静电纺功能性聚酰胺6复合纳米纤维毡的结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题选用聚酰胺6(PA6)作为基体,以纳米Ag、锐钛矿型TiO2和多壁碳纳米管(MWCNT)为功能性添加材料,采用静电纺丝的方法制备功能性纳米纤维毡。通过对添加剂含量及混合比例的优化组合,使复合纳米纤维毡的力学性能得到很大提升,并获得了良好的抗菌性。在分析了纤维结构与性能的基础上,对静电纺纳米纤维毡/无纺布复合医用口罩的性能做了初步的探索。
     纳米添加剂对复合纤维毡的结构与性能的影响:讨论了Ag、TiO2、MWCNT三种纳米添加剂及Ag/TiO2双组分添加剂对纤维形态、结晶结构、热学性能、力学性能的影响,并测试了材料对金黄色葡萄球菌的的抗菌性能。纳米添加材料不同程度地提高了复合纤维的结晶度、热稳定性和力学性能等,尤其是纳米Ag粉体质量分数为1.0%的PA6/Ag复合纳米纤维,在拥有高于纯PA6纳米纤维2倍强度的同时,也表现出了优异的抗菌性能。
     纺丝时间对静电纺复合纳米纤维毡的表面性能与透通性的影响:通过控制静电纺丝时间,制备了不同厚度的PA6/Ag纳米纤维毡及静电纺纤维/非织造布复合口罩。随着静电纺丝时间的增加,纤维毡孔隙数目增多,孔径减小,纤维毡的浸润性逐渐增强。在口罩无纺布表面覆盖纺丝时间仅为1分钟的PA6/Ag纳米纤维网,就可以使该复合材料的孔隙面积迅速下降,能够达到阻隔大多数带有病毒的气溶胶的要求并且对复合口罩的透气性影响很小。
In this dissertation, polyamide 6 (PA6) was electrospun into functional nanofiber mats with the additives of Ag, TiO2 nanoparticles and multi-walled carbon nanotubes (MWCNT). The mechanical properties of composite nanofibers were improved greatly by changing the content and the mixing proportion of the additives, and the fibers showed excellent antibacterial property meanwhile. The properties of the electrospun nanofibesr/nonwoven composite medical masks were researched after analyzing the structure and properties of the composite nanofibers.
     Effects of nano-additives on the structure and properties of the composite nanofiber mats: The morphology, crystal structure, thermal property, mechanical property, and antibacterial property against Staphylococcus aureus bacteria of the composite fibers with the addition of Ag, TiO2, MWCNT and Ag/TiO2 two-component additives respectively were studied. The crystallinity, thermal stability and strength of the fibers were all enhanced with the adding of the nano-additives. Especially at 1wt.% Ag nanoparticles, the PA6/Ag composite nanofibers exhibited excellent antibacterial property, and the strength is higher than twice of the pure PA6 nanofibers.
     Effects of electrospinning time on the surface performance and permeability of the nanofiber mats: Prepared PA6/Ag nanofiber mats and nanofibesr/nonwoven composite masks with different thickness via controlling electrospinning time. With the increasing of electrospunning time, the number of pores in the nanofiber mat is increased, while the pore size decreased, so that the surface wettability of fiber mats is enhanced. When the nonwoven mask was covered the nanofibers which electrospun only 1 minute, the average pore area of the composite was small enough to obstruct most of aerosols with virus, and the air permeability was decreased slightly.
引文
[1] Seungsin Lee, S. Kay Obendorf. Developing protective textile materials as barriers to liquid penetration using melt-electrospinning[J]. Journal of Applied Polymer Science, 2006, 102: 3430-3437.
    [2] Neeta L. Lala, Ramakrishnan Ramaseshan, Li Bojun, et al. Fabrication of nanofibers with antimicrobial functionality used as filters: Protection against bacterial contaminants[J]. Biotechnology and Bioengineering, 2007, 97(6): 1357-1365.
    [3] Daniel J Smith, Darrell H Reneker. Nitric oxide-modifiedlinear poly(ethyl enimine) fibers and uses therefore[P]. US Patent: 0131753,2004-07-08.
