were revealed,which may provide strong theoretical knowledge to the understanding of the mechanism of SPD.
     PartⅢ:Analysis of Genettic Loci and Pathogenic Mutations
     Associated with Ectrodactyly
     Ectrodactyly,also known as split-hand/split-foot malformation(SHFM),is a congenital autopod malformation characterized by cleft of the hands and/or feet due to the absence of the central rays.Typical cases may be the lobster-claw variety(absence of central rays) or monodactyly type(deficiency of radial rays with no cleft).It may occur as an isolated entity or as a part of a syndrome.SHFM is a disease of great clinical heterogeneity.Till now,six genetic loci have been identified,including SHFM1(MIM 183600),SHFM2(MIM 313350),SHFM3(MIM 600095),SHFM4(MIM 605289), SHFM5(MIM 606708) and a new locus reported in 2006,which are on human chromosome regions of 7q21,Xq26,10q24,3q27 2q31 and 8q21.11-q22.3,respectively. Among them,only two pathogenic mutations have been identified,which are large-scale DNA duplications in SHFM3 locus and point mutations in TP63 gene in SHFM4 locus.
     According to the prior study,we chose DLX5,DLX6 and the adjacent region of chromosome 7q21 as the major screening region.The range of the sequencing started from the 5' end of DLX5 to about 20kb upstream of DLX6.hi total,20 variations have been identified,14 of which are known SNPs and the others are changes unreported in introns. We also selected some highly conserved elements in this region to perform Real-time PCR considering the possibility of copy number variations in this region.No obvious pathogenic mutations have been found.Associated with the distribution of SNPs identified in sequencing and Real-time PCR,we deduce that if deletions are the main reason for this disease,they would be present in chr7:96,469,328-96,474,996,where we have not detected any SNPs.Array CGH or TAR(transformation-associated recombination) cloning should be performed to confirm this conclusion in the future.
引文
1 Houlston RS,Temple IK.Characteristic facies in type B brachydactyly? Clin Dysmorphol.1994;3(3):224-7.
    2 Gong Y,Chitayat D,Kerr B,Chen T,Babul-Hirji R,Pal A,Reiss M,Warman ML.Brachydactyly type B:clinical description,genetic mapping to chromosome 9q,and evidence for a shared ancestral mutation.Am J Hum Genet.1999;64(2):570-7.
    3 Oldridge M,Fortuna AM,Maringa M,Propping P,Mansour S,Pollitt C,DeChiara TM,Kimble RB,Valenzuela DM,Yancopoulos GD,Wilkie AO.Dominant mutations in ROR2,encoding an orphan receptor tyrosine kinase,cause brachydactyly type B.Nat Genet.2000;24(3):275-8.
    4 Schwabe GC,Tinschert S,Buschow C,Meinecke P,Wolff G,Gillessen-Kaesbach G,Oldridge M,Wilkie AO,Komec R,Mundlos S.Distinct mutations in the receptor tyrosine kinase gene ROR2 cause brachydactyly type B.Am J Hum Genet.2000;67(4):822-31.
    5 Malik S,Schott J,Ali SW,Oeffner F,Amin-ud-Din M,Ahmad W,Grzeschik KH,Koch MC.Evidence for clinical and genetic heterogeneity of syndactyly type Ⅰ:the phenotype of second and third toe syndactyly maps to chromosome 3p21.31.Eur J Hum Genet.2005;13(12):1268-74.
    6 Bosse K,Betz RC,Lee YA,Wienker TF,Reis A,Kleen H,Propping P,Cichon S,N(o|¨)then MM.Localization of a gene for syndactyly type 1 to chromosome 2q34-q36.Am J Hum Genet.2000;67(2):492-7.
    7 Bell J.On brachydactyly and symphalangism.In:The treasury of human inheritance.Vol 5.Cambridge University Press,Cambridge,pp1-31.
    8 Gao B,Guo J,She C,Shu A,Yang M,Tan Z,Yang X,Guo S,Feng G,He L.Mutations in IHH,encoding Indian hedgehog,cause brachydactyly type A-l.Nat Genet.2001;28(4):386-8.
    9 Armour CM,McCready ME,Baig A,Hunter AG,Bulman DE.A novel locus for brachydactyly type A1 on chromosome 5p13.3-p13.2.J Med Genet.2002;39(3): 186-8.
    10 Lehmann K,Seemann P,Stricker S,Sammar M,Meyer B,Sirring K,Majewski F,Tinschert S,Grzeschik KH,Müller D,Knaus P,Nürnberg P,Mundlos S.Mutations in bone morphogenetic protein receptor 1B cause brachydactyly type A2.Proc Natl Acad Sci USA.2003;100(21):12277-82.
    11 Seemann P,Schwappacher R,Kjaer KW,Krakow D,Lehmann K,Dawson K,Stricker S,Pohl J,Pl(o|¨)ger F,Staub E,Nickel J,Sebald W,Knaus P,Mundlos S.Activating and deactivating mutations in the receptor interaction site of GDF5 cause symphalangism or brachydactyly type A2.J Clin Invest.2005;115(9):2373-81.
    12 Oldridge M,Fortuna AM,Maringa M,Propping P,Mansour S,Pollitt C,DeChiara TM,Kimble RB,Valenzuela DM,Yancopoulos GD,Wilkie AO.Dominant mutations in ROR2,encoding an orphan receptor tyrosine kinase,cause brachydactyly type B.Nat Genet.2000;24(3):275-8.
    13 Schwabe GC,Tinschert S,Buschow C,Meinecke P,Wolff G,Gillessen-Kaesbach G,Oldridge M,Wilkie AO,K(o|¨)mec R,Mundlos S.Distinct mutations in the receptor tyrosine kinase gene ROR2 cause brachydactyly type B.Am J Hum Genet.2000;67(4):822-31.
    14 Lehmann K,Seemann P,Silan F,Goecke TO,Irgang S,Kjaer KW,Kjaergaard S,Mahoney MJ,Morlot S,Reissner C,Kerr B,Wilkie AO,Mundlos S.A new subtype of brachydactyly type B caused by point mutations in the bone morphogenetic protein antagonist NOGGIN.Am J Hum Genet.2007;81(2):388-96.
