锡基钎料与多晶铜焊盘界面反应行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着封装体积的减小,界面金属间化合物(IMCs, Intermetallic compounds)在焊点内所占的比重越来越大,其形貌、尺寸、晶体取向以及厚度等将会对电子器件互连点的可靠性造成严重的影响。虽然界面IMCs生长行为已受到了广泛的研究,但是由于尚缺少一些关于界面IMCs生长的重要信息,并且一些研究中的实验方法也不太恰当,因此到目前为止界面IMCs的生长行为还没有被清晰的揭示。本课题就针对这些研究中的不足之处,对Sn基钎料与Cu焊盘之间的界面反应进行研究,揭示了界面IMCs在焊点形成以及随后高温服役过程中的形貌、织构演变、粗化行为、生长动力学以及这几种生长行为之间的相互影响。本课题的研究结果对无铅钎料的研发及应用,以及提高焊点可靠性都具有重要的意义。
     本文设计了可以获取任意时刻下形成于液态钎料与Cu焊盘之间的界面反应物的实验方法,通过对这些反应物进行分析,揭示了界面IMCs在液相反应过程中的生长行为。研究结果澄清了焊点形成过程中界面Cu_6Sn_5晶粒的形貌演变机制:在液相反应过程中界面Cu_6Sn_5都保持着圆滑的扇贝状形貌,前期生长主要受晶界扩散控制而后期主要受体扩散控制。在整个实验过程中,Cu3Sn的生长一直受体扩散控制。在钎料凝固过程中,如果钎料基体内Cu含量足够高,Cu将会以Cu_6Sn_5的形式在界面处析出并以界面处已存在的Cu_6Sn_5晶粒为核,沿着其[0001]方向生长,长成长条棱镜状晶粒,棱镜状晶粒平直表面的晶面指数为(10-10)。
     研究了焊点形成过程中界面Cu_6Sn_5的晶体取向。研究结果表明,与单晶Cu的情况相似,生长于多晶Cu界面处的Cu_6Sn_5晶粒也表现出明显的织构行为,但是两种织构的形成机制不一样。多晶Cu上的织构形成于界面Cu_6Sn_5的粗化过程中,主要原因是不同反应体系内,不同取向的Cu_6Sn_5晶粒的稳定性不同。界面Cu_6Sn_5晶粒的织构型生长行为影响其形貌演变和粗化行为。
     发现了Sn3.5Ag钎料与多晶Cu焊盘液相反应过程中界面IMCs的生长厚度与一些研究学者的预期不同,Ag并没有抑制界面处IMCs的生长和Cu焊盘的消耗。相反地,通过改变钎料与界面IMCs之间的界面能,Ag的添加会影响界面Cu_6Sn_5的生长取向和粗化行为,使得在相同反应条件下出现在Sn3.5Ag/Cu界面处的Cu_6Sn_5晶界多于出现在Sn/Cu界面处的,进而导致在Sn3.5Ag/Cu反应中更大的Cu焊盘的消耗和界面IMCs的生成。
     研究了固相反应过程中形成于Sn基钎料与Cu焊盘之间界面IMCs的晶体取向,结果表明Sn37Pb/Cu和Sn3.5Ag/Cu界面处的Cu_6Sn_5晶粒呈现出织构型生长,并且织构的形貌主要决定于初始焊点界面Cu_6Sn_5晶粒的晶体取向。在固态钎料中,[0001]晶向垂直于界面的Cu_6Sn_5晶粒比其他取向的晶粒更为稳定,造成了200oC形成的Sn37Pb/Cu焊点和240oC形成的Sn3.5Ag/Cu焊点在固相老化过程中界面Cu_6Sn_5晶粒形成[0001]晶向垂直于焊盘的织构;而对于280oC形成的焊点,由于在重熔过程中绝大部分[0001]晶向垂直于界面的Cu_6Sn_5晶粒已消失,因此在界面处未能出现[0001]晶向垂直于焊盘的织构。通过对两种不同温度下形成于Sn37Pb/Cu界面IMCs层厚度的测量,发现Sn沿Cu_6Sn_5的[0001]晶向扩散较快,使得在相同的固相老化条件下,200oC形成于Sn37Pb/Cu焊点界面处的IMCs多于280oC形成于Sn37Pb/Cu焊点界面处的IMCs。
     讨论了不同形貌的界面IMCs对焊点剪切性能的影响。根据前几部分的研究结果,制备出了一些具有特定形貌界面IMCs的焊点,并对其进行了剪切性能测试。实验结果表明焊点的剪切强度主要受钎料基体微观组织以及界面Cu_6Sn_5形貌的影响,与界面IMCs厚度关系不大。在剪切高度比较低的情况下,焊点主要在界面处发生断裂。不同形貌的界面Cu_6Sn_5将会对焊点剪切强度产生重要的影响:深深嵌入进钎料基体的棱镜状Cu_6Sn_5可以有效地抑制焊点剪切过程中钎料基体内的塑性变形和裂纹扩展,因此具有棱镜状界面Cu_6Sn_5的焊点剪切强度要明显高于具有扇贝状和层状界面Cu_6Sn_5的焊点的剪切强度。在焊点固相老化过程中,随着钎料基体的粗化以及层状界面Cu_6Sn_5层的出现,焊点强度逐渐降低到一个稳定值。
The trend towards the miniaturization of electronic products leads to the needfor a shrinkage of joint size, resulting in a high volume fraction of intermetalliccompounds (IMCs) generated at the Sn-based solders/Cu interface. The morphology,grain size, growth orientation, and thickness of interfacial IMCs will greatly affectthe joint reliabilities and therefore, have attracted extensively studied. However, dueto the lack of some available information and the inappropriate experimentalmethods used in most studies, the growth behaviors of interfacial IMCs have notbeen clearly revealed. In this study, the growth behaviors (e.g., morphologicalevolution, growth orientations, coarsening behaviors, and growth kinetics) of theIMCs formed at Sn-based solders/Cu interface were investigated. The results fromthis study should contribute to the research and development of lead-free solders andthe improvement of the reliabilities of solder joints.