    [4] Y K Luu, K Kim, B S Hsiao, et al. Development of a nanostructured DNA delivery scaffold via electrospinning of PGLA and PLA-PGA block copolymers[J]. Journal of Controlled Release, 2003, 89: 341-353.
    [5] F Yang, R Murugan, S Wang, et al. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering[J]. Biomaterials, 2005, 26: 2603-2610.
    [6] Seema Agarwal, Joachim H. Wendorff, Andreas Greiner. Use of electrosspinning technique for biomedical applications[J]. Polymer, 2008, 14: 1-19.
    [7] Aussawasathien D, Dong J H, Dai L. Electrospun polymer nanofiber sensors[J]. Synthetic Metals, 2005, 154: 37-40.
    [8]张文钲,张羽天.载银抗菌材料的研究与开发[J].化工新型材料, 1997(7): 20-22.
    [9]张立德.超微粉体制备与应用技术[M]. 1版.北京:中国石化出版社,2001:518-522.
    [10]徐丽丽,綦晓峰,陈玉清.纳米二氧化钛抗菌材料的研究与应用进展[J].山东陶瓷,2007,30(5):26-29.
    [11]李凤生,杨毅,马振叶,等.纳米功能复合材料及应用[M]. 1版.北京:国防工业出版社,2003:291.
    [12]赵大庆,杨锋.纳米TiO2陶瓷粒子对改善纺织品发射远红外线性能的测试[J].红外技术,2002,24(5):55-57.
    [13]王鹏,张瑜,陈彦模.复合型导电纤维的制备及其开发现状[J].合成纤维,2004(增刊): 18-20.
    [14]陈国建,韩要星,胡勇,等.纳米导电粉在抗静电纤维制备中的应用[J].纺织科学研究,2004(1):15-19.
    [15]何厚康,蒋羽中,吴文华,等.纳米远红外保健异形锦纶的研究[J].合成纤维,2003(1):18-20.
    [16]何厚康,张瑜,吴文华,等. PA6/纳米TiO2复合物的制备及成纤性能[J].高分子材料科学与工程,2004,20(6):214-217.
    [17]王兴雪,刘峻,张瑜,等.聚丙烯/无机纳米抗菌剂共混纤维的研制[J].金山油化纤,2004,23(2):14-17.
    [18]赵研,顾莉琴,齐秀丽,等.载银纳米氧化锌改性PET纤维研究[J].合成纤维工业,2005,28(4):1-3.
    [19]王志广,马季玫,沈新元.添加纳米粒子的抗菌抗静电聚丙烯纤维研制:纳米抗菌抗静电粒子的表面修饰及纺丝[J].产业用纺织品,2007(4):13-15.
    [20] Kearns J C, Shambaugh R L. Polypropylene fibers reinforced with carbon nanotubes[J]. Appl Polymer Sci, 2002, 86(8): 2079-2084.
    [21] Kumar S, Doshi H, Srinivasarao M, et al. Fibers from polypropylene/nano carbon fiber composites[J]. Polymer, 2002, 43(5): 1701-1703.
    [22]郭振福,袁光耀,碳纳米管增强PA6纤维的研究[J],河北北方学院学报(自然科学版). 2006, 22(5): 27-29.
    [23] Chen X L,Li C Z,Shao W,et al. The Anti-Static Poly(ethylene terephthalate) Nanocomposite Fiber by In Situ Polymerization:The Thermo-Mechanical and Electrical Properties[J]. Journal of Applied Polymer Science,2007,105(3):1490-1495
    [24]韩克清,余木火. PET/纳米TiO2抗紫外纤维的制备及性能研究[J].合成纤维工业,2005,28(2):4-6.
    [25] Liang Y,Xia X H,Luo Y S,et al. Synthesis and performances of Fe2O3/PA-6 nanocomposite fiber[J]. Materials Letters,2007,61(14-15):3269-3272.
    [26] Zhijuan Pan, Hongbo Liu, Qianhua Wan. Morphology and mechanical property of electrospun PA6/66 copolymer filament constructed of nanofibers[J]. Journal of Fiber Bioengineering and Informatics. 2008, 1(1): 47-54.
