微纳通道中动量与能量协调系数的分子动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微纳尺度加工技术的飞速发展,MEMS和NEMS器件中的流动与传热问题备受关注。在微纳通道中,气体流动表现出明显的稀薄效应和壁面效应,影响气体与壁面的动量与能量交换。协调系数可以定量描述气固界面的输运现象,其数值越接近于1,气体与壁面的动量与能量交换越充分。本文利用分子动力学(MD)方法研究了切向动量、法向动量以及能量协调系数(TMAC、NMAC、EAC)随温度、壁面构型、表面粗糙度等因素的变化以及气体与壁面的动量和能量交换规律。
     论文利用MD方法中截断半径的概念,确定了入射分子与反射分子的状态,进而依据协调系数的定义,提出了MD方法中协调系数的统计算法。
     计算结果表明,壁面反射气体分子的法向动量变化是影响气体分子在壁面附近吸附时间长短以及俘获-逃逸行为的主要因素。在光滑通道中,较低的壁面温度和较强的气固相互作用势能使得气体分子的吸附时间较长,TMAC、NMAC和EAC都趋近于1;随着Kn的增大,气体流动的稀薄性增强,气体分子之间的影响逐渐减弱,气体分子的吸附时间减小,TMAC与EAC略有减小。
     光滑通道中的壁面具有原子尺度的粗糙度,不同的晶面构型可导致壁面附近的气固作用势能分布不同,较大的法向势能梯度使得气体与壁面的切向动量交换较为充分,TMAC较大,而较大的切向势能梯度则强化了能量交换,导致EAC增大;具有纳米尺度粗糙元的壁面能够很大程度改变壁面附近的气固势能分布,增大法向与切向势能梯度,减小反射分子的平均法向动量。随着粗糙元高度的增加,TMAC和EAC皆逐渐增大,而NMAC逐渐减小。
     考虑到三维MD的计算量太大,本文也采用二维MD方法模拟了协调系数。由于在EAC的定义以及壁面构造等方面与三维MD不同,二维MD计算得到的TMAC和EAC比三维结果小,通过二维与三维MD计算结果的对比分析,整理出了关联式,从而可以使用二维结果较好预测三维问题的协调系数。
     论文还采用DSMC和MD方法模拟了0.01 < Kn < 0.3的等温流动,将DSMC中的速度分布与滑移理论解对比修正了线性与非线性滑移模型中的滑移系数,利用MD计算得到的TMAC和速度分布修正了一阶滑移系数的表达式。
With the rapid developments of micro- and nanoscale technology, fluid flow and heat transfer in micro/nano electro mechanical systems have drawn more attention. For gas flows in microchannels and nanochannels, the rarefaction and wall effects are evident to induce insufficient momentum and energy exchange between the gas and wall. Accommodation coefficients characterize the transport in gas-solid interfaces quantitatively that the values closer to unity represent more complete momentum and energy exchange. In the present dissertation, the tangential momentum, normal momentum and energy accommodation coefficients (TMAC, NMAC and EAC) are studied using molecular dynamics (MD) method to investigate the effects of temperature, wall lattice configuration and wall roughness on accommodation coefficients as well as gas-wall interactions.
     According to the definitions of accommodation coefficients, the statistical algorithm is set up based on the incident and reflected gas molecules determined by cutoff radius in MD method.
     The simulation results show that the normal momentum of reflected gas molecules is the key factor affecting the adsorption time and molecular trapping-desorption behaviors near the wall. In smooth channels, lower wall temperature and stronger gas-solid interaction extend the adsorption time so that the TMAC, NMAC and EAC approach unity; with larger Knudsen numbers (Kn) in gas flows, the gas-gas interactions are weakened by strengthen rarefaction so that the TMAC and EAC decrease with less adsorption time.
     The lattice configurations of smooth surfaces will induce atomic roughness, and different lattice configurations result in different gas-solid potential energy distributions near the wall. Larger gradient of normal potential leads to larger TMAC and better accommodation of tangential momentum in gas-wall interactions, while larger gradient of tangential potential enhances energy exchange in gas-solid interface and results in a larger EAC. Furthermore, the nanoscale rough cells on the walls alter the distribution of gas-solid potential significantly, in which the gradients of normal and tangential potentials increase and the average normal momentum of reflected molecules decreases bringing longer adsorption time. When the height of rough cells increases, both of the TMAC and EAC increase while the NMAC decreases.
     Due to the huge computational costs of three-dimensional (3D) MD method, the accommodation coefficients are also calculated by two-dimensional (2D) MD method in this dissertation. The TMAC and EAC in 2D simulations are smaller than the 3D results since the different EAC expression and wall structures in 3D method. Based on the comparison and analysis of 2D and 3D results, the relations between 2D MD and 3D MD accomodation coefficients are presented. From the relations, the 3D accommodation coefficients can be predicted using 2D ones.
     The direct simulation Monte Carlo (DSMC) and MD methods are both employed in the simulations of isothermal flows in the Kn range of 0.01 to 0.3. The first- and second-order slip coefficients in linear and nonlinear slip models are modified by comparing velocity profiles from the DSMC results and the theoretical solutions. With the TMAC and velocity profiles calculated in MD simulations, the modified expression of first-order slip coefficient is presented.
引文
[1] Feynman R P. There's Plenty of Room at the Bottom. Journal of Microelectromechanical Systems. 1992. 1(1): 60-66.
    [2] Ho C M, Tai Y C. Micro-Electro-Mechanical-Systems (MEMS) and Fluid Flows. Annual Review of Fluid Mechanics. 1998. 30: 579-612.
    [3] Gad-el-Hak M. The Fluid Mechanics of Microdevices-the Freeman Scholar Lecture. Journal of Fluids Engineering-Transactions of the ASME. 1999. 121(1): 5-33.
    [4]刘静.微米/纳米尺度传热学.科学出版社:北京, 2001
    [5] Gad-El-Hak M. Gas and Liquid Transport at the Microscale. Heat Transfer Engineering. 2006. 27(4): 13-29.