     In this dissertation, the growth behaviors of the IMCs formed duringliquid-state soldering are investigated based on an experiment in which the liquidsolder is removed prior to the end of soldering. This approach allows for the captureand monitoring of the interfacial IMCs formed during liquid-state soldering andavoid the influence of Cu_6Sn_5precipitated from the solder matrix during cooling.The results reveal that round, scallop-type Cu_6Sn_5grains with a strong texture format the molten solder/Cu interface and that their growth is controlled more by grainboundary diffusion at the beginning of the reaction followed by volume diffusion,whereas the growth of Cu3Sn is only volume-diffusion-controlled. During cooling,many Cu atoms are rapidly precipitated in the form of Cu_6Sn_5, and to reduce thenucleation energy, the precipitation usually takes place on the existing IMC interfaceand form long prism-type grains. The elongation direction of the prism-type grainsis [0001] direction of the existing interfacial Cu_6Sn_5grains.
     The orientation evolution of interfacial Cu_6Sn_5formed during the jointformation is investigated. Similar as reported on Cu single crystals, strong texturesin Cu_6Sn_5layers can also form on polycrystalline Cu, but the texture formationmechanisms differ. The texture formation on polycrystalline Cu occurs during theripening growth and results from the differences in stability of the interfacial grainswith various orientations at different temperatures. This textured growth ofinterfacial Cu_6Sn_5grains affect their morphological evolution and coarseningbehaviors.
     The thickness of IMC layers formed at Sn/Cu and Sn3.5Ag/Cu interfacesduring liquid-state soldering is determinated and compared. In contrast to the predictions of some studies, Ag does not inhibit interfacial IMC growth. Instead, bychanging the interfacial energy between the molten solder and the interfacial IMC,the addition of Ag affects the growth orientation and coarsening behavior ofinterfacial Cu_6Sn_5grains. These changes lead to more Cu_6Sn_5grain boundaries atthe interface and therefore greater IMC formation and Cu consumption in theSn3.5Ag/Cu reaction than in the Sn/Cu reaction under the same reflow conditions.
     The orientation evolution of interfacial Cu_6Sn_5formed during solid-state agingis investigated. The results show that the interfacial Cu_6Sn_5grains exhibit texturedgrowth under solid-state condition and their preferred orientations are affected bythe as-soldered joints. Cu_6Sn_5grains with [0001] direction normal to the interfaceare stable in solid and molten Sn37Pb solder at200oC and molten Sn3.5Ag solder at240oC, but will be rapidly consumed at280oC, which leads to the formation ofdifferent textures in Cu_6Sn_5layer during the solid-state aging treatment to the jointsformed at different temperatures. Also, the effects of the texture evolution on thegrowth of interfacial IMCs are evaluated. The results show that Sn diffusion along[0001] direction of Cu_6Sn_5is faster and therefore more interfacial IMCs aregenerated in the Sn37Pb/Cu joints formed at200oC than those formed at280oCunder the same solid-state reaction conditions.
     The influence of different interfacial IMCs morphologies on the jointmechanical reliability is discussed. The joints with some certain morphologies ofinterfacial Cu_6Sn_5grains were prepared based on the above results and conductedthe shear test with different shear height. The results show that the joint strength ismainly affected by the microstructures of solder matrix and the morphologies ofinterfacial IMCs, rather than the thickness of interfacial IMC layers. In the case oflower shear height, the interfacial Cu_6Sn_5with various morphologies affects theshear strength of solder joints significantly. As the plastic deformation and crackpropagation during shear test could be effectively inhibited by the prism-type grainsextruded into solder matrix deeply, the solder joints with prism-type interfacialIMCs showed lager strength compared with the joints with scallop-type orlayer-type IMCs. After aging, the shear strength decreased due to coarsened soldermatrix and flattened interfacial Cu_6Sn_5. In the case of higher shear height, as theplastic deformation is far away from the interface, the interfacial IMCs grains haslittle effect on the strength of solder joints. The joint strength is more dependent onthe microstructure of the solder matrix.