    [27] Mohamed Basel Bazbouz, George K Stylios. Novel mechanism for spinning continuous twisted composite nanofiber yarns[J]. European Polymer Journal, 2007, DOI:10.1016
    [28] Myung-Seob Khil, Shanta Raj Bhattarai, et al. Novel fabricated matrix via electrospinning for tissue engineering[J]. Wiley InterScience, 2007, DOI:10.1002
    [29] Eugene Smita, Ulrich Buttnerb, Ronald D. Sanderson.Continuous yarns from electrospun fibers[J]. Polymer, 2005, 46: 2419-2423.
    [30] Wee-Eong Teo, Renuga Gopal, et al. A dynamic liquid support system for continuous electrospun yarn fabrication[J]. Polymer, 2007, 48: 3400-3405.
    [31] Frank ko, Yury Gogotsi, et al. Electrospinning of continuous carbon nanotube-filled nanofibers yarns[J]. Advanced materials, 2003, 14: 1161-1165.
    [32] Huan Pan, Luming Li, et al. Continuous aligned polymer fibers produced by a modified electrospinning method[J]. Polymer, 2006, 47(14): 4901-4904.
    [33] K J Pawlowski, H L Belvin, et al. Electrospinning of a micro-air vehicle wing skin[J]. Polymer,2003(44):1309-1314
    [34] Formhals A. US patent 1, 975, 504, 1934.
    [35] Formhals A. US patent 2, 160, 962, 1939.
    [36] Formhals A. US patent 2, 187, 306, 1940.
    [37] Formhals A. US patent 2, 323, 025, 1943.
    [38] Formhals A. US patent 2, 349, 950, 1944.
    [39] A. L. Yarin, S. Koombhongse, D. H. Reneker. Taylor cone and jetting from liquid droplets in electrospinning of nanofibers[J]. Journal of applied physics, 2001, 90: 4836-4846.
    [40] A. Vaseashta. Controlled formation of multiple Taylor cones in electrospinning process[J]. Applied physics letters, 2007, 90: 093115-3.
    [41] J. J. Feng. The stretching of an electrified non-Newtonian jet: A model for electrospinning[J]. Physics of fluids, 2002, 14(11): 3912-3926.
    [42] A. F. Spivak, Y. A. Dzenis. Asymptotic decay of radius of a weakly conductive viscous jet in an external electric field[J]. Applied physics letters, 1998, 73(21): 3067-3069.
    [43] Darrell H. Reneker, Alexander L. Yarin, et al. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning[J]. Journal of applied physics, 2000, 87(9): 4531-4547.
    [44] A. L. Yarin, S. Koombhongse, D. H. Reneker. Bending instability in electrospinning of nanofibers[J]. Journal of applied physics, 2001, 89(5): 3018-3026.
    [45] A. F. Spivak, Y. A. Dzcnis, D. H. Reneker. A model of steady state in the electrospinning process[J]. Mechanics research communications, 2000, 27(1): 37-42.
    [46] Ji-Huan He, Hong-Mei Liu. Variational approach to nonlinear problems and a review on mathematical model of electrospinning[J]. Nonlinear Analysis, 2005, 63: e919-e929.
    [47] S-H. Tan, R. Inai, M. Kotaki, et al. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process[J]. Polymer, 2005, 46: 6128-6134.
    [48] S. A. Theron, E. Zussman, A. L. Yarin. Experimental investigation of the governing parameters in the electrospinning of polymer solutions[J]. Polymer, 2004, 45: 2017-2030.
    [49] Suresh L. Shenoy, W. Douglas Bates, Harry L. Frisch, et al. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent,non-specific polymer-polymer interaction limit[J]. Polymer, 2005, 46: 3372-3384.
    [50] Silke Megelski, Jean S. Stephens, et al. Micro and nanostructured surface morphology on electrospun polymer fibers[J]. Macromolecules, 2002, 35:8456-8466.
    [51] Haiqing LIU, Chunyi TANG. Electrospinning of cellulose acetate in solvent mixture N, N-Dimethylacetamide(DMAc)/Acetone[J]. Polymer, 2007, 39: 65-72.