    15 Polinkovsky A,Robin NH,Thomas JT,Irons M,Lynn A,Goodman FR,Reardon W,Kant SG,Brunner HG,van der Burgt I,Chitayat D,McGaughran J,Donnai D,Luyten FP,Warman ML.Mutations in CDMP1 cause autosomal dominant brachydactyly type C.Nat Genet.1997;17(1):18-9.
    16 Schwabe GC,Türkmen S,Leschik G,Palanduz S,St(o|¨)ver B,Goecke TO,Mundlos S.Brachydactyly type C caused by a homozygous missense mutation in the prodomain of CDMVl.Am J Med Genet A.2004;124(4):356-63.
    17 Johnson D,Kan SH,Oldridge M,Trembath RC,Roche P,Esnouf RM,Giele H,Wilkie AO.Missense mutations in the homeodomain of HOXD13 are associated with brachydactyly types D and E.Am J Hum Genet.2003;72(4):984-97.
    18 Schwabe GC,Mundlos S.Genetics of congenital hand anomalies.Handchir Mikrochir Plast Chir.2004;36(2-3):85-97.
    19 Temtamy SA,McKusick VA.The Genetics of Hand Malformations.New York:Alan R.Liss(pub.).1978;301-22.
    20 Paznekas WA,Boyadjiev SA,Shapiro RE,Daniels O,Wollnik B,Keegan CE,Innis JW,Dinulos MB,Christian C,Hannibal MC,Jabs EW.Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia.Am J Hum Genet.2003;72(2):408-18.
    21 Kjaer KW,Hansen L,Eiberg H,Utkus A,Skovgaard LT,Leicht P,Opitz JM,Tommerup N.A 72-year-old Danish puzzle resolved—comparative analysis of phenotypes in families with different-sized HOXD13 polyalanine expansions.Am.J.Med.Genet.2005;138(4):328-339.
    22 Zhao X,Sun M,Zhao J,Leyva JA,Zhu H,Yang W,Zeng X,Ao Y,Liu Q,Liu G,Lo WH,Jabs EW,Amzel LM,Shan X,Zhang X.Mutations in HOXD13 underlie syndactyly type V and a novel brachydactyly-syndactyly syndrome.Am J Hum Genet.2007;80(2):361-71.
    23 Patton MA,Afzal AR.Robinow syndrome.J Med Genet.2002;39(5):305-10.
    24 Oldridge M,Fortuna AM,Maringa M,Propping P,Mansour S,PoUitt C,DeChiara TM,Kimble RB,Valenzuela DM,Yancopoulos GD,Wilkie AO.Dominant mutations in ROR2,encoding an orphan receptor tyrosine kinase,cause brachydactyly type B.Nat Genet.2000;24(3):275-8.
    25 Schwabe GC,Tinschert S,Buschow C,Meinecke P,Wolff G,Gillessen-Kaesbach G,Oldridge M,Wilkie AO,Komec R,Mundlos S.Distinct mutations in the receptor tyrosine kinase gene ROR2 cause brachydactyly type B.Am J Hum Genet.2000;67(4):822-31.
    26 Afzal AR,Rajab A,Fenske CD,Oldridge M,Elanko N,Ternes-Pereira E,Tuysuz B,Murday VA,Pattern MA,Wilkie AO,Jeffery S.Recessive Robinow syndrome,allelic to dominant brachydactyly type B,is caused by mutation of ROR2.Nat Genet.2000;25(4):419-22.
    27 van Bokhoven H,Celli J,Kayserili H,van Beusekom E,Balci S,Brussel W,Skovby F,Kerr B,Percin EF,Akarsu N,Brunner HG.Mutation of the gene encoding the ROR2 tyrosine kinase causes autosomal recessive Robinow syndrome.Nat Genet.2000;25(4):423-6.
    28 Takeuchi S,Takeda K,Oishi I,Nomi M,Ikeya M,Itoh K,Tamura S,Ueda T,Hatta T,Otani H,Terashima T,Takada S,Yamamura H,Akira S,Minami Y.Mouse Ror2 receptor tyrosine kinase is required for the heart development and limb formation.Genes Cells.2000;5(1):71-8.
    29 DeChiara TM,Kimble RB,Poueymirou WT,Rojas J,Masiakowski P,Valenzuela DM,Yancopoulos GD.Ror2,encoding a receptor-like tyrosine kinase,is required for cartilage and growth plate development.Nat Genet.2000;24(3):271-4.
    1.Masiakowski P,Carroll RD.A novel family of cell surface receptors with tyrosine kinase-like domain.J Biol Chem.1992;267(36):26181-90.
    2.Oishi I,Takeuchi S,Hashimoto R,Nagabukuro A,Ueda T,Liu ZJ,Hatta T,Akira S,Matsuda Y,Yamamura H,Otani H,Minami Y.Spatio-temporally regulated expression of receptor tyrosine kinases,mRorl,mRor2,during mouse development:implications in development and function of the nervous system.Genes Cells.1999;4(1):41-56.
    3.Forrester WC,Dell M,Perens E,Garriga G A C.elegans Ror receptor tyrosine kinase regulates cell motility and asymmetric cell division.Nature.1999;400(6747):881-5.
    4.Koga M,Take-uchi M,Tameishi T,Ohshima Y.Control of DAF-7 TGF-(alpha) expression and neuronal process development by a receptor tyrosine kinase KTN-8 in Caenorhabditis elegans.Development.1999;126(23):5387-98.
    5.McKay SE,Hislop J,Scott D,Bulloch AG,Kaczmarek LK,Carew TJ,Sossin WS.Aplysia ror forms clusters on the surface of identified neuroendocrine cells.Mol Cell Neurosci.2001;17(5):821-41.
    6.Wilson C,Goberdhan DC,Steller H.Dror,a potential neurotrophic receptor gene,encodes a Drosophila homolog of the vertebrate Ror family of Trk-related receptor tyrosine kinases.Proc Natl Acad Sci USA.1993;90(15):7109-13.
    7.Oishi I,Sugiyama S,Liu ZJ,Yamamura H,Nishida Y,Minami Y.A novel Drosophila receptor tyrosine kinase expressed specifically in the nervous system.Unique structural features and implication in developmental signaling.J Biol Chem.1997;272(18):11916-23.
    8.Hikasa H,Shibata M,Hiratani I,Taira M.The Xenopus receptor tyrosine kinase Xror2 modulates morphogenetic movements of the axial mesoderm and neuroectoderm via Wnt signaling.Development.2002;129(22):5227-39.