    [6]王沫然.微纳尺度气体流动和换热的Monte Carlo模拟[博士学位论文].北京:清华大学工程力学系, 2004.
    [7]冯晓利.纳米薄膜晶格热导率的分子动力学模拟研究[博士学位论文].北京:清华大学工程力学系, 2001.
    [8] Craighead H G. Nanoelectromechanical Systems. Science. 2000. 290(5496): 1532-1535.
    [9] Koumura N, Zijlstra R W J, van Delden R A, et al. Light-Driven Monodirectional Molecular Rotor. Nature. 1999. 401(6749): 152-155.
    [10]丁衡高.在第六届全国微米纳米技术学术大会开幕式上的讲话.微纳米电子技术. 2003. 40(10): 1-4.
    [11] Fennimore A M, Yuzvinsky T D, Han W Q, et al. Rotational Actuators Based on Carbon Nanotubes. Nature. 2003. 424(6947): 408-410.
    [12] Wang Z L, Song J H. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science. 2006. 312(5771): 242-246.
    [13] Wang X D, Song J H, Liu J, et al. Direct-Current Nanogenerator Driven by Ultrasonic Waves. Science. 2007. 316(5821): 102-105.
    [14] Wang X D, Liu J, Song J H, et al. Integrated Nanogenerators in Biofluid. Nano Letters. 2007. 7(8): 2475-2479.
    [15] Lin Y F, Song J, Ding Y, et al. Piezoelectric Nanogenerator Using CdS Nanowires. Applied Physics Letters. 2008. 92(2): 022105.
    [16] Lin Y F, Song J, Ding Y, et al. Alternating the Output of a CdS Nanowire Nanogenerator by a White-Light-Stimulated Optoelectronic Effect. Advanced Materials. 2008. 20(16): 3127-3130.
    [17] Yang R, Qin Y, Li C, et al. Converting Biomechanical Energy into Electricity by a Muscle-Movement-Driven Nanogenerator. Nano Letters. 2009. 9(3): 1201-1205.
    [18]曹炳阳.速度滑移及其对微纳尺度流动影响的分子动力学研究[博士学位论文].北京:清华大学航天航空学院, 2006.
    [19] Guo Z Y, Li Z X. Size Effect on Single-Phase Channel Flow and Heat Transfer at Microscale. International Journal of Heat and Fluid Flow. 2003. 24(3): 284-298.
    [20] Guo Z Y, Li Z X. Size Effect on Microscale Single-Phase Flow and Heat Transfer. International Journal of Heat and Mass Transfer. 2003. 46(1): 149-159.
    [21]兰旭东.气体微喷与微混合的Monte Carlo法模拟[博士学位论文].北京:清华大学航天航空学院, 2008.
    [22]王金库.微通道内传热及电渗流的格子-Boltzmann模拟[博士学位论文].北京:清华大学航天航空学院, 2007.
    [23]王玮.硅基微聚合酶链式反应芯片的热设计、分析和优化[博士学位论文].北京:清华大学航天航空学院, 2004.
    [24]薛辉.微PCR芯片中的流动与传热分析及其优化设计[博士学位论文].北京:清华大学航天航空学院, 2008.
    [25]杜东兴.可压缩性及粗糙度对微细管内流动及换热特性的影响[博士学位论文].北京:清华大学工程力学系, 2000.
    [26] Ulmanella U, Ho C M. Molecular Effects on Boundary Condition in Micro/Nanoliquid Flows. Physics of Fluids. 2008. 20(10): 101512.
    [27] Karniadakis G E, Beskok A. Micro Flows: Fundamentals and Simulations. Springer: New York, 2002
    [28]沈青.稀薄气体动力学.国防工业出版社:北京, 2003
    [29] Cercignani C. The Boltzmann Equation and Its Applications. Springer-Verlag: New York, 1988
    [30] Bird G A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford University Press: New York, 1994
    [31] Kuscer I. Phenomenology of Gas-Surface Accommodation In Rarefied Gas Dynamics: 9th International Symposium, edited by Becker M, Fiebig M. 1974; DFVLR, Porz-Wahn, Germany: E.1-1~21.
    [32] Kennard E H. Kinetic Theory of Gases: With an Introduction to Statistical Mechanics. McGraw-Hill Book Company: New York; London 1938
    [33]吴其芬.稀薄气体动力学.国防科技大学出版社:北京2004
    [34] Maxwell J C. On Stresses in Rarified Gases Arising from Inequalities of Temperature. Philosophical Transactions of the Royal Society of London. 1879. 170: 231-256.
    [35] Knudsen M. The Kinetic Theory of Gases: Some Modern Aspects. Methuen: London, 1934
    [36] Knechtel E D, Pitts W C. Experimental Momentum Accommodation on Metal Surfaces of Ions near and above Earth-Satellite Speeds. In Rarefied Gas Dynamics: 6th International Symposium, edited by Trilling L, Wachman H Y. 1969: 1257-1266.
    [37] Agrawal A, Prabhu S V. Survey on Measurement of Tangential Momentum Accommodation Coefficient. Journal of Vacuum Science & Technology A. 2008. 26(4): 634-645.
    [38] Yamamoto K. Slightly Rarefied Gas Flow over a Smooth Platinum Surface. In Rarefied Gas Dynamics: 22nd International Symposium, edited by Bartel T J, Gallis M A. 2001: 339-346.
    [39] Park J H, Baek S W. Investigation of Influence of Thermal Accommodation on Oscillating Micro-Flow. International Journal of Heat and Mass Transfer. 2004. 47(6-7): 1313-1323.
    [40] Gronych T, Ullman R, Peksa L, et al. Measurements of the Relative Momentum Accommodation Coefficient for Different Gases with a Viscosity Vacuum Gauge. Vacuum. 2004. 73(2): 275-279.
    [41] Pan L S, Liu G R, Lam K Y. Determination of Slip Coefficient for Rarefied Gas Flows Using Direct Simulation Monte Carlo. Journal of Micromechanics and Microengineering. 1999. 9(1): 89-96.