引文
1D. Shangguan. Lead-free Solder Interconnect Reliability. ASM International,2005:1-48
    2M. Abtew, G. Selvaduray. Lead-Free Solders in Microelectronics. MaterialsScience and Engineering R,2000,27:95-141
    3R. R. Tummala. Fundamentals of Microsystems Packaging. McGraw Hill,2001:2-44
    4K. N. Tu. Solder Joint Technology: Materials, Properties, and Reliability.Springer,2007:1-151
    5T. Laurila, V. Vuorinen, J. K. Kivilahti. Interfacial Reactions betweenLead-Free Solders and Common Base Materials. Materials Science andEngineering R,2005,49(1):1-60
    6K. Zeng, K. N. Tu. Six Cases of Reliability Study of Pb-free Solder Joints inElectronic Packaging Technology. Materials Science and Engineering R,2002,38(2):55-105
    7Satyanarayan, K. N. Prabhu. Reactive Wetting, Evolution of Interfacial andBulk IMCs and Their Effect on Mechanical Properties of Eutectic Sn-Cu SolderAlloy. Advances in Colloid and Interface Science,2011,166:87-118
    8J. H. Lau. Solder Joint Reliability: Theory and Applications. Van NostrandReinhold,1991:2-278
    9A. S. Zuruzi, C. Chiu, S. K. Lahiri. Roughness Evolution of Cu6Sn5Intermetallic during Soldering. Journal of Applied Physics,1999,86(9):4916-4921
    10K. N. Tu. Reliability Challenges in3D IC Packaging Technology.Microelectronics Reliability,2011,51(3):517-523
    11L. J. Ladani. Numerical Analysis of Thermo-Mechanical Reliability of ThroughSilicon Vias (TSVs) and Solder Interconnects in3D Integrated Circuits.Microelectronic Engineering,2010,87(2):208-215
    12C. Chen, H. M. Tong, K. N. Tu. Electromigration and Thermomigration inPb-free Flip Chip Solder Joints. Annual Review of Materials Research,2010,40:531-555
    13H. Huebner, S. Penka, B. Barchmann, M. Eigner. W. Gruber, M. Nobis, S.Janka, G. Kristen, M. Schneegans. Microcontacts with Sub-30μm Pitch for3DChip-on-Chip Integration. Microelectronic Engineering,2006,83(11-12):2155-2162
    14C. M. L. Wu, D. Q Yu, L. Wang, C. M. T. Law. Properties of Lead-free SolderAlloys with Rare Earth Element Additions. Materials Science and EngineeringR,2004,44(1):1-44
    15T. Laurila, V. Vuorinen, M. Paulasto-Krockel. Impurity and Alloying Effects onInterfacial Reaction Layers in Pb-Free Soldering. Materials Science andEngineering R,2010,68(1):1-38
    16K. Nogita, C. M. Gourlay, T. Nishimura. Cracking and Phase Stability inReaction Layers between Sn-Cu-Ni Solders and Cu Substrates. JOM,2009,61(6):45-51
    17M. O. Alam, Y. C. Chan, K. N. Tu. Effect of0.5wt%Cu addition inSn-3.5%Ag solder on the dissolution rate of Cu metallization. Journal ofApplied Physics,2003,94(12):7904-7909
    18A. Sharif, Y. C. Chan, M. N. Islam, M. J. Rizvi. Dissolution of Electroless NiMetallization by Lead-Free Solder Alloys. Journal of Alloys and Compounds,2005;388(1):75-82
    19A. K. Gain, T. Fouzder, Y. C. Chan, W. K. Yung. Microstructure, KineticAnalysis and Hardness of Sn-Ag-Cu-1wt%Nano-ZrO2Composite Solder onOSP-Cu Pads. Journal of Alloys and Compounds,2011;509(7):3319-3325
    20J. Shen, Y. C. Chan, S. Y. Liu. Growth Mechanism of Bulk Ag3Sn IntermetallicCompounds in Sn-Ag Solder during Solidification. Intermetallics2008,16:1142-1148
    21J. W. Yoon, J. H. Lim, H. J. Lee, J. Joo, S. B. Jung, W. C. Moon. InterfacialReactions and Joint Strength of Sn-37Pb and Sn-3.5Ag Solders with ImmersionAg-plated Cu Substrate during Aging at150oC. Journal of Materials Research2006,21(12):3196-3204
    22J. Gorlich, D. Baither, G. Schmitz. Reaction Kinetics of Ni/Sn SolderingReaction. Acta Materialia,2011,58:3187-3197
    23M. Abtew, G. Selvaduray, Lead-free Solders in Microelectronics. MaterialsScience and Engineering R,2000,27(1):95-141
    24K. N. Tu, K. Zheng, Tin-Lead (SnPb) Solder Reaction in Flip-Chip Technology.Materials Science and Engineering R,2001,34(1):1-58