    9.Billiard J,Way DS,Seestaller-Wehr LM,Moran RA,Mangine A,Bodine PV.The orphan receptor tyrosine kinase Ror2 modulates canonical Wnt signaling in osteoblastic cells.Mol Endocrinol.2005;19(1):90-101.
    10.Oishi I,Suzuki H,Onishi N,Takada R,Kani S,Ohkawara B,Koshida I,Suzuki K,Yamada G,Schwabe GC,Mundlos S,Shibuya H,Takada S,Minami Y.The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway.Genes Cells.2003;8(7):645-54.
    11.Mikels AJ,Nusse R.Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context.PLoS Biol.2006;4(4):115.
    12.Sammar M,Stricker S,Schwabe GC,Sieber C,Hartung A,Hanke M,Oishi I,Pohl J,Minami Y,Sebald W,Mundlos S,Knaus P.Modulation of GDF5/BRI-b signalling through interaction with the tyrosine kinase receptor Ror2.Genes Cells.2004;9(12):1227-38.
    13.Matsuda T,Suzuki H,Oishi I,Kani S,Kuroda Y,Komori T,Sasaki A,Watanabe K,Minami Y.The receptor tyrosine kinase Ror2 associates with the melanoma-associated antigen (MAGE) family protein Dlxin-1 and regulates its intracellular distribution.J Biol Chem.2003;278(31):29057-64.
    14.Kani S,Oishi I,Yamamoto H,Yoda A,Suzuki H,Nomachi A,Iozumi K,Nishita M,Kikuchi A,Takumi T,Minami Y.The receptor tyrosine kinase Ror2 associates with and is activated by casein kinase Iepsilon.J Biol Chem.2004;279(48):50102-9.
    15.Liu Y,Ross JF,Bodine PV,Billiard J.Homodimerization of Ror2 tyrosine kinase receptor induces 14-3-3 (beta) phosphorylation and promotes osteoblast differentiation and bone formation.Mol Endocrinol.2007;21(12):3050-61.
    16.Storm EE,Huynh TV,Copeland NG,Jenkins NA,Kingsley DM,Lee SJ.Limb alterations in brachypodism mice due to mutations in a new member of the TGF beta-superfamily.Nature.1994;368(6472):639-43.
    17.Francis-West PH,Abdelfattah A,Chen P,Allen C,Parish J,Ladher R,Allen S,MacPherson S,Luyten FP,Archer CW.Mechanisms of GDF-5 action during skeletal development.Development.1999;126(6):1305-15.
    18.Massague J.How cells read TGF-beta signals.Nat Rev Mol Cell Biol.2000;1(3):169-78.
    19.Massague J,Chen YG.Controlling TGF-beta signaling.Genes Dev.2000;14(6):627-44.
    20.Miyazono K,Kusanagi K,Inoue H.Divergence and convergence of TGF-beta/BMP signaling.J Cell Physiol.2001;187(3):265-76.
    21.Huelsken J,Behrens J.The Wnt signalling pathway.J Cell Sci.2002;115(Pt 21):3977-8.
    22.Veeman MT,Axelrod JD,Moon RT.A second canon.Functions and mechanisms of beta-catenin-independent Wnt signaling.Dev Cell.2003;5(3):367-77.
    23.Wodarz A,Nusse R.Mechanisms of Wnt signaling in development.Annu Rev Cell Dev Biol.1998;14:59-88.
    24.Huelsken J,Birchmeier W.New aspects of Wnt signaling pathways in higher vertebrates.Curr Opin Genet Dev.2001;11(5):547-53.
    25.Mikels A J,Nusse R.Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context.PLoS Biol.2006;4(4):e115.
    26.Masuda Y,Sasaki A,Shibuya H,Ueno N,Ikeda K,Watanabe K.Dlxin-1,a novel protein that binds Dlx5 and regulates its transcriptional function.J Biol Chem.2001;276(7):5331-8.
    27.Bendall AJ,Abate-Shen C.Roles for Msx and Dlx homeoproteins in vertebrate development.Gene.2000;247(1-2):17-31.
    28.Amit S,Hatzubai A,Birman Y,Andersen JS,Ben-Shushan E,Mann M,Ben-Neriah Y,Alkalay I.Axin-mediated CKI phosphorylation of beta-catenin at Ser 45:a molecular switch for the Wnt pathway.Genes Dev.2002;16(9):1066-76.
    29.Gao ZH,Seeling JM,Hill V,Yochum A,Virshup DM.Casein kinase I phosphorylates and destabilizes the beta-catenin degradation complex.Proc Natl Acad Sci USA.2002;99(3):1182-7.
    30.Kishida M,Hino Si,Michiue T,Yamamoto H,Kishida S,Fukui A,Asashima M,Kikuchi A.Synergistic activation of the Wnt signaling pathway by Dvl and casein kinase Iepsilon.J Biol Chem.2001;276(35):33147-55.
    31.Kani S,Oishi I,Yamamoto H,Yoda A,Suzuki H,Nomachi A,lozumi K,Nishita M,Kikuchi A,Takumi T,Minami Y The receptor tyrosine kinase Ror2 associates with and is activated by casein kinase Iepsilon.J Biol Chem.2004;279(48):5 0102-9.
    32.Xiao B,Smerdon SJ,Jones DH,Dodson GG,Soneji Y,Aitken A,Gamblin SJ.Structure of a 14-3-3 protein and implications for coordination of multiple signalling pathways.Nature.1995;376(6536):188-91.
    33.Nishita M,Yoo SK,Nomachi A,Kani S,Sougawa N,Ohta Y,Takada S,Kikuchi A,Minami Y Filopodia formation mediated by receptor tyrosine kinase Ror2 is required for Wnt5a-induced cell migration.J Cell Biol.2006 Nov 20;175(4):555-62.
    1 Masiakowski P,Carroll RD.A novel family of cell surface receptors with tyrosine kinase-like domain.J Biol Chem.1992;267(36):26181-90.
    2 Oishi I,Takeuchi S,Hashimoto R,Nagabukuro A,Ueda T,Liu ZJ,Hatta T,Akira S,Matsuda Y,Yamamura H,Otani H.Spatio-temporally regulated expression of receptor tyrosine kinases,mRorl,mRor2,during mouse development:implications in development and function of the nervous system.Genes Cells.1999;4(1):41-56.