    [42] Cao B Y, Chen M, Guo Z Y. Temperature Dependence of the Tangential Momentum Accommodation Coefficient for Gases. Applied Physics Letters. 2005. 86(9): 091905.
    [43] Roberts J K. The Exchange of Energy between Gas Atoms and Solid Surfaces. Proceedings of the Royal Society of London Series A. 1930. 129(809): 146-161.
    [44] Goodman F O, Wachman H Y. Formula for Thermal Accommodation Coefficients. Journal of Chemical Physics. 1967. 46(6): 2376-2386.
    [45] Goodman F O, Wachman H Y. Dynamics of Gas-Surface Scattering, Academic Press: New York, 1976
    [46] Muis A, Manson J R. Calculations of the Energy Accommodation Coefficient Using Classical Scattering Theory. Surface Science. 2001. 486(1-2): 82-94.
    [47] Ozer A, Manson J R. Comparison of One-Dimensional and Three-Dimensional Models for the Energy Accommodation Coefficient. Surface Science. 2002. 502: 352-357.
    [48] Manson J R. Simple Model for the Energy Accommodation Coefficient. Journal of Chemical Physics. 1972. 56(7): 3451-3455.
    [49] Gaffney B, Manson J R. Energy Accommodation Coefficient for Square-Well and Morse Potentials. Journal of Chemical Physics. 1975. 62(6): 2508-2509.
    [50] Collins F G, Knox E C. Parameters of Nocilla Gas/Surface Interaction Model from Measured Accommodation Coefficients. AIAA Journal. 1994. 32(4): 765-773.
    [51]周志雄,魏蔚,汪荣顺.真空下气-固界面热适应系数的数值计算.低温与超导. 2007. 35(1): 36-40.
    [52] Michelsen H. Derivation of a Temperature-Dependent Accommodation Coefficient for Use in Modeling Laser-Induced Incandescence of Soot. Applied Physics B-Lasers and Optics. 2009. 94(1): 103-117.
    [53] Mann W B. The Exchange of Energy between a Platinum Surface and Gas Molecules. Proceedings of the Royal Society of London Series A. 1934. 146: 776-791.
    [54] Eggleton A E J, Tompkins F C. The Thermal Accommodation Coefficient of Gases and Their Adsorption on Iron. Transactions of the Faraday Society. 1952. 48(8): 738-749.
    [55] Roberts J K. The Exchange of Energy between Gas Atoms and Solid Surfaces. I. The Temperature Variation of the Accommodation Coefficient of Helium. Proceedings of the Royal Society of London Series A. 1932. 135(826): 192-205.
    [56] Thomas L, Olmer F. The Accommodation Coefficients of He, Ne, A, H2, D2, O2, CO2 and Hg on Platinum as a Function of Temperature. 1942. 65: 1036.
    [57] Amdur I, Jones M M, Pearlman H. Accommodation Coefficients on Gas Covered Platinum. Journal of Chemical Physics. 1944. 12(5): 159-166.
    [58] Thomas L B, Brown R E. The Accommodation Coefficients of Gases on Platinum as a Function of Pressure. The Journal of Chemical Physics. 1950. 18(10): 1367-1372.
    [59] Thomas L B, Schofiedl E B. Thermal Accommodation Coefficient of Helium on a Bare Tungsten Surface. Journal of Chemical Physics. 1955. 23(5): 861-866.
    [60] Saxena S C, Chen S H P. Thermal Accommodation Coefficients for the Gas-Saturated Tungsten-Nitrogen and Tungsten-Carbon Dioxide Systems. Journal Physics B: Molecular Physics. 1977. 10(10): 2011-2022.
    [61] Mann W B, Newell W C. The Exchanges of Energy between a Platinum Surface and Hydrogen and Deuterium Molecules. Proceedings of the Royal Society of London Series A. 1937. 158(894): 397-403
    [62] Thomas L B, Lord R G. Comparative Measurement of Tangential Momentum and Thermal Accommodation on Polished and Roughened Steelspheres. In Rarefied Gas Dynamics: 8th International Symposium, edited by Karamcheti R. 1974: 405-412.
    [63] Altman I S, Lee D, Song J, et al. Experimental Estimate of Energy Accommodation Coefficient at High Temperatures. Physical Review E. 2001. 64(5): 052202.
    [64] Eremin A V, Gurentsov E V, Hofmann M, et al. TR-LII for Sizing of Carbon Particles Forming at Room Temperature. Applied Physics B: Lasers and Optics. 2006. 83(3): 449-454.
    [65] Daun K J, Smallwood G J, Liu F. Investigation of Thermal Accommodation Coefficients in Time-Resolved Laser-Induced Incandescence. Journal of Heat Transfer-Transactions of the ASME. 2008. 130(12): 121201.
    [66] Rebrov A K, Morozov A A, Plotnikov M Y, et al. Using a Thin Wire in a Free-Molecular Flow for Determination of Accommodation Coefficients of Translational and Internal Energy. In Rarefied Gas Dynamics: 23rd International Symposium, edited by Ketsdever A D, Muntz E P. 2003: 1016-1021.
    [67] Hurlbut F C.气体与表面相互作用--最新的观察与解释.力学进展. 1997. 27(4): 549-559.
    [68] Toennies J P. Scattering of Molecular Beams from Surfaces. Applied Physics. 1974. 3: 91-114.
    [69] Rettner C T. Thermal and Tangential-Momentum Accommodation Coefficients for N2 Colliding with Surfaces of Relevance to Disk-Drive Air Bearings Derived from Molecular Beam Scattering. IEEE Transactions on Magnetics. 1998. 34(4): 2387-2395.
    [70] Cook S R, Hoffbauer M A. Analyzing Gas-Surface Interactions Using the Reduced Force Coefficients. Physical Review E. 1998. 58(1): 504-511.
    [71] Ewart T, Perrier P, Graur I, et al. Tangential Momentum Accommodation in Microtube. Microfluidics and Nanofluidics. 2007. 3(6): 689-695.
    [72] Doughty R O, Schaetzle W J. Experimental Determination of Momentum Accommodation Coefficients at Velocities up to and Exceeding Earth Escape Velocity. In Rarefied Gas Dynamics: 6th International Symposium, edited by Trilling L, Wachman H Y. 1969: 1035-1054.