    25K. J. Puttlitz, G. T. Galyon. Impact of the ROHS Directive onHigh-Performance Electronic Systems. Journal of Materials Science: Materialsin Electronics,2007,18:331-346
    26K. N. Tu, A. M. Guask, Physics and Materials Challenges for Lead-Free Solders.Journal of Applied Physics,2003,93(3):1335-1352
    27T. Massalski. Binary Alloy Phase Diagrams. ASM International,1996
    28R. A. Gagliano, G. Ghosh, M. E. Fine. Nucleation Kinetics of Cu6Sn5byReaction of Molten Tin with a Copper Substrate. Journal of Electronic Materials,2002,31(11):1195-1202
    29K. N. Tu, R. D. Thompson. Kinetics of Interfacial Reaction in Bimetallic Cu-SnThin Films. Acta Metallurgica,1982,30:947
    30A. K. Larsson, A. Carlsson, L. Stenberg, S. Lidin. The Superstructure ofDomain-Twinned η’-Cu6Sn5. Acta Crystallographica: B,1994,50:636-643
    31A. K. Larsson, L. Stenberg, S. Lidin. Crystal Structure Modulations in η-Cu5Sn4.Zeitschrift fur Kristallographie,1995,210:832-837
    32J. D. Bernal. The Complex Structure of the Copper-Tin IntermetallicCompounds. Nature,1928,122:54
    33A. Gangulee, G. C. Das, M. B. Bever. An X-Ray Diffraction and CalorimetricInvestigation of the Compound Cu6Sn5. Metallurgical Transactions,1973,4:2063-2066
    34G. Ghosh and M. Asta. Phase Stability, Phase Transformations, and ElasticProperties of Cu6Sn5, Ab Initio Calculations and Experimental Results, Journalof Materials Research,2005,20(11):3102-3117
    35K. Nogita,T. Nishimura, Nickel-Stabilized Hexagonal (Cu,Ni)6Sn5in Sn-Cu-NiLead-Free Solder Alloys. Scripta Materialia,2008,59:191-194
    36K. Nogita. Stabilisation of Cu6Sn5by Ni in Sn-0.7Cu-0.05Ni Lead-Free SolderAlloys. Intermetallics,2010,18:145-149.
    37U. Schwingenschlogl, C. D. Paola, K. Nogita, C. M. Gourlay. The Influence ofNi Additions on the Relative Stability of η and η’ Cu6Sn5, Applied PhysicsLetter,2010,96:061908.
    38C. Y. Yu, J.G. Duh. Stabilization of Hexagonal Cu6(Sn,Zn)5by Minor ZnDoping of Sn-Based Solder Joints. Scripta Materialia,2011,65:783-786
    39M. Y. Li, Z. H. Zhang, J. M. Kim. Polymorphic Transformation Mechanism of ηand η’ in Single Crystalline Cu6Sn5. Applied Physics Letter,2011,98:201901
    40K. Nogita. Kinetics of the η-η′Transformation in Cu6Sn5. Scripta Materialia,2011,65(10):922-925
    41Y. Watanabe, Y. Fujinaga, H. Iwasaki. Lattice Modulation in the Long-PeriodSuperstructure of Cu3Sn. Acta Crystallographica Section B,1983,39:306-311
    42R. An, C. Q. Wang, Y. H. Hong, H. P. Wu. Determination of the ElasticProperties of Cu3Sn through First-Principles Calculations. Journal of ElectronicMaterials,2008,37(4):477-482
    43J. Chen, Y. S. Li, P. F. Yang, C. Y. Ren, D. J. Huang. Structural and ElasticProperties of Cu6Sn5and Cu3Sn from First-Principles Calculations. Journal ofMaterials Research,2009,24(7):2361-2372
    44J. O. Suh, K. N. Tu, G. V. Lutsenko, A. M. Gusak. Size distribution andmorphology of Cu6Sn5scallops in wetting reaction between molten solder andcopper, Acta Materialia,2008,56:1075-1083
    45W. K. Choi, S. Y. Jang, J. H. Kim, K. W. Paik, H. M. Lee. Grain Morphology ofIntermetallic Compounds at Solder Joints. Journal of Materials Research,2002,17(3):597-599
    46J. H. Kim, S. W. Jeong, H. D. Kim, H. M. Lee. Morphological Transition ofInterfacial Ni3Sn4Grains at the Sn-3.5Ag/Ni Joint. Journal of ElectronicMaterials,2003,32(11):1228-1234
    47F. Gao, T. Takemoto. Effects of Addition Participation in the InterfacialReaction on the Growth Patterns of Cu6Sn5-Based IMCs during Reflow Process.Journal of Alloys and Compounds,2006,421(1-2):283-288
    48F. Gao, T. Takemoto, H. Nishikawa. Morphology and Growth Pattern Transitionof Intermetallic Compounds between Cu and Sn-3.5Ag Containing a SmallAmount of Additives. Journal of Electronic Materials,2006,35(12):2081-2087
    49徐鸿博.电磁感应加热尺寸效应及其BGA封装互连新方法特征研究.哈尔滨工业大学博士学位论文.2009