    3 Forrester WC,Dell M,Perens E,Garriga G.A C.elegans Ror receptor tyrosine kinase regulates cell motility and asymmetric cell division.Nature.1999;400(6747):881-5.
    4 Koga M,Take-uchi M,Tameishi T,Ohshima Y.Control of DAF-7 TGF-(alpha) expression and neuronal process development by a receptor tyrosine kinase KIN-8 in Caenorhabditis elegans.Development.1999;126(23):5387-98.
    5 McKay SE,Hislop J,Scott D,Bulloch AG,Kaczmarek LK,Carew TJ,Sossin WS.Aplysia ror forms clusters on the surface of identified neuroendocrine cells.Mol Cell Neurosci.2001;17(5):821-41.
    6 Wilson C,Goberdhan DC,Steller H.Dror,a potential neurotrophic receptor gene,encodes a Drosophila homolog of the vertebrate Ror family of Trk-related receptor tyrosine kinases.Proc Natl Acad Sci USA.1993;90(15):7109-13.
    7 Oishi I,Sugiyama S,Liu ZJ,Yamamura H,Nishida Y,Minami Y.A novel Drosophila receptor tyrosine kinase expressed specifically in the nervous system.Unique structural features and implication in developmental signaling.J Biol Chem.1997;272(18):11916-23.
    8 Hikasa H,Shibata M,Hiratani I,Taira M.The Xenopus receptor tyrosine kinase Xror2 modulates morphogenetic movements of the axial mesoderm and neuroectoderm via Wnt signaling.Development.2002;129(22):5227-39.
    9 Forrester WC.The Ror receptor tyrosine kinase family.Cell Mol Life Sci.2002;59(1):83-96.
    10 Yoda A,Oishi I,Minami Y Expression and function of the Ror-family receptor tyrosine kinases during development:lessons from genetic analyses of nematodes,mice,and humans.JRecept Signal Transduct Res.2003;23(1):1-15.
    11 Bhanot P,Brink M,Samos CH,Hsieh JC,Wang Y,Macke JP,Andrew D,Nathans J,Nusse R.A new member of the frizzled family from Drosophila functions as a Wingless receptor.Nature.1996;382(6588):225-30.
    12 Patthy L.Evolution of the proteases of blood coagulation and fibrinolysis by assembly from modules.Cell.1985;41(3):657-63.
    13 McLean JW,Tomlinson JE,Kuang WJ,Eaton DL,Chen EY,Fless GM,Scanu AM,Lawn RM.cDNA sequence of human apolipoprotein(a) is homologous to plasminogen.Nature.1987;330(6144):132-7.
    14 Furie B,Furie BC.The molecular basis of blood coagulation.Cell.1988;53(4):505-18.
    15 Nakamura T,Nishizawa T,Hagiya M,Seki T,Shimonishi M,Sugimura A,Tashiro K,Shimizu S.Molecular cloning and expression of human hepatocyte growth factor.Nature.1989;342(6248):440-3.
    16 Hanks SK,Quinn AM,Hunter T.The protein kinase family:conserved features and deduced phylogeny of the catalytic domains.Science.1988;241(4861):42-52.
    17 Hanks SK,Quinn AM.Protein kinase catalytic domain sequence database:identification of conserved features of primary structure and classification of family members.Methods Enzymol.1991;200:38-62.
    18 Cunningham ME,Stephens RM,Kaplan DR,Greene LA.Autophosphorylation of activation loop tyrosines regulates signaling by the TRK nerve growth factor receptor.J Biol Chem.1997;272(16):10957-67.
    19 Pawson T.Protein modules and signalling networks.Nature.1995;373(6515):573-80.
    20 Sudol M.The WW module competes with the SH3 domain? Trends Biochem Sci.1996;21(5):161-3.
    21 Songyang Z,Shoelson SE,McGlade J,Olivier P,Pawson T,Bustelo XR,Barbacid M,Sabe H,Hanafusa H,Yi T,et al.Specific motifs recognized by the SH2 domains of Csk,3BP2,fps/fes,GRB-2,HCP,SHC,Syk,and Vav.Mol Cell Biol.1994;14(4):2777-85.
    22 Al-Shawi R,Ashton SV,Underwood C,Simons JP.Expression of the Rorl and Ror2 receptor tyrosine kinase genes during mouse development.Dev Genes Evol.2001;211(4):161-171.
    23 Matsuda T,Nomi M,Ikeya M,Kani S,Oishi I,Terashima T,Takada S,Minami Y.Expression of the receptor tyrosine kinase genes,Rorl and Ror2,during mouse development.Mech Dev.2001;105(1-2):153-156.
    24 bioinformatics.weizmann.ac.il=cards= (accessed Oct 2002).
    25 DeChiara TM,Kimble RB,Poueymirou WT,Rojas J,Masiakowski P,Valenzuela DM,Yancopoulos GD.Ror2,encoding a receptor-like tyrosine kinase,is required for cartilage and growth plate development.Nat Genet.2000;24(3):271-274.
    26 Nomi M,Oishi I,Kani S,Suzuki H,Matsuda T,Yoda A,Kitamura M,Itoh K,Takeuchi S,Takeda K,Akira S,Ikeya M,Takada S,Minami Y.Loss of mRorl enhances the heart and skeletal abnormalities in mRor2-deficient mice:redundant and pleiotropic functions of mRorl and mRor2 receptor tyrosine kinases.Mol Cell Biol.2001;21(24):8329-8335.
    27 Takeuchi S,Takeda K,Oishi I,Nomi M,Ikeya M,Itoh K,Tamura S,Ueda T,Hatta T,Otani H,Terashima T,Takada S,Yamamura H,Akira S,Minami Y.Mouse Ror2 receptor tyrosine kinase is required for the heart development and limb formation.Genes Cells.2000;5(1):71-78.
    28 Robinow M,Silverman FN,Smith HD.A newly recognized dwarfing syndrome.Am JDis Child.1969;117(6):645-51.
    29 Balci S,Ercal MD,Say B,Atasü M.Robinow syndrome:with special emphasis on dermatoglyphics and hand malformations (split hand).Clin Dysmorphol.1993;2(3):199-207.
    30 Samoud A,Menif K,Boulaares M,Ben Dridi MR Robinow's syndrome associated with deafness.Arch Fr Pediatr.1993;50(10):897-9.