    [73] Seidl M, Steinheil E. Measurement of Momentum Accommodation Coefficients on Surfaces Characterized by Auger Spectroscopy, SIMS and LEED. In Rarefied Gas Dynamics: 9th International Symposium, edited by Becker M, Fiebig M. 1974; DFVLR, Porz-Wahn, Germany: E 9.1–E 9.12.
    [74] Liu S M, Sharma P K, Knuth E L. Satellite Drag Coefficients Calculated from Measured Distributions of Reflected Helium Atoms. AIAA Journal. 1979. 17(12): 1314-1319.
    [75] Sun Y, Barber R W, Emerson D R. Inverted Velocity Profiles in Rarefied Cylindrical Couette Gas Flow and the Impact of the Accommodation Coefficient. Physics of Fluids. 2005. 17(4): 047102-047107.
    [76] Millikan R A. Coefficients of Slip in Gases and the Law of Reflection of Molecules from the Surfaces of Solids and Liquids. Physical Review. 1923. 21(3): 217-238.
    [77] Stacy L J. A Determination by the Constant Deflection Method of the Value of the Coefficient of Slip for Rough and for Smooth Surfaces in Air. Physical Review. 1923. 21(3): 239-249.
    [78] van Dyke K S. The Coefficients of Viscosity and of Slip of Air and of Carbon Dioxide by the Rotating Cylinder Method. Physical Review. 1923. 21(3): 250-265.
    [79] Kuhlthau A R. Air Friction on Rapidly Moving Surfaces. Journal of Applied Physics. 1949. 20(2): 217-223.
    [80] Agrawal A, Prabhu S V. Deduction of Slip Coefficient in Slip and Transition Regimes from Existing Cylindrical Couette Flow Data. Experimental Thermal and Fluid Science. 2008. 32(4): 991-996.
    [81] Loyalka S K. Theory of the Spinning Rotor Gauge in the Slip Regime. Journal of Vacuum Science & Technology A-Vacuum Surfaces and Films. 1996. 14(5): 2940-2945.
    [82] Chang R F, Abbott P J. Factors Affecting the Reproducibility of the Accommodation Coefficient of the Spinning Rotor Gauge. Journal of Vacuum Science & Technology A. 2007. 25(6): 1567-1576.
    [83] Comsa G, Fremerey J K, Lindenau B, et al. Calibration of a Spinning Rotor Gas Friction Gauge against a Fundamental Vacuum Pressure Standard. Journal of Vacuum Science and Technology. 1980. 17(2): 642-644.
    [84] Gabis D H, Loyalka S K, Storvick T S. Measurements of the Tangential Momentum Accommodation Coefficient in the Transition Flow Regime with a Spinning Rotor Gauge. Journal of Vacuum Science & Technology A-Vacuum Surfaces and Films. 1996. 14(4): 2592-2598.
    [85] Tekasakul P, Bentz J A, Tompson R V, et al. The Spinning Rotor Gauge: Measurements of Viscosity, Velocity Slip Coefficients, and Tangential Momentum Accommodation Coefficients. Journal of Vacuum Science & Technology A-Vacuum Surfaces and Films. 1996. 14(5): 2946-2952.
    [86] Bentz J A, Tompson R V, Loyalka S K. The Spinning Rotor Gauge: Measurements of Viscosity, Velocity Slip Coefficients, and Tangential Momentum Accommodation Coefficients for N2 and CH4. Vacuum. 1997. 48(10): 817-824.
    [87] Bentz J A, Tompson R V, Loyalka S K. Viscosity and Velocity Slip Coefficients for Gas Mixtures: Measurements with a Spinning Rotor Gauge. Journal of Vacuum Science & Technology A-Vacuum Surfaces and Films. 1999. 17(1): 235-241.
    [88] Bentz J A, Tompson R V, Loyalka S K. Measurements of Viscosity, Velocity Slip Coefficients, and Tangential Momentum Accommodation Coefficients Using a Modified Spinning Rotor Gauge. Journal of Vacuum Science & Technology A-Vacuum Surfaces and Films. 2001. 19(1): 317-324.
    [89] Jousten K. Is the Effective Accommodation Coefficient of the Spinning Rotor Gauge Temperature Dependent? Journal of Vacuum Science & Technology A. 2003. 21(1): 318-324.
    [90] Marino L. Experiments on Rarefied Gas Flows through Tubes. Microfluidics and Nanofluidics. 2009. 6(1): 109-119.
    [91] Arkilic E B, Breuer K S, Schmidt M A. Mass Flow and Tangential Momentum Accommodation in Silicon Micromachined Channels. Journal of Fluid Mechanics. 2001. 437: 29-43.
    [92] Colin S, Lalonde P, Caen R. Validation of a Second-Order Slip Flow Model in Rectangular Microchannels. Heat Transfer Engineering. 2004. 25(3): 23-30.
    [93] Hsieh S S, Tsai H H, Lin C Y, et al. Gas Flow in a Long Microchannel. International Journal of Heat and Mass Transfer. 2004. 47(17-18): 3877-3887.
    [94] Jang J, Wereley S T. Effective Heights and Tangential Momentum Accommodation Coefficients of Gaseous Slip Flows in Deep Reactive Ion Etching Rectangular Microchannels. Journal of Micromechanics and Microengineering. 2006. 16(3): 493-504.
    [95] Jang J, Wereley S T. Gaseous Slip Flow Analysis of a Micromachined Flow Sensor for Ultra Small Flow Applications. Journal of Micromechanics and Microengineering. 2007. 17(2): 229-237.
    [96] Huang C, Gregory J W, Sullivan J P. Microchannel Pressure Measurements Using Molecular Sensors. Journal of Microelectromechanical Systems. 2007. 16(4): 777-785.
    [97] Cooper S M, Cruden B A, Meyyappan M, et al. Gas Transport Characteristics through a Carbon Nanotubule. Nano Letters. 2004. 4(2): 377-381.
