PEG水凝胶的金微图案化修饰及其表面细胞黏附行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着组织工程等方面的再生医学发展,有关材料表面改性和细胞粘附等方面的问题越来越引起人们的关注。而人体组织可被视为是细胞与细胞外基质的复合体,如果能够利用仿细胞外基质的新型生物材料构筑一定的类生命环境,并在其表面或内部培植细胞,这样我们就可以在体外利用仿生手段来研究机体内部重要的生命活动。要在体外构造细胞与生物材料的复合体,就必须了解细胞与生物材料相互作用方面的诸多基本科学问题,而其中最关键的问题之一就是细胞在生物材料表面的粘附机制。在研究细胞黏附机制方面,生物材料表面的图案化处理使原本复杂的问题简单化,并为更深入地研究细胞粘附、迁移等活动机制提供了契机。原有的图案化技术大都针对硬基质或者硅橡胶等少数疏水性聚合物,而在力学性质接近人体大部分组织的水凝胶表面构筑合适的微图案则存在技术困难;另一方面,有关水凝胶的研究木身已经成为生物材料界一个活跃的领域。因此,拓展具有细胞黏附反差的水凝胶表面微图案化制备于段、建立相应技术平台就具有重要意义,也是一个富有挑战性的研究课题。
     本论文发展了一种可用于水凝胶材料表面图案化修饰的光刻转移技术,以及由此技术制备出的具有良好生物学性质的Au-PEG复合图案化材料,此水凝胶材料能够区域选择性的抵抗抗细胞黏附,可用于考察细胞与生物材料相互作用的基础研究,揭示细胞与生物材料相互作用的部分基本规律,为新型生物材料的表面设计提供理论依据。
     本博士论文的主要贡献可以分为以下几个部分:
     1.拓展了聚合物表面制备稳定微图案的转移制备策略。本论文利用光刻技术和转移技术在高分子水凝胶表面制备微米级Au图案,成功地解决了软基底材料表面的图案化修饰问题,并彻底保证了材料的湿态稳定性。在Au图案化修饰的PEG水凝胶表面培植细胞,考察了材料的生物相容性和抗细胞黏附反差性。首先利用光刻技术在硬质基底表面制备出Au微图案,然后利用自组装技术在Au表面接上带巯基的转移试剂,进而在PEG水凝胶的聚合过程中将微图案转移到水凝胶表面,实现PEG水凝胶的Au微图案化修饰。所获得的图案即使长期浸泡在水中也具有稳定性。
     2.设计了一个具有异种端基的大分子转移试剂,并克服了两个端基本身易于反应的困难成功地予以了合成。本文设计和合成一种大分子量的具有异种官能端基的转移试剂ACRL-PEG5K-SH。以ACRL-PEG5K-NHS为基础合成了大分子量的转移试剂ACRL-PEG5K-SH,并进行了GPC,IR,~1H NMR等表征。在合成反应中,采用双硫模型以拟制不希望发生的Michael-加成反应和一系列副反应,从而得到一端巯基一端丙烯酰基的功能化大分子转移试剂。进而,将其成功用于水凝胶材料的表面图案化修饰,细胞实验证明了用该转移试剂合成的图案化修饰的PEG水凝胶材料的生物相容性和抗细胞黏附差异。在具有抗细胞黏附反差和不同直径的Au点阵表面的细胞实验表明,细胞能够选择性黏附,并且随着点尺度的变化呈现出一定的规律。
     3.研究了条纹状微图案表面诱导的细胞取向,并提出了系列统计参量。本论文制备了条纹状Au-PEG水凝胶复合图案化表面,用此材料表面研究了3T3成纤维细胞在金条纹表面的取向黏附行为,定义了一系列统计参数用于细胞黏附行为的研究。发现随着条纹间距的增加,细胞的取向度、长短轴比以及金条纹上的细胞占有率均逐渐增大,但单细胞的铺展面积总体呈减小趋势,并且它们随条纹间距增大而发生突然变化的区域并不完全一致;同时黏附细胞在金条纹上的有效黏附比呈现非单调变化。5个统计参数组合在一起,良好地描述了细胞在条纹表面粘附后的取向。条纹状Au-PEG水凝胶复合图案表面的利用以及相应的参量统计和比较为今后研究细胞在生物材料表面的取向行为提供了一种有效的模型化方法。
Recent development of regenerative medicine including tissue engineering triggers research of surface modification of biomaterials and cell adhesion on modified substrate. Considering that tissues could be thought as a composite of cells and extracellular matrix (ECM), ideal biomaterials for tissue regeneration are desired to mimic ECM. Development of the new-generation biomaterials requires extensive understanding of cell-material interaction. Surface-patterning techniques shed light on simplifying the understanding of fundamental investigation in the cost of complicated material fabrication. The surface patterning techniques so far are, however, limited to hard substrates or some hydrophobic rubber such as silicone; on the other hand, hydrogels as a soft matter have emerged as a hot issue in material studies. Hence, a surface-patterning technique platform for generating patterns with cell-adhesion contrast on hydrogels is called for.
     This paper introduces a photolithography transfer strategy which can modify poly(ethylene glycol) (PEG) hydrogel by Au microarrays. The micropatterned biomaterial has cell-adhesion contrast, which can regulate cell adhesion and be used to study cell-biomaterial interactions. The fundamental studies might be helpful for the development of novel biomaterials.
     The main achievements are summarized as follows:
     1. To suggest a transfer strategy to fabricate stable micropatterns on hydrogels.
     The coupling of photolithography and microtransfer techniques is used to fabricate Au microarrays on PEG hydrogel surface, which resolves a problem of patterned modification of soft materials. Firstly, gold microarray is prepared on a hard inorganic substrate by the conventionally photolithography technique. Then, a thiol-end macromolecular linker is linked to gold micropattern and transferred to a polymeric substrate in photopolymerization of PEG-DA macromonomers. The resultant patterns are confirmed to keep stability even in water.
     2. To design a hetero-bifunctional macromolecular linker, and perform successfully the synthesis after overcoming an "inherent" difficulty of reaction between the two end groups. A well-designed hetero-bifunctional macromonomer linker, ACRL-PEG5K-SH, is synthesized and successful used to prepare gold microarrays onto a PEG hydrogel surface. The disulfide model is used to prevent the Michael addition between -SH and ACRL groups and other side reactions. Cell experiments confirm the biocompatibility and cell-adhesion contrast of the resulting patterned hydrogel. The adhesion of cells exhibits dependence of microdot sizes.
     3. To put forward a series of parameter to semi-quantified cell orientation on stripe-patterned surfaces. We further prepared, by the photolithography transfer technique, stable gold (Au) micropattems on PEG hydrogel surfaces with defined cell-resistant (PEG hydrogel) and cell-adhesive (gold microstripes) properties. 3T3 fibroblasts were cultured on Au-microstripe surfaces to observe cell adhesion and orientation. Five statistical parameters were defined and used to describe cell orientation on micropattems. The abrupt changes of these parameters did not happen at the same inter-distance. The combination of the 5 statistical parameters represented well the cell orientation behaviors semi-quantitatively.
引文
[1]Langer R.,Vacanti J.P.;Tissue Engineering.Science,1993,260(5110):920-926.