    [52] O. S. Yordem, M. Papila, Y. Z. Menceloglu. Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter:An investigation by response surface methodology[J]. Materials and design, 2008, 29: 34-44.
    [53] Javier Macossay, Alexis Marruffo, Roman Rincon, et al. Effect of needle diameter on nanofiber diameter and thermal properties of electrospun poly(methyl methacrylate)[J]. Polymer of advanced technologies, 2007, 18: 180-183.
    [54] Jianfen Zheng, Aihua He, Junxing Li, et al. Studies on the controlled morphology and wettability of polystyrene surfaces by electrospinning or electrospraying[J]. Polymer, 2006, 47: 7095-7102.
    [55] Sureeporn Tripatanasuwan, Zhenxin Zhong, Darrell H Reneker. Effect of evaporation and solidification of the charged jet in electrospinning of poly(ethylene oxide) aqueous solution[J]. Polymer, 2007, DOI: 10.1016.
    [56] Rouhollah Jalili, Mohammad Morshed, Seyed Abdolkarim Hosseini Ravandi. Fundamental parameters affecting electrospinning of PAN nanofibers as uniaxially aligned fibers[J]. Journal of applied polymer science, 2006, 101: 4350-4357.
    [57] Dan Li, Yuliang Wang, Younan Xia. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films[J]. Advanced materials, 2004, 4: 361-366.
    [58] Paul D. Dalton, Doris Klee, Martin Moller. Electrospinning with dual collection rings[J]. Polymer, 2005, 46: 611-614.
    [59] Luqi Liu, Dimitrios Tasis, et al. One-step electrospun nanofiber-based composite ropes[J]. Applied physics letters, 2007, 90: 083108-3.
    [60] Sian F. Fennessey, Richard J. Farris. Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns[J]. Polymer, 2004, 45: 4217-4225.
    [61] C. Y. Xu, R. Inai, M. Kotaki, et al. Aligned biodegradable nanofibrous structure: A potential scaffold for blood vessel engineering[J]. Biomaterials, 2004, 25: 877-886.
    [62] Javed Rafique, Jie Yu, Jiliang Yu, et al. Electrospinning highly aligned long polymer nanofibers on large scale by using a tip collector[J]. Applied physics letters, 2007, 91: 063126.
    [63] J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen, et al. Controlled deposition of electrospun poly(ethylene oxide) fibers[J]. Polymer, 2001, 42: 8163-817390.
    [64] Daoheng Sun, Chieh Chang, Sha Li, et al. Near-Field Electrospinning[J]. Nano letters, 2006, 6: 839-842.
    [65] Zheng-Ming Huanga, Y-Z Zhangb, M Kotakic. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science and Technology, 2003(63): 2223-2253.
    [66] He C H, Gong J. The preparation of PVA–Pt/TiO2 composite nanofiber aggregate and the photocatalytic degradation of solid-phase polyvinyl alcohol[J]. Polymer Degradation and Stability, 2003, 81: 117-124.
    [67] Jun J H,Cho K,Yun J,et al. Enhancement of electrical characteristics of electrospun polyaniline nanofibers by embedding the nanofibers with Ga-doped ZnO nanoparticles[J]. Organic Electronics,2008,9(4):445-451.
    [68] M. Wang, H. Singh, T. A Hatton, et al. Field-responsive superparamagnetic composite nanofibers by electrospinning[J]. Polymer, 2004, 45: 5505-5514
    [69] Park S W, Bae H S, Xing Z C, et al. Preparation and Properties of Silver-Containing Nylon 6 Nanofibers Formed by Electrospinning[J]. Journal of Applied Polymer Science, 2009, 112: 2320-2326.
    [70] Wu H J,Fan J T,Qin X H,et al. Thermal radiative properties of electrospun superfine fibrous PVA films[J]. Materials Letters,2008,62(6-7):828-831.
    [71]李响,赵一阳,卢晓峰,等.聚乙烯吡咯烷酮/四氧化三铁复合纳米纤维的制备与表征[J].高等学校化学学报,2006,27(10):2002-2004.