    [98] Blanchard D, Ligrani P. Slip and Accommodation Coefficients from Rarefaction and Roughness in Rotating Microscale Disk Flows. Physics of Fluids. 2007. 19(6): 063602.
    [99] Veijola T, Kuisma H, Lahdenpera J. The Influence of Gas-Surface Interaction on Gas-Film Damping in a Silicon Accelerometer. Sensors and Actuators a-Physical. 1998. 66(1-3): 83-92.
    [100] Sazhin O V, Borisov S F, Sharipov F. Accommodation Coefficient of Tangential Momentum on Atomically Clean and Contaminated Surfaces. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 2001. 19(5): 2499-2503.
    [101] Sazhin O V, Borisov S F, Sharipov F. Erratum: Accommodation Coefficient of Tangential Momentum on Atomically Clean and Contaminated Surfaces (Vol. A 19, Pg 2499, 2001). Journal of Vacuum Science & Technology A-Vacuum Surfaces and Films. 2002. 20(3): 957.
    [102] Jang J S, Zhao Y B, Wereley S T. Pressure Distributions and TMAC Measurements in near Unity Aspect Ratio, Anodically Bonded Microchannels. In IEEE the 16th Annual International Conference on Micro Electro Mechanical Systems; 2003: 287-290.
    [103] Maurer J, Tabeling P, Joseph P, et al. Second-Order Slip Laws in Microchannels for Helium and Nitrogen. Physics of Fluids. 2003. 15(9): 2613-2621.
    [104] Ewart T, Perrier P, Graur I A, et al. Mass Flow Rate Measurements in a Microchannel, from Hydrodynamic to near Free Molecular Regimes. Journal of Fluid Mechanics. 2007. 584(1): 337-356.
    [105] Ewart T, Graur I A, Perrier P, et al. Mass Flow Rate Measurements: From Hydrodynamic to Free Molecular Regime. Proceedings of the 6th International Conference on Nanochannels, Microchannels, and Minichannels, Pts A and B. 2008. 65-73.
    [106] Suetin P E, Porodnov B T, Chernjak V G, et al. Poiseuille Flow at Arbitrary Knudsen Numbers and Tangential Momentum Accommodation. Journal of Fluid Mechanics. 1973. 60(3): 581-592.
    [107] Porodnov B T, Suetin P E, Borisov S F, et al. Experimental Investigation of Rarefied Gas Flow in Different Channels. Journal of Fluid Mechanics. 1974. 64(3): 417-438.
    [108] Shields F D. An Acoustical Method for Determining the Thermal and Momentum Accommodation of Gases on Solids. The Journal of Chemical Physics. 1975. 62(4): 1248-1252.
    [109] Shields F D. More on the Acoustical Method of Measuring Energy and Tangential Momentum Accommodation Coefficients. The Journal of Chemical Physics. 1980. 72(6): 3767-3772.
    [110] Shields F D. Energy and Momentum Accommodation Coefficients on Platinum and Silver. The Journal of Chemical Physics. 1983. 78(6): 3329-3333.
    [111] Bremner J G M. The Thermal Accommodation Coefficients of Gases. I. An Investigation of the Effect of Flashing. Proceedings of the Royal Society of London Series A. 1950. 201(1066): 305-320.
    [112] Chapman S, Cowling T G. The Mathematical Theory of Non-Uniform Gases. 3rd edn, Cambridge, UK, 1970
    [113]应纯同.气体输运理论及应用.清华大学出版社:北京, 1990
    [114] Chen S, Doolen G D. Lattice Boltzmann Method for Fluid Flows. Annual Review of Fluid Mechanics. 1998. 30: 329-364.
    [115] Tang G H, Tao W Q, He Y L. Lattice Boltzmann Method for Gaseous Microflows Using Kinetic Theory Boundary Conditions. Physics of Fluids. 2005. 17(5): 058101.
    [116] Kuo L-S, Chen P-H. A Unified Approach for Nonslip and Slip Boundary Conditions in the Lattice Boltzmann Method. Computers & Fluids. 2009. 38(4): 883-887.
    [117] Allen M P, Tildesley D J. Computer Simulation of Liquids. Oxford University Press: New York, 1989
    [118] Li J H, Kwauk M. Exploring Complex Systems in Chemical Engineering--the Multi-Scale Methodology. Chemical Engineering Science. 2003. 58(3-6): 521-535.
    [119] Sun Q, Boyd I D, Candler G V. A Hybrid Continuum/Particle Approach for Modeling Subsonic, Rarefied Gas Flows. Journal of Computational Physics. 2004. 194(1): 256-277.
    [120] Schwartzentruber T E, Boyd I D. A Hybrid Particle-Continuum Method Applied to Shock Waves. Journal of Computational Physics. 2006. 215(2): 402-416.
    [121] Liu J, Chen S Y, Nie X B, et al. A Continuum-Atomistic Multi-Timescale Algorithm for Micro/Nano Flows. Communications in Computational Physics. 2008. 4(5): 1279-1291.
    [122] Yasuda S, Yamamoto R. A Model for Hybrid Simulations of Molecular Dynamics and Computational Fluid Dynamics. Physics of Fluids. 2008. 20(11): 113101.
    [123] Yamamoto K. Slightly Rarefied Gas Flow over a Smooth Platinum Surface. In Rarefied Gas Dynamics: 22nd International Symposium, edited by Bartel T J, Gallis M A. 2001: 339-346.
    [124] Yamamoto K, Takeuchi H, Hyakutake T. Effect of Wall Characteristics on the Behaviors of Reflected Gas Molecules in a Thermal Problem. In Rarefied Gas Dynamics: 23rd International Symposium, edited by Ketsdever A D, Muntz E P. 2003: 1008-1015.
    [125] Hyakutake T, Yamamoto K, Takeuchi H. Flow of Gas Mixtures through Micro Channel. In Rarefied Gas Dynamics: 24th International Symposium, edited by Capitelli M. 2005: 780-788.
    [126] Takeuchi H, Yamamoto K, Hyakutake T. Behavior of the Reflected Molecules of a Diatomic Gas at a Solid Surface. In Rarefied Gas Dynamics: 24th International Symposium, edited by Capitelli M. 2005: 987-992.