    50J. O. Suh, K. N. Tu, N. Tamura. Dramatic Morphological Change ofScallop-Type Cu6Sn5Formed on (001) Single Crystal Copper in ReactionBetween Molten SnPb Solder and Cu, Applied Physics Letters,2007,91:051907
    51H. F. Zou, H. J. Yang, Z. F. Zhang, Morphologies, Orientation Relationshipsand Evolution of Cu6Sn5Grains Formed Between Molten Sn and Cu SingleCrystals, Acta Materialia,2008,56:2649-2662
    52H. F. Zou, H. J. Yang, Z. F. Zhang, A Study on the Orientation RelationshipBetween the Scallop-Type Cu6Sn5Grains and (011) Cu Substrate UsingElectron Backscattered Diffraction. Journal of Applied Physics,2009,106:113512
    53D. Ma, W. D. Wang, S. K. Lahiri. Scallop Formation and Dissolution of Cu-SnIntermetallic Comound during Solder Reflow. Journal of Applied Physics,2002,91(5):3312-3317
    54D. Q. Yu, L. Wang. The Growth and Roughness Evolution of IntermetallicCompounds of Sn-Ag-Cu Interface during Soldering Reaction. Journal of Alloysand Compounds,2008,458(1-2):542-547
    55J. Gorlich, G. Schmitz, K. N. Tu. On the Mechanism of the Binary Cu/Sn SolderReaction. Applied Physics Letters,2005,86:053106
    56J. O. Suh, K. N. Tu, N. Tamura, A Synchrotron Radiation X-RayMicrodiffraction Study on Orientation Relationships Between a Cu6Sn5and CuSubstrate in Solder Joints. JOM,2006:63-66
    57J. O. Suh, K. N. Tu, N. Tamura. Preferred Orientation Relationship BetweenCu6Sn5Scallop-Type Grains and Cu Substrate in Reactions Between MoltenSn-Based Solders and Cu, Journal of Applied Physics,2007,102:063511
    58K. H. Prakash, T. Sritharan. Interface Reaction between Copper and MoltenTin-Lead Solders. Acta Materialia,2001,49:2481-2489
    59K. H. Prakash, T. Sritharan. Effects of Solid-State Annealing on the InterfacialIntermetallics between Tin-Lead Solders and Copper. Journal of ElectronicMaterial,2003,32(9):939-947
    60J. C. Gong, C. Q. Liu, P. P. Conway, V. V. Silberschmidt, Evolution of CuSnIntermetallics between Molten SnAgCu Solder and Cu Substrate. ActaMaterialia,2008,56:4291-4297
    61H. Tsukamoto, T. Nishimura, K. Nogita, Epitaxial Growth of Cu6Sn5Formed atSn-Based Lead-Free Solder/Non-Textured Polycrystalline Cu Plate Interface,Materials Letters,2009,63:2687-2690
    62P. J. Shang, Z. Q. Liu, X. Y. Pang, D. X. Li, J. K. Shang. Growth Mechanismsof Cu3Sn on Polycrystalline and Single Crystalline Cu Substrates. ActaMaterialia,2009,57:4697-4706
    63P. J. Shang, Z. Q. Liu, D. X. Li, J. K. Shang. Directional Growth of Cu3Sn at theReactive Interface between SnBi Solder and (100) Single Crystal Cu. ScriptaMaterialia,2008,59:317-320
    64C. C. Pan, C. H. Yu, K. L. Lin, The Amorphous Origin and the Nucleation ofIntermetallic Compounds Formed at the Interface during the Soldering ofSn-3.0Ag-0.5Cu on a Cu Substrate, Applied Physics Letters,2008,93:061912
    65C. K. Chung, J. G. Duh, C. R. Kao. Direct Evidence for a Cu-Enriched Regionat the Boundary between Cu6Sn5and Cu3Sn during Cu/Sn Reaction. ScriptaMaterialia,2010,60:258-260
    66J. C. Gong, C. Q. Liu, P. P. Conway, V. V. Silberschmidt, Initial Formation ofCuSn Intermetallic Compounds between Molten SnAgCu Solder and CuSubstrate. Scripta Materialia,2009,60:333-335
    67H. K. Kim, K. N. Tu. Kinetic Analysis of the Soldering Reaction betweenEutectic SnPb Alloy and Cu Accompanied by Ripening. Physical Review B,1996,53(23):16027-16034
    68H. K. Kim, K. N. Tu. Kinetic Theory of Flux-Driven Ripening. Physical ReviewB,2002,66(11):115403
    69M. Schaefer, R. A. Fournelle, J. Liang. Theory for Intermetallic Phase Growthbetween Cu and Liquid Sn-Pb Based on Grain Boundary Diffusion Control.Journal of Electronic Materials,1998,27(11):1167-1176
    70J. F. Li, S. H. Mannan, M. P. Clode, D. C. Whalley, D. A. Hutt. InterfacialReactions between Molten Sn-Bi-X Solders and Cu Substrates for Liquid SolderInterconnects. Acta Materialia,2006,54:2907-2922