    31 Afzal AR,Rajab A,Fenske CD,Oldridge M,Elanko N,Ternes-Pereira E,Tüysüz B,Murday VA,Patton MA,Wilkie AO,Jeffery S.Recessive Robinow syndrome,allelic to dominant brachydactyly type B,is caused by mutation of ROR2.Nat Genet.2000;25(4):419-22.
    32 van Bokhoven H,Celli J,Kayserili H,van Beusekom E,Balci S,Brussel W,Skovby F,Kerr B,Percin EF,Akarsu N,Brunner HG.Mutation of the gene encoding the ROR2 tyrosine kinase causes autosomal recessive Robinow syndrome.Nat Genet.2000;25(4):423-6.
    33 Houlston RS,Temple IK.Characteristic facies in type B brachydactyly.Clin Dysmorphol.1994;3(3):224-7.
    34 Santos HG.Characteristic facies in type B brachydactyly.Clin Dysmorphol.1995;4(3):274-5.
    35 Wells NH,Piatt M Hereditary phalangeal agenesis showing dominant mendelian characteristics.Arch Dis Child.1947;22:251-260.
    36 Yaoqin Gong,David Chitayat,Bronwyn Kerr,Taiping Chen,Riyana Babul-Hirji,Adatiya Pal,Michael Reiss,Matthew L.Warmanl.Brachydactyly Type B:Clinical Description,Genetic Mapping to Chromosome 9q,and Evidence for a Shared Ancestral Mutation.Am.J.Hum.Genet.1999;64:570-577.
    37 Michael Oldridge,I.Karen Temple,Heloisa G Santos,Richard J.Gibbons,Zehra Mustafa,Kay E.Chapman,John Loughlin,Andrew O.M.Wilkie.Brachydactyly Type B:Linkage to Chromosome 9q22 and Evidence forGenetic Heterogeneity.Am.J.Hum.Genet.\999;64:578-585.
    38 Oldridge M,Fortuna AM,Maringa M,Propping P,Mansour S,Pollitt C,DeChiara TM,Kimble RB,Valenzuela DM,Yancopoulos GD,Wilkie AO.Dominant mutations in ROR2,encoding an orphan receptor tyrosine kinase,cause brachydactyly type B.Nat Genet.2000;24(3):275-8.
    1 Malik S,Grzeschik KH.Synpolydactyly:clinical and molecular advances.Clin Genet.2008;73(2):113-20.
    2 Dolle P,Izpisua-Belmonte JC,Boncinelli E,Duboule D.The Hox-4.8 gene is localized at the 5' extremity of the Hox-4 complex and is expressed in the most posterior parts of the body during development.Mechanisms of Development.1991;36(1-2):3-13.
    3 Deschamps J.Developmental biology.Hox genes in the limb:a play in two acts.Science.2004;304(5677):1610-1.
    4 Debeer P,Bacchelli C,Scambler PJ,De Smet L,Fryns JP,Goodman FR.Severe digital abnormalities in a patient heterozygous for both a novel missense mutation in HOXD13 and a polyalanine tract expansion in HOXA13.J Med Genet.2002;39(11):852-6.
    5 Johnson D,Kan SH,Oldridge M,Trembath RC,Roche P,Esnouf RM,Giele H,Wilkie AO.Missense mutations in the homeodomain of HOXD13 are associated with brachydactyly types D and E.Am J Hum Genet.2003;72(4):984-97.
    6 Zhao X,Sun M,Zhao J,Leyva JA,Zhu H,Yang W,Zeng X,Ao Y,Liu Q,Liu G,Lo WH,Jabs EW,Amzel LM,Shan X,Zhang X.Mutations in HOXD13 underlie syndactyly type V and a novel brachydactyly-syndactyly syndrome.Am J Hum Genet.2007;80(2):361-71.
    7 Goodman,F.Giovannucci-Uzielli,M.-L.Hall,C.Reardon,W.Winter,R.Scambler,P.Deletions in HOXD13 segregate with an identical,novel foot malformation in two unrelated families.Am.J.Hum.Genet.1998;63:992-1000.
    8 Kan SH,Johnson D et al.An acceptor splice site mutation in HOXD13 results in variable hand,but consistent foot malformations.Am J Med Genet A.2003;121(1):69-74.
    9 Goodman FR,Majewski F,Collins AL,Scambler PJ.A 117-kb microdeletion removing HOXD9-HOXD13 and EVX2 causes synpolydactyly.Am J Hum Genet.2002;70(2):547-55.
    10 Sayli BS,Akarsu AN,Sayli U,Akhan O,Ceylaner S,Sarfarazi M.A large Turkish kindred with syndactyly type Ⅱ (synpolydactyly).1.Field investigation,clinical and pedigree data.J Med Genet.1995;32(6):421-34.
    11 Goodman FR,Mundlos S,Muragaki Y,Donnai D,Giovannucci-Uzielli ML,Lapi E,Majewski F,McGaughran J,McKeown C,Reardon W,Upton J,Winter RM,Olsen BR,Scambler PJ.Synpolydactyly phenotypes correlate with size of expansions in HOXD13 polyalanine tract.Proc Natl Acad Sci USA.1997;94(14):7458-63.
    12 Kjaer KW,Hansen L,Eiberg H,Utkus A,Skovgaard LT,Leicht P,Opitz JM,Tommerup N.A 72-year-old Danish puzzle resolved—comparative analysis of phenotypes in families with different-sized HOXD13 polyalanine expansions.Am J Med Genet A.2005;138(4):328-39.
    13 Horsnell K,Ali M,Malik S,Wilson L,Hall C,Debeer P,Crow Y Clinical phenotype associated with homozygosity for a HOXD13 7-residue polyalanine tract expansion.Eur J Med Genet.2006;49(5):396-401.
    14 Muragaki Y,Mundlos S,Upton J,Olsen BR.Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13.Science.1996;272(5261):548-51.
    15 Akarsu AN,Stoilov I,Yilmaz E,Sayli BS,Sarfarazi M.Genomic structure of HOXD13 gene:a nine polyalanine duplication causes synpolydactyly in two unrelated families.Hum Mol Genet.1996 Jul;5(7):945-52.
    16 Warren ST.Polyalanine expansion in synpolydactyly might result from unequal crossing-over of HOXD13.Science.1997;275(5298):408-9.