    [2]Hench L.L.,Polak J.M.;Third-generation biomedical materials.Science,2002,295(5557):1014-1017.
    [3]Rouhi A.M.;Contemporary biomaterials.Chemical & Engineering News,1999,77(3):51-59.
    [4]Chen C.S.,Mrksich M.,Huang S.,Whitesides G.M.,Ingber D.E.;Geometric control of cell life and death.Science,1997,276(5317):1425-1428.
    [5]Shin H.;Fabrication methods of an engineered microenvironment for analysis of cell-biomaterial interactions.Biomaterials,2007,28(2):126-133.
    [6]Balaban N.Q.,Schwarz U.S.,Riveline D.,Goichberg P.,Tzur G.,Sabanay I.,Mahalu D.,Safran S.,Bershadsky A.,Addadi L.,Geiger B.;Force and focal adhesion assembly:a close relationship studied using elastic micropatterned substrates.Nature Cell Biology,2001,3(5):466-472.
    [7]Weibel D.B.,Garstecki P.,Whitesides G.M.;Combining microscience and neurobiology.Current Opinion In Neurobiology,2005,15(5):560-567.
    [8]Brock Ao,Chang E.,Ho C.C.,LeDuc P.,Jiang X.Y.,Whitesides G.M.,Ingber D.E.;Geometric determinants of directional cell motility revealed using microcontact printing.Langmuir,2003,19(5):1611-1617.
    [9]Graeter S.V.,Huang J.H.,Perschmann N.,Lopez-Garcia M.,Kessler H.,Ding J.D.,Spatz J.P.;Mimicking cellular environments by nanostructured soft interfaces.Nano Letters,2007,7(5):1413-1418.
    [10]Arnold M.,Cavalcanti-Adam E.A.,Glass R.,Blummel J.,Eck W.,Kantlehner M.,Kessler H.,Spatz J.P.;Activation of integrin function by nanopatterned adhesive interfaces.Chemphyschem,2004,5(3):383-388.
    [11]葛泉波,何淑兰,毛津淑,姚康德;生物材料与细胞相互作用及表面修饰.化学通报,2005,25(1):43-48.
    [12]Shelton R.M.,Rasmussen A.C.,Davies J.E.;Protein Adsorption At The Interface Between Charged Polymer Substrata And Migrating Osteoblasts.Biomaterials,1988,9(1):24-29.
    [13]Massia S.P.,Hubbell J.A.;Immobilized Amines And Basic-Amino-Acids As Mimetic Heparin-Binding Domains For Cell-Surface Proteoglycan-Mediated Adhesion.Journal Of Biological Chemistry,1992,267(14):10133-10141.
    [14]Amstein C.F.,Hartman P.A.;Adaptation Of Plastic Surfaces For Tissue-Culture By Glow-Discharge.Journal Of Clinical Microbiology,1975, 2(1):46-54.
    [15]Altankov G.,Groth T.,Krasteva N.,Albrecht W.,Paul D.;Morphological evidence for a different fibronectin receptor organization and function during fibroblast adhesion on hydrophilic and hydrophobic glass substrata.Journal Of Biomaterials Science-Polymer Edition,1997,8(9):721-740.
    [16]Satriano C.,Carnazza S.,Guglielmino S.,Marietta G.;Surface free energy and cell attachment onto ion-beam irradiated polymer surfaces.Nuclear Instruments & Methods In Physics Research Section B-Beam Interactions With Materials And Atoms,2003,208:287-293.
    [17]Tamada Y.,Ikada Y.;Fibroblast Growth On Polymer Surfaces And Biosynthesis Of Collagen.Journal Of Biomedical Materials Research,1994,28(7):783-789.
    [18]Lee J.H.,Jung H.W.,Kang I.K.,Lee H.B.;Cell Behavior On Polymer Surfaces With Different Functional-Groups.Biomaterials,1994,15(9):705-711.
    [19]Chung T.W.,Liu D.Z.,Wang S.Y.,Wang S.S.;Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale.Biomaterials,2003,24(25):4655-4661.
    [20]Dunn G.A.,Brown A.F.;Alignment Of Fibroblasts On Grooved Surfaces Described By A Simple Geometric Transformation.Journal Of Cell Science,1986,83:313-340.
    [21]Meyle J.,Gultig K.,Nisch W.;Variation In Contact Guidance By.Human-Cells On A Microstructured Surface.Journal Of Biomedical Materials Research,1995,29(1):81-88.
    [22]Dalby M.J.,Childs S.,Riehle M.O.,Johnstone H.J.H.,Affrossman S.,Curtis A.S.G.;Fibroblast reaction to island topography:changes in cytoskeleton and morphology with time.Biomaterials,2003,24(6):927-935.
    [23]Jiang X.Y.,Bruzewicz D.A.,Wong A.P.,Piel M.,Whitesides G.M.;Directing cell migration with asymmetric micropatterns.Proceedings Of The National Academy Of Sciences Of The United States Of America,2005,102(4):975-978.
    [24]Thery M.,Racine V.,Pepin A.,Piel M.,Chen Y.,Sibarita J.B.,Bornens M.;The extracellular matrix guides the orientation of the cell division axis.Nature Cell Biology,2005,7(10):947-953.
    [25]Yang S.Y.,Mendelsohn J.D.,Rubner M.F.;New class of ultrathin,highly cell-adhesion-resistant polyelectrolyte multilayers with micropatterning capabilities.Biomacromolecules,2003,4(4):987-994.
    [26]Ertel S.I.,Rather B.D.,Horbett T.A.;Radiofrequency Plasma Deposition Of Oxygen-Containing Films On Polystyrene And Poly(Ethylene-Terephthalate)Substrates Improves Endothelial-Cell Growth.Journal Of Biomedical Materials Research,1990,24(12):1637-1659.
    [27]贝建中,雪屈.,王身国;生物材料与细胞的相互作用.北京生物医学工程,2005,24(1):64-70.
    [28]Kim J.T.,Park J.K.,Lee D.C.;Surface modification of polyimide film by ion implantation.Polymer International,2002,51(10):1063-1065.
    [29]Chen X.Y.,Zhang X.F.,Zhu Y.,Zhang J.Z.,Hu P.;Surface modification of polyhydroxyalkanoates by ion implantation.Characterization and cytocompatibility improvement.Polymer Journal,2003,35(2):148-154.
    [30]Yang X.B.,Roach H.I.,Clarke N.M.P.,Howdle S.M.,Quirk R.,Shakesheff K.M.,Oreffo R.O.C.;Human osteoprogenitor growth and differentiation on synthetic biodegradable structures after surface modification.Bone,2001,29(6):523-531.
    [31]Sipehia R.;The Enhanced Attachment And Growth Of Endothelial-Cells On Anhydrous Ammonia Gaseous Plasma Modified Surfaces Of Polystyrene And Poly(Tetetrafluoroethylene).Biomaterials Artificial Cells And Artificial Organs,1990,18(3):437-446.
    [32]Yang J.,Shi G.X.,Bei J.Z.,Wang S.G.,Cao Y.L.,Shang Q.X.,Yang G.G.,Wang W.J.;Fabrication and surface modification of macroporous poly(L-lactic acid) and poly(L-lactic-co-glycolic acid)(70/30) cell scaffolds for human skin fibroblast cell culture.Journal Of Biomedical Materials Research,2002,62(3):438-446.