    71J. F. Li, P. A. Agyakwa, C. M. Johnson, Interfacial Reaction in Cu/Sn/CuSystem during the Transient Liquid Phase Soldering Process. Acta Materialia,2011,59:1198-1211
    72U. Gosele, K. N. Tu. Growth Kinetics of Planar Binary Diffusion Couples: TineFilm Case Versus Bulk Cases. Journal of Applied Physics,1982,53(4):3252-3260
    73I. M. Lifshiz, V. V. Slezov. The Kinetics of Precipitation from SupersaturatedSolid Solutions. Journal of Physics and Chemistry of Solids,1961,19:35-50
    74C. Wagner. Theory of precipitate change by redissolution. Z. Electrochemistry,1961,65:581-591
    75V. V. Slezov, Theory of Diffusion Decomposition of Solid Solution. HarwoodAcademic Publishers, Newark, NJ,1995,99-112
    76N. Dariavach, P. Callahan, J. Liang, R. Fournelle. Intermetallic Growth Kineticsfor Sn-Ag, Sn-Cu, and Sn-Ag-Cu Lead Free Solders on Cu, Ni, and Fe-42NiSubstrates. Journal of Electronic Material,2006,35(7):1581-1592
    77A. Sharif, Y. C. Chan. Dissolution Kinetics of BGA Sn-Pb and Sn-Ag Solderswith Cu Substrates during Reflow. Materials Science and Engineering B,2004,106(2):126-131
    78S. Bader, W. Gust, H. Hieber. Rapid Formation of Intermetallic Compounds byInterdiffusion in the Cu-Sn and Ni-Sn Systems. Acta Metallurgica et Materialia,1995,43(1):329-337
    79T. H. Chuang, H. M. Wu, M. D. Cheng, S. Y. Chang, S. F. Yen. Mechanisms forInterfacial Reactions between Liquid Sn-3.5Ag Solders and Cu Substrates.Journal of Electronic Materials,2004,33(1):22-27
    80G. C. Smith, C. Lea. Wetting and Spreading of Liquid Metals: the Role ofSurface Composition. Surface and Interface Analysis,1986,9(3):145-150
    81D. A. Porter, K. E. Easterling. Phase Transformations in Metals and Alloys.Chapman and Hall, London,1992
    82K. N. Tu. Cu/Sn Interfacial Reactions: Thin-Film Case versus Bulk Case.Materials Chemistry and Physics,1996,46:217-223
    83P. T. Vianco, K. L. Erickson, P. L. Hopkins. Solid State IntermetallicCompound Growth between Copper and High Temperature, Tin-RichSolders-Part I: Experimental Analysis. Journal of Electronic Materials,1994,23(8):721-727
    84K. Jung, H. Conrad. Microstructure Coarsening during Static Annealing of60Sn40Pb Solder Joints: III Intermetallic Compound Growth Kinetics. Journalof Electronic Materials,1994,30(10):1308-1312
    85S. Choi, T. R. Bieler, J. P. Lucas, K. N. Subramanian. Characterization of theGrowth of Intermetallic Interfacial Layers of Sn-Ag and Sn-Pb Eutectic Soldersand Their Composite Solders on Cu Substrate during Isothermal Long-TermAging. Journal of Electronic Materials,1999,28(11):1209-1215
    86M. Oh, Doctoral Dissertation, Lehigh University,1994
    87A. Paul, Doctoral Dissertation, Technical University of Eindhoven,2004
    88M. J. H. van Dal, A.M. Gusak, C. Cserhati, A.A. Kodentsov, F.J.J. van Loo.Microstructural Stability of the Kirkendall Plane in Solid-State Diffusion.Physical Review Letters,2001,86(15):3352-3355
    89M. J. H. van Dal, A. M. Gusak, C. Cserhati, A. A. Kodentsov, F. J. J. van Loo,Spatio-temporal Instabilities of the Kirkendall Marker Planes duringInterdiffusion in β'-AuZn, Philosophical magazine. A,2002,82(5):943-954
    90M. G. Cho, S. K. Kang, D. Y. Shih, H. M. Lee. Effects of Minor Additions ofZn on Interfacial Reactions of Sn-Ag-Cu and Sn-Cu Solders with Various CuSubstrates during Thermal Aging. Journal of Electronics Materials,2007,36(11):1501-1509
    91M. G. Cho, S. K. Seo, D. Y. Shih, H. M. Lee. Wettability and InterfacialReactions of Sn-Based Pb-Free Solders with Cu–xZn Alloy Under BumpMetallurgies. Journal of Alloys and Compounds,2009,474(1-2):510-516
    92C. Y. Oh, H. R. Roh, Y. M. Kim, J. S. Lee, H. Y. Cho, Y. H. Kim. A NewSolder Wetting Layer for Pb-Free Solders. Journal of Materials Research,2009,24(2):297-300