    17 Haga H,Yamada R,Ohnishi Y,Nakamura Y,Tanaka T.Gene-based SNP discovery as part of the Japanese Millennium Genome Project:identification of 190,562 genetic variations in the human genome.Single-nucleotide polymorphism.J Hum Genet.2002;47(11):605-10.
    1 Krumlauf R.HOX genes in vertebrate development.Cell.1994;78:191-201.
    2 Kenyon C.If birds can fly,why can't we? Homeotic genes and evolution.Cell.78:175-180.
    3 Carroll SB.Homeotic genes and the evolution of arthropods and chordates.Nature.376:479-485.
    4 Lewin B.Homeodomains bind related targets in DNA.In Genes VⅡ.Oxford:Oxford University Press.2000:660-62.
    5 Kondo T,Duboule D.Breaking colinearity in the mouse HOXD complex.Cell.1999;97:407-417.
    6 Nelson CE,Morgan BA,Burke AC,Laufer E,DiMambro E,Murtaugh LC,Gonzales E,Tessarollo L,Parada LF,Tabin C.Analysis of Hox gene expression in the chick limb bud.Development.1996;122:1449-1466.
    7 Favier B,Dolle P.Developmental functions of mammalian Hox genes.Mol Hum Reprod.1997;3:115-131.
    8 Temtamy SA,McKusick VA.Syndactyly as an isolated malformation.In:Bergsma D,Mudge JR,Paul KW,editors.The genetics of hand malformations.New York:AlanR.Liss.1978;301-322.
    9 Sayli BS,Akarsu AN,Sayli U,Akhan O,Ceylaner S,Sarfarazi M.A large Turkish kindred with syndactyly type Ⅱ (synpolydactyly):I,field investigation,clinical and pedigree data J Med Genet.1995;32:421-434.
    10 Sarfarazi M,Akarsu AN,Sayli BS.Localization of the syndactyly type Ⅱ (synpolydactyly) locus to 2q31 region and identification of tight linkage to HOXD8 intragenic marker.Hum Mol Genet 1995;4:1453-1458.
    11 Muragaki Y,Mundlos S,Upton J,Olsen BR.Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD 13.Science 1996;272:548-551.
    12 Warren ST.Polyalanine expansion in synpolydactyly might result from unequal crossing-over of HOXD13.Science.1997;275(5298):408-409.
    13 Goodman FR,Mundlos S,Muragaki Y,Donnai D,Giovannucci-Uzielli ML,Lapi E,Majewski F,McGaughran J,McKeown C,Reardon W,Upton J,Winter RM,Olsen BR,Scambler PJ.Synpolydactyly phenotypes correlate with size of expansions in HOXD13 polyalanine tract.Proc Natl Acad Sci USA.1997;94(14):7458-63.
    14 Akarsu AN,Akhan O,Sayli BS,Sayli U,Baskaya G,Sarfarazi M.A large Turkish kindred with syndactyly type Ⅱ (synpolydactyly).2.Homozygous phenotype? J Med Genet.1995;32(6):435-41.
    15 Goodman FR.Limb malformations and the human HOX genes.Am J Med Genet.2002;112(3):256-65.
    16 Zhao X,Sun M,Zhao J,Leyva JA,Zhu H,Yang W,Zeng X,Ao Y,Liu Q,Liu G,Lo WH,Jabs EW,Amzel LM,Shan X,Zhang X.Mutations in HOXD13 underlie syndactyly type V and a novel brachydactyly-syndactyly syndrome.Am J Hum Genet.2007;80(2):361-71.
    17 Kjaer KW,Hansen L,Eiberg H,Utkus A,Skovgaard LT,Leicht P,Opitz JM,Tommerup N.A 72-year-old Danish puzzle resolved—comparative analysis of phenotypes in families with different-sized HOXD13 polyalanine expansions.Am J Med Genet A.2005;138(4):328-39.
    18 Haga H,Yamada R,Ohnishi Y,Nakamura Y,Tanaka T.Gene-based SNP discovery as part of the Japanese Millennium Genome Project:identification of 190,562 genetic variations in the human genome.Single-nucleotide polymorphism.J Hum Genet.2002;47(11):605-10.
    19 Brown LY,Brown SA.Alanine tracts:the expanding story of human illness and trinucleotide repeats.Trends Genet.2004;20(1):51-8.
    20 Lavoie H,Debeane F,Trinh QD,Turcotte JF,Corbeil-Girard LP,Dicaire MJ,Saint-Denis A,Page M,Rouleau GA,Brais B.Polymorphism,shared functions and convergent evolution of genes with sequences coding for polyalanine domains.Hum Mol Genet.2003;12(22):2967-79.
    21 Blondelle SE,Forood B,Houghten RA,Perez-Paya E.Polyalanine-based peptides as models for self-associated beta-pleated-sheet complexes.Biochemistry.1997;36(27):8393-400.
    22 Debeer P,Bacchelli C,Scambler PJ,De Smet L,Fryns JP,Goodman FR.Severe digital abnormalities in a patient heterozygous for both a novel missense mutation in HOXD13 and a polyalanine tract expansion in HOXA13.J Med Genet.2002;39(11):852-6.
    23 Gehring WJ,Qian YQ,Billeter M,Furukubo-Tokunaga K,Schier AF,Resendez-Perez D,Affolter M,Otting G,Wuthrich K.Homeodomain-DNA recognition.Cell.1994;78(2):211-23.
    24 Li H,Tejero R,Monleon D,Bassolino-Klimas D,Abate-Shen C,Bruccoleri RE,Montelione GT.Homology modeling using simulated annealing of restrained molecular dynamics and conformational search calculations with CONGEN:application in predicting the three-dimensional structure of murine homeodomain Msx-1.Protein Sci.1997;6(5):956-70.
    25 Johnson D,Kan SH,Oldridge M,Trembath RC,Roche P,Esnouf RM,Giele H,Wilkie AO.Missense mutations in the homeodomain of HOXD13 are associated with brachydactyly types D and E.Am J Hum Genet.2003;72(4):984-97.
    26 Caronia G,Goodman FR,McKeown CM,Scambler PJ,Zappavigna V.An I47L substitution in the HOXD13 homeodomain causes a novel human limb malformation by producing a selective loss of function.Development.2003;130(8):1701-12.