    [33]Ding Z.,Chen J.N.,Gao S.Y.,Chang J.B.,Zhang J.F.,Kang E.T.;Immobilization of chitosan onto poly-L-lactic acid film surface by plasma graft polymerization to control the morphology of fibroblast and liver cells.Biomaterials,2004,25(6):1059-1067.
    [34]Klee D.,Ademovic Z.,BosserhoffA.,Hoecker H.,Maziolis G.,Erli H.J.;Surface modification of poly(vinylidenefluoride) to improve the osteoblast adhesion.Biomaterials,2003,24(21):3663-3670.
    [35]Cui Y.L.,Qi A.D.,Liu W.G.,Wang X.H.,Wang H.,Ma D.M.,Yao K.D.;Biomimetic surface modification of poly(L-lactic acid) with chitosan and its effects on articular chondrocytes in vitro.Biomaterials,2003,24(21):3859-3868.
    [36]Zhu Y.B.,Gao C.Y.,Shen J.C.;Surface modification of polycaprolactone with poly(methacrylic acid) and gelatin covalent immobilization for promoting its cytocompatibility.Biomaterials,2002,23(24):4889-4895.
    [37]Falconnet D.,Koenig A.,Assi To,Textor M.;A combined photolithographic and molecular-assembly approach to produce functional micropatterns for applications in the biosciences.Advanced Functional Materials,2004,14(8):749-756.
    [38]Dong R.,Krishnan S.,Baird B.A.,Lindau M.,Ober C.K.;Patterned biofunctional poly(acrylic acid) brushes on silicon surfaces.Biomacromolecules,2007,8(10):3082-3092.
    [39]Loschonsky S.,Shroff K.,Worz A.,Prucker O.,Ruhe J.,Biesalski M.;Surface-attached PDMAA-GRGDSP hybrid polymer monolayers that promote the adhesion of living cells.Biomacromolecules,2008,9(2):543-552.
    [40]Kane R.S.,Takayama S.,Ostuni E.,Ingber D.E.,Whitesides G.M.;Patterning proteins and cells using soft lithography.Biomaterials,1999,20(23-24):2363-2376.
    [41]Whitesides G.M.,Ostuni E.,Takayama S.,Jiang X.Y.,Ingber D.E.;Soft lithography in biology and biochemistry.Annual Review Of Biomedical Engineering,2001,3:335-373.
    [42]Offenhausser A.,Bocker-Meffert S.,Decker T.,Helpenstein R.,Gasteier P.,Groll J.,Moller M.,Reska A.,Schafer S.,Schulte P.,Vogt-Eisele A.;Microcontact printing of proteins for neuronal cell guidance.Soft Matter,2007,3(3):290-298.
    [43]Jun Y.,Cha T.,Guo A.,Zhu X.Y.;Patterning protein molecules on poly(ethylene glycol) coated Si(111).Biomaterials,2004,25(17):3503-3509.
    [44]Jung D.R.,Cuttino D.S.,Pancrazio J.J.,Manos P.,Cluster T.,Sathanoori R.S.,Aloi L.E.,Coulombe M.G.,Czamaski M.A.,Borkholder D.A.,Kovacs G.T.A.,Bey P.,Stenger D.A.,Hickman J.J.;Cell-based sensor microelectrode array characterized by imaging x-ray photoelectron spectroscopy,scanning electron microscopy,impedance measurements,and extracellular recordings.Journal Of Vacuum Science & Technology A-Vacuum Surfaces And Films,1998,16(3):1183-1188.
    [45]Mrksich M.,Whitesides G.M.;Patterning Self-Assembled Monolayers Using Microcontact Printing - A New Technology For Biosensors.Trends In Biotechnology,1995,13(6):228-235.
    [46]Singhvi R.,Kumar A.,Lopez G.P.,Stephanopoulos G.N.,Wang D.I.C., Whitesides G.M.,Ingber D.E.;Engineering Cell-Shape And Function.Science,1994,264(5159):696-698.
    [47]Lopez G.P.,Biebuyck H.A.,Harter R.,Kumar A.,Whitesides G.M.;Fabrication And Imaging Of 2-Dimensional Patterns Of Proteins Adsorbed On Self-Assembled Monolayers By Scanning Electron-Microscopy.Journal Of The American Chemical Society,1993,115(23):10774-10781.
    [48]Sigal G.B.,Mrksich M.,Whitesides G.M.;Effect of surface wettability on the adsorption of proteins and detergents.Journal Of The American Chemical Society,1998,120(14):3464-3473.
    [49]Chen C.S.,Mrksich M.,Huang S.,Whitesides G.M.,Ingber D.E.;Micropatterned surfaces for control of cell shape,posoition,and function.Biotechnology Progress,1998,14(3):356-363.
    [50]Deng L.,Mrksich M.,Whitesides G.M.;Self-assembled monolayers of alkanethiolates presenting tri(propylene sulfoxide) groups resist the adsorption of protein.Journal Of The American Chemical Society,1996,118(21):5136-5137.
    [51]Yang Z.P.,Chilkoti A.;Microstamping of a biological ligand onto an activated polymer surface.Advanced Materials,2000,12(6):413-417.
    [52]Bernard A.,Renault J.P.,Michel B.,Bosshard H.R.,Delamarche E.;Microcontact printing of proteins.Advanced Materials,2000,12(14):1067-1070.
    [53]Wichterle O.,Lim D.;Hydrophilic Gels For Biological Use.Nature,1960,185(4706):117-118.
    [54]Hong Y.,Song H.Q.,Gong Y.H.,Mao Z.W.,Gao C.Y.,Shen J.C.;Covalently crosslinked chitosan hydrogel:Properties of in vitro degradation and chondrocyte encapsulation.Acta B iomaterialia,2007,3(1):23-31.
    [55]Cui F.Z.,Tian W.M.,Hou S.P.,Xu Q.Y.,Lee I.S.;Hyaluronic acid hydrogel immobilized with RGD peptides for brain tissue engineering.Journal of Materials Science-Materials in Medicine,2006,17(12):1393-1401.
    [56]Xi T.F.,Fan C.X.,Feng X.M.,Wan Z.Y.,Wang C.R.,Chou L.L.;Cytotoxicity and altered c-myc gene expression by medical polyacrylamide hydrogel.Journal of Biomedical Materials Research Part A,2006,78A(2):283-290.
    [57]Jia X.Q.,Burdick J.A.,Kobler J.,Clifton R.J.,Rosowski J.J.,Zeiteis S.M.,Langer R.;Synthesis and characterization of in situ cross-linkable hyaluronic acid-based hydrogels with potential application for vocal fold regeneration. Macromolecules,2004,37(9):3239-3248.
    [58]Mao S.R.,Shuai X.T.,Unger F.,Wittmar M.,Xie X.L.,Kissel T.;Synthesis,characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers.Biomaterials,2005,26(32):6343-6356.
    [59]Yu L.,Zhang H.A.,Ding J.D.;A subtle end-group effect on macroscopic physical gelation of triblock copolymer aqueous solutions.Angewandte Chemie-International Edition,2006,45(14):2232-2235.