    93Y. M. Kim, H. R. Roh, S. Kim, Y. H. Kim. Kinetics of Intermetallic CompoundFormation at the Interface between Sn-3.0Ag-0.5Cu Solder and Cu-Zn AlloySubstrates. Journal of Electronic Materials,2010,39(12):2504-2512
    94C. Y. Yu, K. J. Wang, J. G. Duh. Interfacial Reaction of Sn and Cu-xZnSubstrates after Reflow and Thermal Aging. Journal of Electronic Materials,2010,39(2):230-237
    95C. C. Chang, Y. W. Lin, Y. W. Wang, C. R. Kao. The Effects of Solder Volumeand Cu Concentration on the Consumption Rate of Cu Pad during ReflowSoldering. Journal of Alloys and Compounds,2010,492(1-2);99-104
    96K. A. Jackson. Current Concepts in Crystal Growth from the Melt. Progress inSolid State Chemistry,1967,4:53-80
    97R. Agarwal, Z. Singh, V. Venugopal. Calorimetric Investigations of SrMoO3and BaMoO3Compounds. Journal of Alloys and Compounds,1999,282(1-2):231-235
    98H. Flandorfer, U. Saeed, C. Luef, A. Sabbar, H. Ipser. Interfaces in Lead-freeSolder Alloys: Enthalpy of Formation of Binary Ag-Sn, Cu-Sn and Ni-SnIntermetallic Compounds. Thermochimica Acta,2007,459:34-39
    99M. F. Arenas, V. L. Acoff. Contact Angle Measurements of Sn-Ag and Sn-CuLead-Free Solders on Copper Substrates. Journal of Electronic Materials,2004,33(12):1452-1458
    100C. B. Carter, M. G. Norton. Ceramic Materials Science and Engineering.Springer,2007:427-443
    101G. Ghosh. Coarsening Kinetics of Ni3Sn4Scallops during Interfacial Reactionbetween Liquid Eutectic Solders and Cu/Ni/Pd Metallization. Journal ofApplied Physics.2000,88(11):6887-6896
    102R. M. German, A. Bose, S. S. Mani. Sintering Time and Atmosphere Influenceson the Microstructure and Mechanical Properties of Tungsten Heavy Alloys.Metallurgical Transactions A,1992,23(1):211-219
    103X. Ma, F. Wang, Y. Qian, F. Yoshida. Development of Cu-Sn IntermetallicCompound at Pb-Free Solder/Cu Joint Interface. Materials Letters,2003,57:3361-3365
    104D. Q. Yu, L. Wang, C. M. L. Wu, C. M. T. Law. The Formation of Nano-Ag3SnParticles on the Intermetallic Compounds during Wetting Reaction. Journal ofAlloys and Compounds,2005,389(1-2):153-158
    105M. L. Huang, T. Loeher, A. Ostmann, H. Reichi. Role of Cu in DissolutionKinetics of Cu Metallization in Molten Sn-Based Solders. Applied PhysicsLetters,2005,86:181908
    106K. W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello, C. A.Handwerker. Experimental and Thermodynamic Assessment of Sn-Ag-CuSolder Alloys. Journal of Electronic Materials,2000,29(10):1122-1136
    107Ohnuma I, Miyashita M, Anzai K, Liu XJ, Ohtani H, Kainuma R, Ishida K.Phase Equilibria and the Related Properties of Sn-Ag-Cu Based Pb-free SolderAlloys. Journal of Electronic Materials,2000,29(10):1137-1144
    108X. Y. Liu, M. L. Huang, Y. H. Zhao, C. M. L. Wu, L. Wang. The Adsorption ofAg3Sn Nano-Particles on Cu-Sn Intermetallic Compounds of Sn–3Ag–0.5Cu/Cuduring Soldering. Journal of Alloys and Compounds,2010,492(1-2):433-438
    109冯端.金属物理学.第二卷相变.北京:科学出版社.1987:166-267
    110西泽泰二.微观组织热力学.北京:化工工业出版社.2006:118-156
    111X. Deng, G. Piotrowski, J. J. Williams, N. Chawla. Influence of InitialMorphology and Thickness of Cu6Sn5and Cu3Sn Intermetallics on Growth andEvolution during Thermal Aging of Sn-Ag Solder/Cu Joints. Journal ofElectronic Materials.2003,32(12):1403-1413
    112W. K. Choi, H. M. Lee. Effect of Soldering and Aging Time on InterfacialMicrostructure and Growth of Intermetallic Compounds between Sn-3.5AgSolder Alloy and Cu Substrate. Journal of Electronic Materials,2000,29(10):1207-1213
    113H. Z. Zou, H. J. Yang, Z. F. Zhang. Coarsening Mechanisms, Texture Evolutionand Size Distribution of Cu6Sn5between Cu and Sn-Based Solders. MaterialsChemistry and Physics.2011,131(1-2):190-198
    114M. Hillert. On the Theory of Normal and Abnormal Grain Growth. ActaMetallurgica,1965,13:227-238.