    27 Goodman,F.Giovannucci-Uzielli,M.-L.Hall,C.Reardon,W.Winter,R.Scambler,P.Deletions in HOXD13 segregate with an identical,novel foot malformation in two unrelated families.Am.J.Hum.Genet.1998;63:992-1000.
    28 Calabrese,O.Bigoni,S.Gualandi,F.Trabanelli,C.Camera,G.Calzolari,E.A new mutation in HOXD13 associated with foot pre-postaxial Polydactyly.Europ.J.Hum.Genet,(suppl.1) 2000;140.
    29 Kan SH,Johnson D et al.An acceptor splice site mutation in HOXD13 results in variable hand,but consistent foot malformations.Am J Med Genet A.2003; 121(1):69-74.
    30 Del Campo M,Jones MC,Veraksa AN,Curry CJ,Jones KL,Mascarello JT,Ali-Kahn-Catts Z,Drumheller T,McGinnis W.Monodactylous limbs and abnormal genitalia are associated with hemizygosity for the human 2q31 region that includes the HOXD cluster.Am J Hum Genet.1999;65(1):104-10.
    31 Goodman FR,Majewski F,Collins AL,Scambler PJ.A 117-kb microdeletion removing HOXD9-HOXD13 and EVX2 causes synpolydactyly.Am J Hum Genet.2002;70(2):547-55.
    32 Nixon J,Oldridge M,Wilkie AO,Smith K.Interstitial deletion of 2q associated with craniosynostosis,ocular coloboma,and limb abnormalities:cytogenetic and molecular investigation.Am J Med Genet.1997;70(3):324-7.
    33 Slavotinek A,Schwarz C,Getty JF,Stecko O,Goodman F,Kingston H.Two cases with interstitial deletions of chromosome 2 and sex reversal in one.Am J Med Genet.1999;86(1):75-81.
    34 Prieur M,Lapierre J,Le Lorch M,Ozilou C,Amiel J,Sanlaville J,Vekemans M,Turleau C,Romana SP.HOXD gene cluster haploinsufficiency does not generate gross limb abnormalities.Eur J Hum Genet 8(Suppl 1):74.
    35 Poznanski AK,Stern AM,Gall JC Jr.Radiographic findings in the hand-foot-uterus syndrome (HFUS).Radiology.1970;95(1):129-34.
    36 Stern AM,Gall JC Jr,Perry BL,Stimson CW,Weitkamp LR,Poznanski AK.The hand-food-uterus syndrome:a new hereditary disorder characterized by hand and foot dysplasia,dermatoglyphic abnormalities,and partial duplication of the female genital tract.JPediatr.1970;77(1):109-16.
    37 Goodman FR,Bacchelli C,Brady AF,Brueton LA,Fryns JP,Mortlock DP,Innis JW,Holmes LB,Donnenfeld AE,Feingold M,Beemer FA,Hennekam RC,Scambler PJ.Novel HOXA13 mutations and the phenotypic spectrum of hand-foot-genital syndrome.Am J Hum Genet.2000;67(1):197-202.
    38 Donnenfeld AE,Schrager DS,Corson SL.Update on a family with hand-foot-genital syndrome:hypospadias and urinary tract abnormalities in two boys from the fourth generation.Am J Med Genet.1992;44(4):482-4.
    39 Poznanski AK,Kuhns LR,Lapides J,Stern AM.A new family with the hand-foot-genital syndrome—a wider spectrum of the hamd-foot-uterus syndrome.Birth Defects Orig Artic Ser.1975;11 (4):127-3 5.
    40 Mortlock DP,Innis JW.Mutation of HOXA13 in hand-foot-genital syndrome.Nat Genet.1997;15(2):179-80.
    41 Innis JW,Goodman FR,Bacchelli C,Williams TM,Mortlock DP,Sateesh P,Scambler PJ,McKinnon W,Guttmacher AE.A HOXA13 allele with a missense mutation in the homeobox and a dinucleotide deletion in the promoter underlies Guttmacher syndrome.Hum Mutat.2002;19(5):573-4.
    42 Devriendt K,Jaeken J,Matthijs G,Van Esch H,Debeer P,Gewillig M,Fryns JP.Haploinsufficiency of the HOXA gene cluster,in a patient with hand-foot-genital syndrome,velopharyngeal insufficiency,and persistent patent Ductus botalli.Am J Hum Genet.1999;65(1):249-51.
    1 Palmer SE,Scherer SW,Kukolich M,Wijsman EM,Tsui LC,Stephens K,Evans JP.Evidence for locus heterogeneity in human autosomal dominant split hand/split foot malformation.Am J Hum Genet.1994;55(1):21-6.
    2 Scherer SW,Poorkaj P,Massa H,Soder S,Allen T,Nunes M,Geshuri D,Wong E,Belloni E,Little S,et al.Physical mapping of the split hand/split foot locus on chromosome 7 and implication in syndromic ectrodactyly.Hum Mol Genet.1994;3(8):1345-54.
    3 Haberlandt E,Loffler J,Hirst-Stadlmann A,Stockl B,Judmaier W,Fischer H,Heinz-Erian P,Müller T,Utermann G,Smith RJ,Janecke AR.Split hand/split foot malformation associated with sensorineural deafness,inner and middle ear malformation,hypodontia,congenital vertical talus,and deletion of eight microsatellite markers in 7q21.1-q21.3.J Med Genet.2001;38(6):405-9.
    4 Ahmad M,Abbas H,Haque S,Flatz G X-chromosomally inherited split-hand/split-foot anomaly in a Pakistani kindred.Hum Genet.1987;75(2):169-73.
    5 Johnson KR,Lane PW,Ward-Bailey P,Davisson MT.Mapping the mouse dactylaplasia mutation,Dae,and a gene that controls its expression,mdac.Genomics.1995;29(2):457-64.
    6 Basel D,DePaepe A,Kilpatrick MW,Tsipouras P.Split hand foot malformation is associated with a reduced level of Dactylin gene expression.Clin Genet.2003;64(4):350-4.
    7 de Mollerat XJ,Gurrieri F,Morgan CT,Sangiorgi E,Everman DB,Gaspari P,Amiel J,Bamshad MJ,Lyle R,Blouin JL,Allanson JE,Le Marec B,Wilson M,Braverman NE,Radhakrishna U,Delozier-Blanchet C,Abbott A,Elghouzzi V,Antonarakis S,Stevenson RE,Munnich A,Neri G,Schwartz CE.A genomic rearrangement resulting in a tandem duplication is associated with split hand-split foot malformation 3 (SHFM3) at 10q24.Hum Mol Genet.2003;12(16):1959-71.