    [60]Yu H.J.,Xu X.Y.,Chen X.S.,Lu T.C.,Zhang P.B.,Jing X.B.;Preparation and antibacterial effects of PVA-PVP hydrogels containing silver nanoparticles.Journal of Applied Polymer Science,2007,103(1):125-133.
    [61]Zhang Y.,Zhu W.,Wang B.B.,Ding J.D.;A novel microgel and associated post-fabrication encapsulation technique of proteins.Journal Of Controlled Release,2005,105(3):260-268.
    [62]Hoffman A.S.;Hydrogelsfor biomedical applications.Advanced Drug Delivery Reviews,2002,54(1):3-12.
    [63]Cushing M.C.,Anseth K.S.;Hydrogel cell cultures.Science,2007,316(5828):1133-1134.
    [64]Kopecek J.;Hydrogel biomaterials:A smart future? Biomaterials,2007,28(34):5185-5192.
    [65]Yu L.,Ding J.D.;Injectable hydrogels as unique biomedical materials.Chemical Society Reviews,2008,37(8):1473-1481.
    [66]Mirejovsky D.,Patel A.S.,Young G.;Water Properties Of Hydrogel Contact-Lens Materials - A Possible Predictive Model For Corneal Desiccation Staining.Biomaterials,1993,14(14):1080-1088.
    [67]Nicolson P.C.,Vogt J.;Soft contact lens polymers:an evolution.Biomaterials,2001,22(24):3273-3283.
    [68]Rao J.K.,Ramesh D.V.,Rao K.P.;Implantable Controlled Delivery Systems For Proteins Based On Collagen - Phema Hydrogels.Biomaterials,1994,15(5):383-389.
    [69]Jeong B.,Bae Y.H.,Lee D.S.,Kim S.W.;Biodegradable block copolymers as injectable drug-delivery systems.Nature,1997,388(6645):860-862.
    [70]Risbud M.V.,Hardikar A.A.,Bhat S.V.,Bhonde R.R.;pH-sensitive freeze-dried chitosan-polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery.Journal Of Controlled Release,2000,68(1):23-30.
    [71]Liu H.F.,Fan H.B.,Cui Y.L.,Chen Y.P.,Yao K.D.,Goh J.C.H.;Effects of the controlled-released basic fibroblast growth factor from chitosan-gelatin microspheres on human fibroblasts cultured on a chitosan-gelatin scaffold.Biomacromolecules,2007,8(5):1446-1455.
    [72]姚康德,尹玉姬,组织工程用生物医用材料.2003,北京:化学工业出版社.49-69.
    [73]Wu L.B.,Zhang H.,Zhang J.C.,Ding J.D.;Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering.I.Compression molding based on flexible-rigid combined mold.Tissue Engineering,2005,11(7-8):1105-1114.
    [74]朱文,段世锋,丁建东;组织工程用水凝胶材料.功能高分子学报,2004,17(4):689-697.
    [75]翟茂林,哈鸿飞;水凝胶的合成、性质及应用.大学化学,2001,16(5):22-27.
    [76]Vercruysse K.P.,Marecak D.M.,Marecek J.F.,Prestwich G.D.;Synthesis and in vitro degradation of new polyvalent hydrazide cross-linked hydrogels of hyaluronic acid.Bioconjugate Chemistry,1997,8(5):686-694.
    [77]Lee J.B.,Yoon J.J.,Lee D.S.,Park T.G.;Photo-crosslinkable,thermo-sensitive and biodegradable Pluronic hydrogels for sustained release of protein.Journal Of Biomaterials Science-Polymer Edition,2004,15(12):1571-1583.
    [78]高雨青,张玉娟;温度及pH敏感性水凝胶的合成及性能研究.功能高分子学报,2001,6(14):158-162.
    [79]Wu D.Q.,Sun Y.X.,Xu X.D.,Cheng S.X.,Zhang X.Z.,Zhuo R.X.;Biodegradable and pH-sensitive hydrogels for cell encapsulation and controlled drug release.Biomacromolecules,2008,9(4):1155-1162.
    [80]Kim S.H.,Won C.Y.,Chu C.C.;Synthesis and charaeterization of dextran-based hydrogel prepared by photocrosslinking.Carbohydrate Polymers,1999,40(3):183-190.
    [81]Duan S.F.,Zhu W.,Yu L.,Ding J.D.;Negative cooperative effect of cytotoxicity of a di-component initiating system for a novel injectable tissue engineering hydrogel.Chinese Science Bulletin,2005,50(11):1093-1096.
    [82]Peracchia M.T.,Gref R.,Minamitake Y.,Domb A.,Lotan N.,Langer R.;PEG-coated nanospheres from amphiphilic diblock and multiblock copolymers:Investigation of their drug encapsulation and release characteristics.Journal Of Controlled Release,1997,46(3):223-231.
    [83]Zourob M.,Gough J.E.,Ulijn R.V.;A micropatterned hydrogel platform for chemical synthesis and biological analysis.Advanced Materials,2006,18(5):655-659.
    [84]Revzin A.,Tompkins R.G.,Toner M.;Surface engineering with poly(ethylene glycol) photolithography to create high-density cell arrays on glass.Langmuir,2003,19(23):9855-9862.
    [85]Underhill G.H.,Chen A.A.,Albrecht D.R.,Bhatia S.N.;Assessment of hepatocellular function within PEG hydrogels.Biomaterials,2007,28(2):256-270.
    [86]Zhu J.M.,Beamish J.A.,Tang C.,Kottke-Marchant K.,Marchant R.E.;Extracellular matrix-like cell-adhesive hydrogels from RGD-containing poly(ethylene glycol) diacrylate.Macromolecules,2006,39(4):1305-1307.
    [87]Mellott M.B.,Searcy K.,Pishko M.V.;Release of protein from highly cross-linked hydrogels of poly(ethylene glycol) diacrylate fabricated by UV polymerization.Biomaterials,2001,22(9):929-941.
    [88]Prime K.L.,Whitesides G.M.;Adsorption Of Proteins Onto Surfaces Containing End-Attached Oligo(Ethylene Oxide) - A Model System Using Self-Assembled Monolayers.Journal Of The American Chemical Society,1993,115(23):10714-10721.
    [89]Unsworth L.D.,Sheardown H.,Brash J.L.;Protein resistance of surfaces prepared by sorption of end-thiolated poly(ethylene glycol) to gold:Effect of surface chain density.Langmuir,2005,21(3):1036-1041.
    [90]Mougin K.,Lawrence M.B.,Fernandez E.J.,Hillier A.C.;Construction of cell-resistant surfaces by immobilization of poly(ethylene glycol) on gold.Langmuir,2004,20(10):4302-4305.
    [91]Emoto K.,Harris J.M.,VanAlstine J.M.;Grafting poly(ethylene glycol)epoxide to amino-derivatized quartz:Effect of temperature and pH on grafting density.Analytical Chemistry,1996,68(21):3751-3757.
    [92]Chen H.,Brook M.A.,Chen Y.,Sheardown H.;Surface properties of PEO-silicone composites:reducing protein adsorption.Journal Of Biomaterials Science-Polymer Edition,2005,16(4):531-548.