    115J. E. Bruke, D. Turnbull. Recrystallization and grain growth. Progress in MetalPhysics1952,3:220-292.
    116T. Y. Lee, W. J. Choi, K. N. Tu, J. W. Jang, S. M. Kuo, J. K. Lin, D. R. Frear, K.Zeng, J. K. Kivilahti. Morphology, Kinetics, and Thermodynamics ofSolid-State Aging of Eutectic SnPb and Pb-Free Solders (Sn-3.5Ag,Sn-3.8Ag-0.7Cu and Sn-0.7Cu) on Cu. Journal of Materials Research,2002,17(2):291-301.
    117Y. H. Tian, C. Q. Wang, X. S. Ge, P. Liu, D. M. Liu. Intermetallic CompoundsFormation at Interface Between PBGA Solder Ball and Au/Ni/Cu/BT PCBSubstrate after Laser Reflow Processes. Materials Science and Engineering: B,2002,95(3):254-262
    118M. Y. Li, H. B. Xu, S. R. Lee, J. M. Kim, D.W. Kim. Eddy Current InducedHeating for the Solder Reflow of Area Array Packages. IEEE Transactions onAdvanced Packaging,2008,31(2):399-403
    119C. W. Park, D. Y. Yoon. Abnormal Grain Growth in Alumina with AnorthiteLiquid and the Effect of MgO Addition. Journal of the American CeramicSociety,2002,85(6):1585-1593
    120L. H. Qi, J. H. Huang, X. K. Zhao, H. Zhang. Effect of Thermal-ShearingCycling on Ag3Sn Microstructural Coarsening in SnAgCu Solder. Journal ofAlloys and Compounds.2009,469:102-107
    121P. T. Vianco, K. L. Erickson, P. L. Hopkins. Solid State IntermetallicCompound Growth between Copper and High Temperature, Tin-RichSolders-Part I: Experimental Analysis. Journal of Electronic Materials,1994,23(8):721-727
    122Y. K. Jee, Y. H. Ko, J. Yu. Effect of Zn on the Intermetallics Formation andReliability of Sn-3.5Ag Solder on a Cu Pad. Journal of Materials Research.2007,22(7):1879-1887
    123J. W. Kim, D. G. Kim, S. B. Jung. Mechanical Strength Test Method for SolderBall Joint in BGA Package. Metals and Materials International.2005,11(2):121-129
    124J. W. Kim, S. B. Jung. Optimization of Shear Test for Flip Chip Solder BumpUsing3-Dimensional Computer Simulation. Microelectronic Engineering,2005,82(3-4):554-560
    125S. W. Jeong, J. H. Kim, H. M. Lee. Effect of Cooling Rate on Growth of theIntermetallic Compound and Fracture Mode of Near-Eutectic Sn-Ag-Cu Pad:Before and After Aging. Journal of Electronic Materials,2004,33(12):1530-1544
    126R. H. Zhang, F. Guo, J. P. Liu, H. Shen, F. Tai. Morphology and Growth ofIntermetallics at the Interface of Sn-Based Solders and Cu with DifferentSurface Finishes. Journal of Electronic Materials,2009,38(2):241-251
    127C. P. Huang, C. Chen, C. Y. Liu, S. S. Lin, K. H. Chen. Metallurgical Reactionsof Sn-3.5Ag Solder with Various Thicknesses of Electroplated Ni/Cu UnderBump Metallization. Journal of Materials Research,2005,20(10):2772-2779
    128K. S. Kim, S. H. Huh, K. Suganuma. Effects of Cooling Speed onMicrostructure and Tensile Properties of Sn–Ag–Cu Alloys. Materials Scienceand Engineering: A,2002,333(1-2):106-114