    [127] Yamamoto K, Takeuchi H, Hyakutake T. Characteristics of Reflected Gas Molecules at a Solid Surface. Physics of Fluids. 2006. 18(4): 046103.
    [128] Frijns A J H, Nedea S V, Markvoort A J, et al. Molecular Dynamics and Monte Carlo Simulations for Heat Transfer in Micro and Nano-Channels. In Computational Science - ICCS 2004, Proceedings; 2004: 661-666.
    [129] Nedea S V, Frijns A J H, van Steenhoven A A, et al. Hybrid Method Coupling Molecular Dynamics and Monte Carlo Simulations to Study the Properties of Gases in Microchannels and Nanochannels. Physical Review E. 2005. 72(1): 016705.
    [130] Nedea S V, Markvoort A J, van Steenhoven A A, et al. Heat Transfer Predictions for Micro/Nano-Channels at Atomistic Level Using Combined Molecular Dynamics and Monte Carlo Techniques. ICNMM2007: Proceedings of the 5th International Conference on Nanochannels, Microchannels, and Minichannels. 2007. 755-762.
    [131] Nedea S V, Markvoort A J, Spijker P, et al. Heat Transfer Predictions Using Accommodation Coefficients for a Dense Gas in a Micro/Nano-Channel. In 6th International Conference on Nanochannels, Microchannels, and Minichannels; 2008 Jun 23-25; Darmstadt, Germany: 929-936.
    [132] Nedea S V, Markvoort A J, van Steenhoven A A, et al. Heat Transfer Predictions for Micro-/Nanochannels at the Atomistic Level Using Combined Molecular Dynamics and Monte Carlo Techniques. Journal of Heat Transfer. 2009. 131(3): 033104.
    [133] Chirita V, Pailthorpe B A, Collins R E. Molecular-Dynamics Study of Low-Energy Ar Scattering by the Ni(001) Surface. Journal of Physics D: Applied Physics. 1993. 26(1): 133-142.
    [134] Chirita V, Pailthorpe B A, Collins R E. Non-Equilibrium Energy and Momentum Accommodation Coefficients of Ar Atoms Scattered from Ni(001) in the Thermal Regime: A Molecular Dynamics Study. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms. 1997. 129(4): 465-473.
    [135] Finger G W, Kapat J S, Bhattacharya A. Molecular Dynamics Simulation of Adsorbent Layer Effect on Tangential Momentum Accommodation Coefficient. Journal of Fluids Engineering-Transactions of the ASME. 2007. 129(1): 31-39.
    [136] Daun K, Smallwood G, Liu F. Molecular Dynamics Simulations of Translational Thermal Accommodation Coefficients for Time-Resolved LII. Applied Physics B-Lasers and Optics. 2009. 94(1): 39-49.
    [137] Arya G, Chang H C, Maginn E J. Molecular Simulations of Knudsen Wall-Slip: Effect of Wall Morphology. Molecular Simulation. 2003. 29(10-11): 697-709.
    [138] Celestini F, Mortessagne F. Cosine Law at the Atomic Scale: Toward Realistic Simulations of Knudsen Diffusion. Physical Review E. 2008. 77(2): 021202.
    [139] Carlberg M H, Munger E P, Chirita V. Molecular-Dynamics Studies of Defect Generation in Epitaxial Mo/W Superlattices. Physical Review B. 1996. 54(3): 2217-2224.
    [140] Carlberg M H, Chirita V, Munger E P. Defects and Energy Accommodation in Epitaxial Sputter Deposited Mo/W Superlattices Studied by Molecular Dynamics. Thin Solid Films. 1998. 317(1-2): 10-13.
    [141] Kress J D, Hanson D E, Voter A F, et al. Molecular Dynamics Simulation of Cu and Ar Ion Sputtering of Cu(111) Surfaces. Journal of Vacuum Science & Technology A-Vacuum Surfaces and Films. 1999. 17(5): 2819-2825.
    [142] Spijker P, Markvoort A J, Nedea S V, et al. Velocity Correlations between Impinging and Reflecting Particles Using MD Simulations and Different Wall Models. In 6th International Conference on Nanochannels, Microchannels, and Minichannels; 2008 Jun 23-25; Darmstadt, Germany: 959-968.
    [143] Cook S R, Hoffbauer M A. Absolute Momentum Transfer in Gas-Surface Scattering. Physical Review E. 1997. 55(4): R3828-R3831.
    [144] Notter R H, Sather N F. Normal Momentum Transfer on Ideal Crystalline Surfaces. AIAA Journal. 1971. 9(5): 965-966.
    [145] KNUTH E L. Free-Molecule Normal-Momentum Transfer at Satellite Surfaces. AIAA Journal. 1979. 18(5): 602-605.
    [146] Collins F G, Knox E C. Method for Determining Wall Boundary Conditions for DSMC Calculations at High Speed Ratios. AIAA Paper 94-0036, 1994.
    [147] Collins F G, Knox E C. Determination of Wall Boundary Conditions for High-Speed-Ratio Direct Simulation Monte Carlo Calculations. Journal of Spacecraft and Rockets. 1994. 31(6): 965-970.
    [148] Cook S R, Cross J B, Hoffbauer M. Hypersonic Gas-Surface Energy Accommodation Test Facility. AIAA-94-2637, 1994.
    [149] Polikarpov P J, Borisov S F, Kleyn A, et al. Normal Momentum Transfer Study by a Dynamic Technique. Journal of Applied Mechanics and Technical Physics. 2003. 44(2): 298-303.
    [150] Ambaye H, Manson J R. Calculations of Accommodation Coefficients for Diatomic Molecular Gases. Physical Review E. 2006. 73(3): 031202.
    [151] Maruyama S, Kimura T. A Study on Thermal Resistance over a Solid-Liquid Interface by the Molecular Dynamics Method. Thermal Science and Engineering. 1999. 7(1): 63-68.