    [93]Satomi T.,Nagasaki Y.,Kobayashi H.,Otsuka H.,Kataoka K.;Density control of poly(ethylene glycol) layer to regulate cellular attachment.Langmuir,2007,23(12):6698-6703.
    [94]Malmsten M.,Emoto K.,Van Alstine J.M.;Effect of chain density on inhibition of protein adsorption by poly(ethylene glycol) based coatings.Journal Of Colloid And Interface Science,1998,202(2):507-517.
    [95]Schlapak R.,Pammer P.,Armitage D.,Zhu R.,Hinterdorfer P.,Vaupel M.,Fruhwirth T.,Howorka S.;Glass surfaces grafted with high-density poly(ethylene glycol) as substrates for DNA oligonucleotide microarrays.Langmuir,2006,22(1):277-285.
    [96]Branch D.W.,Wheeler B.C.,Brewer G.J.,Leckband D.E.;Long-term stability of grafted polyethylene glycol surfaces for use with microstamped substrates in neuronal cell culture.Biomaterials,2001,22(10):1035-1047.
    [97]Emoto K.,Van Alstine J.M.,Harris J.M.;Stability of poly(ethylene glycol)graft coatings.Langmuir,1998,14(10):2722-2729.
    [98]Heyes C.D.,Groll J.,Moller M.,Nienhaus G.U.;Synthesis,patterning and applications of star-shaped poly(ethylene glycol) biofunctionalized surfaces.Molecular Biosystems,2007,3(6):419-430.
    [99]Wang B.,Hong Y.,Feng J.,Gong Y.H.,Gao C.Y.;Rings of hydrogel fabricated by a micro-transfer technique.Macromolecular Rapid Communications,2007,28(5):567-571.
    [100]Lensen M.C.,Mela P.,Mourran A.,Groll J.,Heuts J.,Rong H.T.,Moiler M.;Micro- and nanopatterned star poly(ethylene glycol)(PEG) materials prepared by UV-based imprint lithography.Langmuir,2007,23(14):7841-7846.
    [101]Suh K.Y.,Seong J.,Khademhosseini A.,Laibinis P.E.,Langer R.;A simple soft lithographic route to fabrication of poly(ethylene glycol) microstructures for protein and cell patterning.Biomaterials,2004,25(3):557-563.
    [102]Larsson A.,Du C.X.,Liedberg B.;UV-patterned poly(ethylene glycol) matrix for microarray applications.Biomacromolecules,2007,8(11):3511-3518.
    [103]Bain C.D.,Troughton E.B.,Tao Y.T.,Evall J.,Whitesides G.M.,Nuzzo R.;Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold.J.Am.Chem.Soc.,1989,111(1):321-335.
    [104]Sun J.G.,Graeter S.V.,Yu L.,Duan S.F.,Spatz J.P.,Ding J.D.;Technique of Surface Modification of a Cell-Adhesion-Resistant Hydrogel by a Cell-Adhesion-Available Inorganic Microarray.Biomacromolecules,2008,9(10):2569-2572.
    [105]Palegrosdemange C.,Simon E.S.,Prime K.L.,Whitesides G.M.;Formation Of Self-Assembled Monolayers By Chemisorption Of Derivatives Of Oligo(Ethylene Glycol) Of Structure Hs(Ch2)11(Och2ch2)Meta-Oh On Gold.Journal Of The American Chemical Society,1991,113(1):12-20.
    [1]Chen C.S.,Mrksich M.,Huang S.,Whitesides G.M.,Ingber D.E.;Geometric control of cell life and death.Science,1997,276(5317):1425-1428.
    [2]Balaban N.Q.,Schwarz U.S.,Riveline D.,Goichberg P.,Tzur G.,Sabanay I.,Mahalu D.,Safran S.,Bershadsky A.,Addadi L.,Geiger B.;Force and focal adhesion assembly:a close relationship studied using elastic micropatterned substrates.Nature Cell Biology,2001,3(5):466-472.
    [3]Graeter S.V.,Huang J.H.,Perschmann N.,Lopez-Garcia M.,Kessler H.,Ding J.D.,Spatz J.P.;Mimicking cellular environments by nanostructured soft interfaces.Nano Letters,2007,7(5):1413-1418.
    [4]Shin H.;Fabrication methods of an engineered microenvironment for analysis of cell-biomaterial interactions.Biomaterials,2007,28(2):126-133.
    [5]Singhvi R.,Kumar A.,Lopez G.P.,Stephanopoulos G.N.,Wang D.I.C.,Whitesides G.M.,Ingber D.E.;Engineering Cell-Shape And Function.Science,1994,264(5159):696-698.
    [6]Chen C.S.,Mrksich M.,Huang S.,Whitesides G.M.,Ingber D.E.;Micropatterned surfaces for control of cell shape,position,and function.Biotechnology Progress,1998,14(3):356-363.
    [7]Loschonsky S.,ShroffK.,Worz A.,Prucker O.,Ruhe J.,Biesalski M.;Surface-attached PDMAA-GRGDSP hybrid polymer monolayers that promote the adhesion of living cells.Biomacromolecules,2008,9(2):543-552.
    [8]Revzin A.,Tornpkins R.G.,Toner M.;Surface engineering with poly(ethylene glycol) photolithography to create high-density cell arrays on glass.Langmuir,2003,19(23):9855-9862.
    [9]Langer R.,Vacanti J.P.;Tissue Engineering.Science,1993,260(5110):920-926.
    [10]Chen J.W.,Wang C.Y.,Lu S.H.,Wu J.Z.,Guo X.M.,Duan C.M.,Dong L.Z.,Song Y.,Zhang J.C.,Jing D.Y.,Wu L.B.,Ding J.D.,Li D.X.;In vivo chondrogenesis of adult bone-marrow-derived autologous mesenchymal stem cells.Cell And Tissue Research,2005,319(3):429-438.
    [11]Wu L.B.,Zhang H.,Zhang J.C.,Ding J.D.;Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering.I.Compression molding based on flexible-rigid combined mold.Tissue Engineering,2005,11(7-8):1105-1114.
    [12]He W.,Halberstadt C.R.,Gonsalves K.E.;Lithography application of a novel photoresist for patterning of cells.Biomaterials,2004,25(11):2055-2063.
    [13]Ward J.H.,Bashir R.,Peppas N.A.;Micropatterning of biomedical polymer surfaces by novel UV polymerization techniques.Journal Of Biomedical Materials Research,2001,56(3):351-360.
    [14]Xia Y.N.,Whitesides G.M.;Soft lithography.Annual Review Of Materials Science,1998,28:153-184.
    [15]Kane R.S.,Takayama S.,Ostuni E.,Ingber D.E.,Whitesides G.M.;Patterning proteins and cells using soft lithography.Biomaterials,1999,20(23-24):2363-2376.
    [16]Csucs G.,Michel R.,Lussi J.W.,Textor M.,Danuser G.;Microcontact printing of novel co-polymers in combination with proteins for cell-biological applications.Biomaterials,2003,24(10):1713-1720.
    [17]Bain C.D.,Troughton E.B.,Tao Y.T.,Evall J.,Whitesides G.M.,Nuzzo R.;Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold.J.Am.Chem.Soc.,1989,111(1):321-335.