    [72] Ji L W , Zhang X W. Ultrafine polyacrylonitrile/silica composite fibers viaelectrospinning[J]. Materials Letters,2008,62(14):2161-2164.
    [73] Kedem S,Schmidt J,Paz Y,et al. Composite Polymer Nanofibers with Carbon Nanotubes and Titanium Dioxide Particles[J]. Langmuir,2005,21:5600-5604.
    [74] Saeedeh Mazinanni, Abdellah Ajji, Charles Dubois. Morphology, structure and properties of conductive PS/CNT nanocomposite electrospun mat[J]. Polymer, 2009, 50: 3329-3342.
    [75] Son W K,Youk J H,Lee T S,et al. Preparation of Antimicrobial Ultrafine Cellulose Acetate Fibers with Silver Nanoparticles[J]. Macromol Rapid Communications,2004,25(18):1632-1637.
    [76] Son W K,Youk J H,Park W H. Antimicrobial cellulose acetate nanofibers containing silver nanoparticles[J]. Carbohydrate Polymers,2006,65(14):430-434.
    [77] Yamg Q B,Li D M,Hong Y L,et al. Preparation and characterization of a pan nanofibre containing Ag nanoparticles via electrospinning[J]. Synthetic Metals,2003,137(1-3):973-974.
    [78] Lee H K,Jeong E H,Baek C K,et al. One-step preparation of ultrafine poly(acrylonitrile) fibers containing silver nanoparticles[J]. Materials Letters,2005,59(23):2977-2980.
    [79] Wang Y Z,Yang Q B,Shan G Y,et al. Preparation of silver nanoparticles dispersed in polyacrylonitrile nanofiber film spun by electrospinning [J ]. Materials letters,2005,59(24-25):3046-3049.
    [80] Jin W J,Jeon H J,Kim J H,et al. A study on the preparation of poly(vinyl alcohol) nanofibers containing silver nanoparticles[J]. Synthetic Metals,2007,157(10-12):454-459.
    [81] Wang C,Tong Y B,Sun Z Y,et al. Preparation of one-dimensional TiO2 nanoparticles within polymer fiber matrices by electrospinning[J]. Materials Letters,2007,61(29):5125-5128.
    [82]韩晓建,黄征鸣,何创龙,等.聚丙烯腈(PAN)/ TiO2超细纤维的制备与表征[J].高技术通讯,2007,17(12):1262-1266.
    [83] Sui X M,Shao C H,Liu Y C. Photoluminescence of polyethylene oxide-ZnO composite electrospun fibers[J]. Polymer,2007,48(6):1459-1463.
    [84] Jun J H,Cho K,Yun J,et al. Enhancement of electrical characteristics of electrospun polyaniline nanofibers by embedding the nanofibers with Ga-doped ZnO nanoparticles[J]. Organic Electronics,2008,9(4):445-451.
    [85]高晓燕.静电纺纤维/非织造布复合过滤材料的结构性能与模拟[D].苏州:苏州大学,2009.
    [86]于伟东,储才远.纺织物理[M]. 1版.上海:中国纺织大学出版社,2001.
    [87] J. S. Jeong, S. Y. Jeon, T. Y. Lee, et al. Fabrication of MWNTs/nylon conductive composite nanofibers by electrospinning [J]. Diamond and related materials, 2006, 15: 1839-1843.
    [88] Zujin Shi, Yongfu Lian, Fuhui Liao, et al. Purification of single-wall carbon nanotubes [J]. Solid State Communications, 1999, 112: 35-37.
    [89] H. Fong, I. Chun, D. H. Reneker. Beaded nanofibers formed during electrospinning[J]. Polymer, 1999, 40: 4585-4592.
    [90] T.D. Fornes, D.R. Paul. Crystallization behavior of nylon 6 nanocomposites[J]. Polymer, 2003, 44: 3945-3961.
    [91]姚海霞,赵庆章,邓新华.静电纺丝法制备超吸水纤维的研究[J].纺织科学研究,2003(4): 1-5.
    [92] Alber P, Anna B, Leon G. Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters[J]. Chemical Engineering Science, 2006, 61: 680426815.
    [93]于伟东.纺织材料学[M]. 1版.北京:中国纺织出版社,2006.