    [152] Maurice Rigby, E. Brian Smith, William A. Wakeham, et al. The Forces between Molecules, Clarendon Press: Oxford, 1986
    [153]孙俊,李志信.二维分子动力学计算中协调系数的表达式.工程热物理学报. 2009. (已接收)
    [154] Tehver R, Toigo F, Koplik J, et al. Thermal Walls in Computer Simulations. Physical Review E. 1998. 57(1): R17-R20.
    [155] Koplik J, Banava J R, Willemsen J F. Molecular Dynamics of Fluid Flow at Solid Surfaces. Physics of Fluids A. 1989. 1(5): 781-794.
    [156] Bl?mer J, Beylich A E. MD-Simulation of Inelastic Molecular Collisions with Condensed Matter Surfaces. In Rarefied Gas Dynamics: 20th International Symposium; 1997; Beijing: 392-397.
    [157] Hook J R, Hall H E. Solid State Physics (2nd Ed.). Whiley: Chicheter, 1991
    [158]杨兵初,锺心刚.固体物理学.中南大学出版社:长沙, 2002
    [159] Sun J, Li Z X. Effect of Gas Adsorption on Momentum Accommodation Coefficients in Microgas Flows Using Molecular Dynamic Simulations. Molecular Physics. 2008. 106(19): 2325-2332.
    [160] Sun J, Li Z X. Molecular Dynamics Simulations of Energy Accommodation Coefficients for Gas Flows in Nano-Channels. Molecular Simulation. 2009. 35(3): 228-233.
    [161] Grest G S, Kremer K. Molecular Dynamics Simulations for Polymers in the Presence of a Heat Bath. Physical Review A. 1986. 33(5): 3628–3631.
    [162] Trott W M, Rader D J, Casta?eda J N, et al. Measurement of Gas-Surface Accommodation. In Rarefied Gas Dynamics: 26th International Symposium, edited by Abe T. 2008: 621-628.
    [163] Saxena S C, Afshar R. Thermal Accommodation Coefficient of Gases on Controlled Solid Surfaces: Argon-Tungsten System. International Journal of Thermophysics. 1985. 6(2): 143-163.
    [164] Lan X D, Sun J, Li Z X. Modified Relaxation Time Monte Carlo Method for Continuum-Transition Gas Flows. Journal of Computational Physics. 2008. 227(9): 4763-4775.
    [165] Eckert E R, Drake R M. Analysis of Heat and Mass Transfer, Hemisphere Publishing Co.: New York, 1987
    [166] Wang C S, Chen J S, Shiomi J, et al. A Study on the Thermal Resistance over Solid-Liquid-Vapor Interfaces in a Finite-Space by a Molecular Dynamics Method. International Journal of Thermal Sciences. 2007. 46(12): 1203-1210.
    [167] Erkoc S. Empirical Potential Energy Functions Used in the Simulations of Materials Properties. In: Stauffer D (ed). Annual Review of Computational Physics, Vol. IX. World Scientific Publishing Company: Singapore, 2001, 1-103.
    [168]孙俊,李志信.微纳气体流动中动量协调系数的分子动力学模拟.工程热物理学报. 2008. 29(6): 1014-1016.
    [169] Roberts J K. The Exchange of Energy between Gas Atoms and Solid Surfaces. Iii. The Accommodation Coefficient of Neon. Proceedings of the Royal Society of London Series A. 1933. 142(847): 518-524.
    [170] Ohara T, Torii D. Molecular Dynamics Study of Thermal Phenomena in an Ultrathin Liquid Film Sheared between Solid Surfaces: The Influence of the Crystal Plane on Energy and Momentum Transfer at Solid-Liquid Interfaces. Journal of Chemical Physics. 2005. 122(21): 214717.
    [171] Soong C Y, Yen T H, Tzeng P Y. Molecular Dynamics Simulation of Nanochannel Flows with Effects of Wall Lattice-Fluid Interactions. Physical Review E. 2007. 76(3): 036303.
    [172] Torii D, Ohara T. Molecular Dynamics Study on Ultrathin Liquid Water Film Sheared between Platinum Solid Walls: Liquid Structure and Energy and Momentum Transfer. Journal of Chemical Physics. 2007. 126(15): 154706.
    [173] Oman R A. Numerical Calculations of Gas-Surface Interactions. AIAA Journal. 1967. 5(7): 1280-1287.
    [174] Tully J C. Dynamics of Gas-Surface Interactions: 3D Generalized Langevin Model Applied to FCC and BCC Surfaces. The Journal of Chemical Physics. 1980. 73(4): 1975-1985.
    [175] Cao B Y, Chen M, Guo Z Y. Application of 2DMD to Gaseous Microflows. Chinese Science Bulletin. 2004. 49(11): 1101-1105.
    [176] Lockerby D A, Reese J M, Gallis M A. The Usefulness of Higher-Order Constitutive Relations for Describing the Knudsen Layer. Physics of Fluids. 2005. 17(10): 100609.
    [177] Zhong X, Chapman D R, MacCormack R W. Stabilization of the Burnett Equations and Application to Hypersonic Flows. AIAA Journal. 1993. 31(6): 1036-1043.
    [178] Balakrishnan R. An Approach to Entropy Consistency in Second-Order Hydrodynamic Equations. Journal of Fluid Mechanics. 2004. 503: 201-245.
    [179] Jin S, Slemrod M. Regularization of the Burnett Equations via Relaxation. Journal of Statistical Physics. 2001. 103(5-6): 1009-1033.
    [180] Struchtrup H, Torrilhon M. Regularization of Grad's 13 Moment Equations: Derivation and Linear Analysis. Physics of Fluids. 2003. 15(9): 2668-2680.
    [181] Burnett D. The Distribution of Velocities in a Slightly Non-Uniform Gas. Proceedings of the Royal Society of London Series A. 1935. 39: 385-430.
    [182] Shavaliyev M S. Super-Burnett Corrections to the Stress Tensor and the Heat-Flux in a Gas of Maxwellian Molecules. Journal of Applied Mathematics and Mechanics. 1993. 57(3): 573-576.