    [18]Ron H.,Matlis S.,Rubinstein I.;Self-assembled monolayers on oxidized metals.2.Gold surface oxidative pretreatment,monolayer properties,and depression formation.Langmuir,1998,14(5):1116-1121.
    [19]Arnold M.,Cavalcanti-Adam E.A.,Glass R.,Blummel J.,Eck W.,Kantlehner M.,Kessler H.,Spatz J.P.;Activation of integrin function by nanopatterned adhesive interfaces.Chemphyschem,2004,5(3):383-388.
    [20]Nakayama Y.,Nakamata K.,Hirano Y.,Goto K.,Matsuda T.;Surface hydrogelation of thiolated water-soluble copolymers on gold.Langmuir,1998,14(14):3909-3915.
    [21]Du Y.J.,Brash J.L.;Synthesis and characterization of thiol-terminated poly(ethylene oxide) for chemisorption to gold surface.Journal Of Applied Polymer Science,2003,90(2):594-607.
    [22]Revzin A.,Russell R.J.,Yadavalli V.K.,Koh W.G,Deister C.,Hile D.D.,Mellott M.B.,Pishko M.V.;Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography.Langmuir,2001,17(18):5440-5447.
    [23]Wang B.,Hong Y.,Feng J.,Gong Y.H.,Gao C.Y.;Rings of hydrogel fabricated by a micro-transfer technique.Macromolecular Rapid Communications,2007,28(5):567-571.
    [24]Suh K.Y.,Seong J.,Khademhosseini A.,Laibinis P.E.,Langer R.;A simple soft lithographic route to fabrication of poly(ethylene glycol) microstructures forprotein and cell patterning.Biomaterials,2004,25(3):557-563.
    [25]Xu Q.B.,Gates B.D.,Whitesides G.M.;Fabrication of metal structures with nanometer-scale lateral dimensions by sectioning using a microtome.Journal Of The American Chemical Society,2004,126(5):1332-1333.
    [26]Liu J.F.,Zhang L.G.,Gu N.,Ren J.Y.,Wu Y.P.,Lu Z.H.,Mao P.S.,Chen D.Y.;Fabrication of colloidal gold micro-patterns using photolithographed self-assembled monolayers as templates.Thin Solid Films,1998,327:176-179.
    [27]Veiseh M.,Wickes B.T.,Castner D.G.,Zhang M.Q.;Guided cell patterning on gold-silicon dioxide substrates by surface molecular engineering.Biomaterials,2004,25(16):3315-3324.
    [28]Hong S.W.,Xu J.,Lin Z.Q.;Template-assisted formation of gradient concentric gold rings.Nano Letters,2006,6(12):2949-2954.
    [29]Sun J.G.,Graeter S.V.,Yu L.,Duan S.F.,Spatz J.P.,Ding J.D.;Technique of Surface Modification of a Cell-Adhesion-Resistant Hydrogel by a Cell-Adhesion-Available Inorganic Microarray.Biomacromolecules,2008,9(10):2569-2572.
    [30]Loo Y.L.,Willett R.L.,Baldwin K.W.,Rogers J.A.;Interfacial chemistries for nanoscale transfer printing.Journal Of The American Chemical Society,2002,124(26):7654-7655.
    [31]Childs W.R.,Nuzzo R.G.;Patterning of thin-film microstructures on non-planar substrate surfaces using decal transfer lithography.Advanced Materials,2004,16(15):1323-1327.
    [32]Feng J.,Gao C.Y.,Shen J.C.;Micropatterning biomacromolecules on aldehyde-enriched polyester surfaces by a microtransfer technique.Chemistry Of Materials,2004,16(7):1319-1322.
    [33]姜军,周芳,曾俊英,杨铁锋;光刻技术的现状和发展.红外技术,2002,24(6):8-13.
    [34]Shew B.Y.,Hung J.T.,Huang J.H.,Liu K.,Chou C.;High resolution x-ray micromachining using SU-8 resist.JOURNAL OF MICROMECHANICS AND MICROENGINEERING,2003,13:708 713.
    [35]张琨,林罡,刘刚,田扬超,王晓平;电子束光刻技术的原理及其在微纳加工与纳米器件制备中的应用.电子显微学报,2006,25(2):97-103.
    [36]王旭迪,刘颖,洪义麟,徐向东,付绍军;反应离子束刻蚀应用于光刻胶灰化技术研究.微细加工技术,2004,6(2):23-26.
    [37]Brien J.O.,Hughes P.J.,Brunet M.,Neill B.O.,Alderman J.,Lane B.,Riordan A.O.,Driscoll C.O.;Advanced photoresist technologies for microsystems.JOURNAL OF MICROMECHANICS AND MICROENGINEERING,2001,11:353-358.
    [38]Whitesides G.M.,Ostuni E.,Takayama S.,Jiang X.Y.,lngber D.E.;Soft lithography in biology and biochemistry.Annual Review Of Biomedical Engineering,2001,3:335-373.
    [39]洪吉,刘伟庭,陈裕泉;软光刻技术.国外医学生物医学工程分册,2001,24(3):134-137.
    [1]Singhvi R.,Kumar A.,Lopez G.P.,Stephanopoulos G.N.,Wang D.I.C.,Whitesides G.M.,Ingber D.E.;Engineering Cell-Shape And Function.Science,1994,264(5159):696-698.
    [2]Kane R.S.,Takayama S.,Ostuni E.,Ingber D.E.,Whitesides G.M.;Patterning proteins and cells using soft lithography.Biomaterials,1999,20(23-24):2363-2376.
    [3]Ostuni E.,Kane R.,Chen C.S.,Ingber D.E.,Whitesides G.M.;Patterning mammalian cells using elastomeric membranes.Langmuir,2000,16(20):7811-7819.
    [4]Graeter S.V.,Huang J.H.,Perschmann N.,Lopez-Garcia M.,Kessler H.,Ding J.D.,Spatz J.P.;Mimicking cellular environments by nanostructured soft interfaces.Nano Letters,2007,7(5):1413-1418.
    [5]Zourob M.,Gough J.E.,Ulijn R.V.;A micropatterned hydrogel platform for chemical synthesis and biological analysis.Advanced Materials,2006,18(5):655-659.
    [6]Revzin A.,Tompkins R.G.,Toner M.;Surface engineering with poly(ethylene glycol) photolithography to create high-density cell arrays on glass.Langmuir,2003,19(23):9855-9862.
    [7]Xia Y.N.,Whitesides G.M.;Soft lithography.Annual Review Of Materials Science,1998,28:153-184.
    [8]Prime K.L.,Whitesides G.M.;Adsorption Of Proteins Onto Surfaces Containing End-Attached Oligo(Ethylene Oxide)- A Model System Using Self-Assembled Monolayers.Journal Of The American Chemical Society,1993,115(23):10714-10721.
    [9]Burns N.L.,Vanalstine J.M.,Harris J.M.;Poly(Ethylene Glycol) Grafted To Quartz - Analysis In Terms Of A Site-Dissociation Model Of Electroosmotic Fluid-Flow.Langmuir,1995,11(7):2768-2776.