    8 Yang A,Kaghad M,Wang Y,Gillett E,Fleming MD,Dotsch V,Andrews NC,Caput D,McKeon F.p63,a p53 homolog at 3q27-29,encodes multiple products with transactivating,death-inducing,and dominant-negative activities.Mol Cell.1998;2(3):305-16.
    9 Ianakiev P,Kilpatrick MW,Toudjarska I,Basel D,Beighton P,Tsipouras P.Split-hand/split-foot malformation is caused by mutations in the p63 gene on 3q27.Am J Hum Genet.2000;67(1):59-66.
    10 van Bokhoven H,Hamel BC,Bamshad M,Sangiorgi E,Gurrieri F,Duijf PH,Vanmolkot KR,van Beusekom E,van Beersum SE,Celli J,Merkx GF,Tenconi R,Fryns JP,Verloes A,Newbury-Ecob RA,Raas-Rotschild A,Majewski F,Beemer FA,Janecke A,Chitayat D,Crisponi G,Kayserili H,Yates JR,Neri G,Brunner HG.p63 Gene mutations in eec syndrome,limb-mammary syndrome,and isolated split hand-split foot malformation suggest a genotype-phenotype correlation.Am J Hum Genet.2001;69(3):481-92.
    11 Goodman FR,Majewski F,Collins AL,Scambler PJ.A 117-kb microdeletion removing HOXD9-HOXD13 and EVX2 causes synpolydactyly.Am J Hum Genet.2002;70(2):547-55.
    12 Qiu M,Bulfone A,Ghattas I,Meneses J J,Christensen L,Sharpe PT,Presley R,Pedersen RA,Rubenstein JL.Role of the Dlx homeobox genes in proximodistal patterning of the branchial arches:mutations of Dlx-1,Dlx-2,and Dlx-1 and-2 alter morphogenesis of proximal skeletal and soft tissue structures derived from the first and second arches.Dev Biol.1997;185(2):165-84.
    13 Gurnett CA,Dobbs MB,Nordsieck EJ,Keppel C,Goldfarb CA,Morcuende J A,Bowcock AM.Evidence for an additional locus for split hand/foot malformation in chromosome region 8q2\M-q22.3.Am J Med Genet A.2006;140(16):1744-8.
    14 Lyle R,Radhakrishna U,Blouin JL,Gagos S,Everman DB,Gehrig C,Delozier-Blanchet C,Solanki JV,Patel UC,Nath SK,Gurrieri F,Neri G,Schwartz CE,Antonarakis SE.Split-hand/split-foot malformation 3 (SHFM3) at 10q24,development of rapid diagnostic methods and gene expression from the region.Am J Med Genet A.2006;140(13):1384-95.
    15 Kobayashi K,Sinasac DS,Iijima M,Boright AP,Begum L,Lee JR,Yasuda T,Ikeda S,Hirano R,Terazono H,Crackower MA,Kondo I,Tsui LC,Scherer SW,Saheki T.The gene mutated in adult-onset type Ⅱ citrullinaemia encodes a putative mitochondrial carrier protein.Nat Genet.1999;22(2):159-63.
    16 Roesch K,Hynds PJ,Varga R,Tranebjaerg L,Koehler CM.The calcium-binding aspartate/glutamate carriers,citrin and aralar1,are new substrates for the DDPl/TIMM8a-TIMM13 complex.Hum Mol Genet.2004;13(18):2101-11.
    17 Sinasac DS,Moriyama M,Jalil MA,Begum L,Li MX,Iijima M,Horiuchi M,Robinson BH,Kobayashi K,Saheki T,Tsui LC.Slc25a13-knockout mice harbor metabolic deficits but fail to display hallmarks of adult-onset type Ⅱ citrullinemia.Mol Cell Biol.2004;24(2):527-36.
    18 Crackower MA,Scherer SW,Rommens JM,Hui CC,Poorkaj P,Soder S,Cobben JM,Hudgins L,Evans JP,Tsui LC.Characterization of the split hand/split foot malformation locus SHFM1 at 7q21.3-q22.1 and analysis of a candidate gene for its expression during limb development.Hum Mol Genet.1996;5(5):571-9.
    19 Jantti J,Lahdenranta J,Olkkonen VM,Soderlund H,Keranen S.SEMI,a homologue of the split hand/split foot malformation candidate gene Dssl,regulates exocytosis and pseudohyphal differentiation in yeast.Proc Natl Acad Sci USA.1999;96(3):909-14.
    20 Robledo RF,Raj an L,Li X,Lufkin T.The Dlx5 and Dlx6 homeobox genes are essential for craniofacial,axial,and appendicular skeletal development.Genes Dev.2002;16(9):1089-101.
    21 Merlo GR,Paleari L,Mantero S,Genova F,Beverdam A,Palmisano GL,Barbieri O,Levi G.Mouse model of split hand/foot malformation type I.Genesis.2002;33(2):97-101.
    22 Hsu SH,Noamani B,Abernethy DE,Zhu H,Levi G,Bendall AJ.Dlx5-and Dlx6-mediated chondrogenesis:Differential domain requirements for a conserved function.Mech Dev.2006;123(11):819-30.
    23 Lo lacono N,Mantero S,Chiarelli A,Garcia E,Mills AA,Morasso MI,Costanzo A,Levi G,Guerrini L,Merlo GR.Regulation of Dlx5 and Dlx6 gene expression by p63 is involved in EEC and SHFM congenital limb defects.Development.;135(7):1377-88.
    24 Debeer P,Vandenbossche L,de Ravel TJ,Desloovere C,De Smet L,Huysmans C,Thoelen R,Vermeesch J,Van de Ven WJ,Fryns JP.Bilateral complete radioulnar synostosis associated with ectrodactyly and sensorineural hearing loss:a variant of SHFM1.Clin Genet.2004;65(2):153-5.
    25 Tzschach A,Menzel C,Erdogan F,Schubert M,Hoeltzenbein M,Barbi G,Petzenhauser C,Ropers HH,Ullmann R,Kalscheuer V.Characterization of a 16 Mb interstitial chromosome 7q21 deletion by tiling path array CGH.Am J Med Genet A.2007;143(4):333-7.