    [183] Torrilhon M, Struchtrup H. Regularized 13-Moment Equations: Shock Structure Calculations and Comparison to Burnett Models. Journal of Fluid Mechanics. 2004. 513: 171-198.
    [184] Albertoni S, Cercignani C, Gotusso L. Numerical Evaluation of the Slip Coefficient. Physics of Fluids. 1963. 6(7): 993-996.
    [185] Sreekanth A. Slip Flow through Long Circular Tubes. In Rarefied Gas Dynamics: 6th International Symposium, edited by Trilling L, Wachman H Y. 1969: 667-680.
    [186] Loyalka S K. Approximate Method in Kinetic Theory. Physics of Fluids. 1971. 14(11): 2291-2294.
    [187] Loyalka S K, Petrellis N, Storvick T S. Some Numerical Results for BGK Model: Thermal Creep and Viscous Slip Problems with Arbitrary Accomodation at Surface. Physics of Fluids. 1975. 18(9): 1094-1099.
    [188] Hadjiconstantinou N G. Comment on Cercignani's Second-Order Slip Coefficient. Physics of Fluids. 2003. 15(8): 2352-2354.
    [189] Barber R W, Emerson D R. Challenges in Modeling Gas-Phase Flow in Microchannels: From Slip to Transition. Heat Transfer Engineering. 2006. 27(4): 3-12.
    [190] Dongari N, Agrawal A, Agrawal A. Analytical Solution of Gaseous Slip Flow in Long Microchannels. International Journal of Heat and Mass Transfer. 2007. 50(17-18): 3411-3421.
    [191] Tang G H, He Y L, Tao W Q. Comparison of Gas Slip Models with Solutions of Linearized Boltzmann Equation and Direct Simulation of Monte Carlo Method. International Journal of Modern Physics C. 2007. 18(2): 203-216.
    [192] Mitsuya Y. Modified Reynolds Equation for Ultra-Thin Film Gas Lubrication Using 1.5-Order Slip-Flow Model and Considering Surface Accommodation Coefficient. Journal of Tribology. 1993. 115(2): 289-294.
    [193] Lockerby D A, Reese J M, Emerson D R, et al. Velocity Boundary Condition at Solid Walls in Rarefied Gas Calculations. Physical Review E. 2004. 70(1): 017303.
    [194] Wu L. A Slip Model for Rarefied Gas Flows at Arbitrary Knudsen Number. Applied Physics Letters. 2008. 93(25): 253103.
    [195] Lockerby D A, Reese J M, Gallis M A. Capturing the Knudsen Layer in Continuum-Fluid Models of Nonequilibrium Gas Flows. AIAA Journal. 2005. 43(6): 1391-1393.
    [196] Schram P P J M. Kinetic Theory of Gases and Plasmas. Kluwer Academic Publishers: Dordrecht, the Netherlands, 1991
    [197] Einzel D, Panzer P, Liu M. Boundary Condition for Fluid Flow: Curved or Rough Surfaces. Physical Review Letters. 1990. 64(19): 2269-2272.
    [198] Reese J M, Zheng Y S, Lockerby D A. Computing the Near-Wall Region in Gas Micro- and Nanofluidics: Critical Knudsen Layer Phenomena. Journal of Computational and Theoretical Nanoscience. 2007. 4(4): 807-813.
    [199] O'Hare L, Lockerby D A, Reese J M, et al. Near-Wall Effects in Rarefied Gas Micro-Flows: Some Modern Hydrodynamic Approaches. International Journal of Heat and Fluid Flow. 2007. 28(1): 37-43.
    [200] Bhatnagar P L, Gross E P, Krook M. A Model for Collision Processes in Gases I: Small Amplitude Processes in Charged and Neutral Onecomponent Systems. Physical Review. 1954. 94(3): 511-525.
    [201] Lockerby D A, Reese J M. On the Modelling of Isothermal Gas Flows at the Microscale. Journal of Fluid Mechanics. 2008. 604: 235-261.
    [202] Stops D W. The Mean Free Path of Gas Molecules in the Transition Regime. Journal of Physics D: Applied Physics. 1970. 3: 685-696.
    [203]郭照立,郑楚光,施保昌.微尺度流动的扩展二阶滑移边界条件.中国工程热物理学会传热传质学学术会议论文.郑州, 2008.
    [204] Arlemark E J, Dadzie S K, Reese J M. An Extension to the Navier-Stokes-Fourier Equations by Considering Molecular Collisions with Boundaries. Proceedings of the 6th International Conference on Nanochannels, Microchannels, and Minichannels, Pts A and B. 2008. 95-102.
    [205] Arlemark E J, Dadzie S K, Reese J M. An Extension to the Navier-Stokes Equations to Incorporate Gas Molecular Collisions with Boundaries. Journal of Heat Transfer. 2009. (In Press)
    [206] Guo Z L, Shi B C, Zheng C G. An Extended Navier-Stokes Formulation for Gas Flows in the Knudsen Layer near a Wall. Europhysics Letters. 2007. 80(2): 24001.
    [207] Ohwada T, Sone Y, Aoki K. Numerical Analysis of the Poiseuille and Thermal Transpiration Flows between Two Parallel Plates on the Basis of the Boltzmann Equation for Hard-Sphere Molecules. Physics of Fluids A: Fluid Dynamics. 1989. 1(12): 2042-2049.
    [208] Ohwada T, Sone Y, Aoki K. Erratum: "Numerical Analysis of the Poiseuille and Thermal Transpiration Flows between Two Parallel Plates on the Basis of the Boltzmann Equation for Hard-Sphere Molecules" [Phys. Fluids A, 2042 (1989)]. Physics of Fluids A: Fluid Dynamics. 1990. 2(4): 639-639.
    [209] Dadzie S K, Reese J M, McInnes C R. A Continuum Model of Gas Flows with Localized Density Variations. Physica A-Statistical Mechanics and Its Applications. 2008. 387(24): 6079-6094.
    [210] Reese J M, Gallis M A, Lockerby D A. New Directions in Fluid Dynamics: Non-Equilibrium Aerodynamic and Microsystem Flows. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences. 2003. 361(1813): 2967-2988.