    [10]Malmsten M.,Emoto K.,Van Alstine J.M.;Effect of chain density on inhibition of protein adsorption by poly(ethylene glycol) based coatings.Journal Of Colloid And Interface Science,1998,202(2):507-517.
    [11]Suh K.Y.,Seong J.,Khademhosseini A.,Laibinis P.E.,Langer R.;A simple soft lithographic route to fabrication of poly(ethylene glycol) microstructures for protein and cell patterning.Biomaterials,2004,25(3):557-563.
    [12]Unsworth L.D.,Sheardown H.,Brash J.L.;Protein resistance of surfaces prepared by sorption of end-thiolated poly(ethylene glycol) to gold:Effect of surface chain density.Langmuir,2005,21(3):1036-1041.
    [13]Mougin K.,Lawrence M.B.,Fernandez E.J.,Hillier A.C.;Construction of cell-resistant surfaces by immobilization of poly(ethylene glycol) on gold.Langmuir,2004,20(10):4302-4305.
    [14]Satomi T.,Nagasaki Y.,Kobayashi H.,Otsuka H.,Kataoka K.;Density control of poly(ethylene glycol) layer to regulate cellular attachment.Langmuir,2007,23(12):6698-6703.
    [15]Larsson A.,Du C.X.,Liedberg B.;UV-patterned poly(ethylene glycol) matrix for microarray applications.Biomacromolecules,2007,8(11):3511-3518.
    [16]Schlapak R.,Pammer P.,Armitage D.,Zhu R.,Hinterdorfer P.,Vaupel M.,Fruhwirth T.,Howorka S.;Glass surfaces grafted with high-density poly(ethylene glycol) as substrates for DNA oligonucleotide microarrays.Langmuir,2006,22(1):277-285.
    [17]Emoto K.,Van Alstine J.M.,Harris J.M.;Stability of poly(ethylene glycol)graft coatings.Langmuir,1998,14(10):2722-2729.
    [18]Branch D.W.,Wheeler B.C.,Brewer G.J.,Leckband D.E.;Long-term stability of grafied polyethylene glycol surfaces for use with microstamped substrates in neuronal cell culture.Biomaterials,2001,22(10):1035-1047.
    [19]Heyes C.D.,Groll J.,Moiler M.,Nienhaus G.U.;Synthesis,patterning and applications of star-shaped poly(ethylene glycol) biofunctionalized surfaces. Molecular Biosystems,2007,3(6):419-430.
    [20]Discher D.E.,Janmey P.,Wang Y.L.;Tissue cells feel and respond to the stiffness of their substrate.Science,2005,310(5751):1139-1143.
    [21]Balaban N.Q.,Schwarz U.S.,Riveline D.,Goichberg P.,Tzur G.,Sabanay I.,Mahalu D.,Safran S.,Bershadsky A.,Addadi L.,Geiger B.;Force and focal adhesion assembly:a close relationship studied using elastic micropatterned substrates.Nature Cell Biology,2001,3(5):466-472.
    [22]Lee J.N.,Jiang X.,Ryan D.,Whitesides G.M.;Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane).Langmuir,2004,20(26):11684-11691.
    [23]Langer R.,Vacanti J.P.;Tissue Engineering.Science,1993,260(5110):920-926.
    [24]Hoffman A.S.;Hydrogels for biomedical applications.Advanced Drug Delivery Reviews,2002,54(1):3-12.
    [25]Vercruysse K.P.,Marecak D.M.,Marecek J.F.,Prestwich G.D.;Synthesis and in vitro degradation of new polyvalent hydrazide cross-linked hydrogels of hyaluronic acid.Bioconjugate Chemistry,1997,8(5):686-694.
    [26]Mellott M.B.,Searcy K.,Pishko M.V.;Release of protein from highly cross-linked hydrogels of poly(ethylene glycol) diacrylate fabricated by UV polymerization.Biomaterials,2001,22(9):929-941.
    [27]Cushing M.C.,Anseth K.S.;Hydrogel cell cultures.Science,2007,316(5828):1133-1134.
    [28]Kopecek J.;Hydrogel biomaterials:A smart future? Biomaterials,2007,28(34):5185-5192.
    [29]Underhill G.H.,Chert A.A.,Albrecht D.R.,Bhatia S.N.;Assessment of hepatocellular function within PEG hydrogels.Biomaterials,2007,28(2):256-270.
    [30]Lee J.B.,Yoon J.J.,Lee D.S.,Park T.G.;Photo-crosslinkable, thermo-sensitive and biodegradable Pluronic hydrogels for sustained release of protein.Journal Of Biomaterials Science-Polymer Edition,2004,15(12):1571-1583.
    [31]Wu D.Q.,Sun Y.X.,Xu X.D.,Cheng S.X.,Zhang X.Z.,Zhuo R.X.;Biodegradable and pH-sensitive hydrogels for cell encapsulation and controlled drug release.Biomacromolecules,2008,9(4):1155-1162.
    [32]Yu L.,Ding J.D.;Injectable hydrogels as unique biomedical materials.Chemical Society Reviews,2008,37(8):1473-1481.
    [33]Sun J.G.,Graeter S.V.,Yu L.,Duan S.F.,Spatz J.P.,Ding J.D.;Technique of Surface Modification of a Cell-Adhesion-Resistant Hydrogel by a Cell-Adhesion-Available Inorganic Microarray.Biomacromolecules,2008,9(10):2569-2572.
    [34]Bain C.D.,Troughton E.B.,Tao Y.T.,Evall J.,Whitesides G.M.,Nuzzo R.;Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold.J.Am.Chem.Soc.,1989,111(1):321-335.
    [35]Ron H.,Matlis S.,Rubinstein I.;Self-assembled monolayers on oxidized metals.2.Gold surface oxidative pretreatment,monolayer properties,and depression formation.Langmuir,1998,14(5):1116-1121.
    [36]Liu J.F.,Zhang L.G.,Gu N.,Ren J.Y.,Wu Y.P.,Lu Z.H.,Mao P.S.,Chen D.Y.;Fabrication of colloidal gold micro-patterns using photolithographed self-assembled monolayers as templates.Thin Solid Films,1998,327:176-179.
    [37]Lahiri J.,Ostuni E.,Whitesides G.M.;Patterning ligands on reactive SAMs by microcontact printing.Langmuir,1999,15(6):2055-2060.
    [38]Yam C.M.,Cho J.,Cai C.Z.;Preparation,characterization,and heck reaction of multidentate thiolate films on gold surfaces.Langmuir,2003,19(17):6862-6868.
    [39]Lutolf M.P.,Tirelli N.,Cerritelli S.,Cavalli L.,Hubbell J.A.;Systematic modulation of Michael-type reactivity of thiols through the use of charged amino acids.Bioconjugate Chemistry,2001,12(6):1051-1056.
    [40]Hiemstra C.,van der Aa L.J.,Zhong Z.Y.,Dijkstra P.J.,Feijen J.;Rapidly in situ-forming degradable hydrogels from dextran thiols through michael addition.Biomacromolecules,2007,8(5):1548-1556.
    [41]Nobs L.,Buchegger F.,Gurny R.,Allemann E.;Surface modification of poly(lactic acid) nanoparticles by covalent attachment of thiol groups by means of three methods.International Journal Of Pharmaeeutics,2003,250(2):327-337.
    [42]Dyson H.J.,Jeng M.F.,Tennant L.L.,Slaby I.,Lindell M.,Cui D.S.,Kuprin S.,Holmgren A.;Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin:Structural and functional characterization of mutants of Asp 26 and Lys 57.Biochemistry,1997,36(9):2622-2636.
    [43]Takahashi N.,Creighton T.E.;On the reactivity and ionization of the active site cysteine residues of Escherichia coli thioredoxin.Biochemistry,1996,35(25):8342-8353.
    [44]Burns J.A.,Butler J.C.,Moran J.,Whitesides G.M.;Selective Reduction Of Disulfides By Tris(2-Carboxyethyl)Phosphine.Journal Of Organic Chemistry,1991,56(8):2648-2650.
    [45]Han J.C.,Han G.Y.;A Procedure For Quantitative-Determination Of Tris(2-Carboxyethyl)Phosphine,An Odorless Reducing Agent More Stable And Effective Than Dithiothreitol.Analytical Biochemistry,1994,220(1):5-10.
    [46]Escobar N.I.,Morales A.,Nunez G.;Micromethodfor quantification of SH groups generated after reduction of monoclonal antibodies.Nuclear Medicine And Biology,1996,23(5):641-644.
    [47]Wright S.K.,Viola R.E.;Evaluation of methods for the quantitation of cysteines in proteins.Analytical Biochemistry,1998,265(1):8-14.
    [48]Russell J.,Rabenstein D.L.;Speciation and quantitation of underivatized and Ellman's derivatized biological thiols and disulfides by capillary electrophoresis.Analytical Biochemistry,1996,242(1):136-144.
    [1]Singhvi R.,Kumar A.,Lopez G.P.,Stephanopoulos G.N.,Wang D.I.C.,Whitesides G.M.,Ingber D.E.;Engineering Cell-Shape And Function.Science,1994,264(5159):696-698.
    [2]Discher D.E.,Janmey P.,Wang Y.L.;Tissue cells feel and respond to the stiffness of their substrate.Science,2005,310(5751):1139-1143.
    [3]Choi C.H.,Hagvall S.H.,Wu B.M.,Dunn J.C.Y.,Beygui R.E.,Kim C.J.;Cell interaction with three-dimensional sharp-tip nanotopography.Biomaterials,2007,28(9):1672-1679.
    [4]Whitesides G.M.,Ostuni E.,Takayama S.,Jiang X.Y.,Ingber D.E.;Soft lithography in biology and biochemistry.Annual Review Of Biomedical Engineering,2001,3:335-373.
    [5]Chen C.S.,Mrksich M.,Huang S.,Whitesides G.M.,Ingber D.E.;Geometric control of cell life and death.Science,1997,276(5317):1425-1428.
    [6]Balaban N.Q.,Schwarz U.S.,Riveline D.,Goichberg P.,Tzur G.,Sabanay I.,Mahalu D.,Safran S.,Bershadsky A.,Addadi L.,Geiger B.;Force and focal adhesion assembly:a close relationship studied using elastic micropatterned substrates.Nature Cell Biology,2001,3(5):466-472.
    [7]Wan Y.Q.,Wang Y.,Liu Z.M.,Qu X.,Han B.X.,Bei J.Z.,Wang S.G.;Adhesion and proliferation of OCT-1 osteoblast-like ceils on micro- and nano-scale topography structured pply(L-lactide).Biomaterials,2005,26(21):4453-4459.
    [8]Li Y.,Yuan B.,Ji H.,Han D.,Chen S.Q.,Tian F.,Jiang X.Y.;A method for patterning multiple types of cells by using electrochemical desorption of self-assembled monolayers within microfluidic channels.Angewandte Chemie-International Edition,2007,46(7):1094-1096.
    [9]Graeter S.V.,Huang J.H.,Perschmann N.,Lopez-Garcia M.,Kessler H.,Ding J.D.,Spatz J.P.;Mimicking cellular environments by nanostructured soft interfaces.Nano Letters,2007,7(5):1413-1418.
    [10]Sun J.G.,Graeter S.V.,Yu L.,Duan S.F.,Spatz J.P.,Ding J.D.;Technique of Surface Modification of a Cell-Adhesion-Resistant Hydrogel by a Cell-Adhesion-Available Inorganic Microarray.Biomacromolecules,2008,9(10):2569-2572.
    [11]Yang S.Y.,Mendelsohn J.D.,Rubner M.F.;New class of ultrathin,highly cell-adhesion-resistant polyelectrolyte multilayers with micropatterning capabilities.Biomacromolecules,2003,4(4):987-994.
    [12]Thery M.,Racine V.,Piel M.,Pepin A.,Dimitrov A.,Chen Y.,Sibarita J.B.,Bornens M.;Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity.Proceedings of the National Academy of Sciences of the United States of America,2006,103(52):19771-19776.
    [13]Offenhausser A.,Bocker-Meffert S.,Decker T.,Heipenstein R.,Gasteier P.,Groll J.,Moller M.,Reska A.,Schafer S.,Schulte P.,Vogt-Eisele A.;Microcontact printing of proteins for neuronal cell guidance.Soft Matter,2007,3(3):290-298.
    [14]Wang J.H.C.,Yang G.G.,Li Z.Z.,Shen W.;Fibroblast responses to cyclic mechanical stretching depend on cell orientation to the stretching direction.Journal of Biomechanics,2004,37(4):573-576.
    [15]Shen J.Y.,Chan-Park M.B.E.,Feng Z.O.,Chan V.,Feng Z.W.;UV-embossed microchannel in biocompatible polymeric film:Application to control of cell shape and orientation of muscle cells.Journal of Biomedical Materials Research Part B-Applied Biomaterials,2006,77B(2):423-430.
    [16]Chou L.S.,Firth J.D.,Uitto V.J.,Brunette D.M.;Effects of titanium substratum and grooved surface topography on metalloproteinase-2expression in human fibroblasts.Journal Of Biomedical Materials Research,1998,39(3):437-445.
    [17]Sun J.G.,Tang J.,Ding J.D.;Cell orientation on a stripe-micropatterned surface.Chinese Science Bulletin,2009.
    [18]Lensen M.C.,Mela P.,Mourran A.,Groll J.,Heuts J.,Rong H.T.,Moiler M.;Micro- and nanopatterned star poly(ethylene glycol)(PEG) materials prepared by UV-based imprint lithography.Langmuir,2007,23(14):7841-7846.
    [19]Falconnet D.,Koenig A.,Assi T.,Textor M.;A combined photolithographic and molecular-assembly approach to produce functional micropatterns for applications in the biosciences.Advanced Functional Materials,2004,14(8):749-756.
    [20]Larsson A.,Du C.X.,Liedberg B.;UV-patterned poly(ethylene glycol) matrix for microarray applications.Biomacromolecules,2007,8(11):3511-3518.
    [21]Arnold M.,Cavalcanti-Adam E.A.,Glass R.,Blummel J.,Eck W.,Kantlehner M.,Kessler H.,Spatz J.P.;Activation of integrin function by nanopatterned adhesive interfaces.Chemphyschem,2004,5(3):383-388.
    [22]Ding X.M.,Kawaguchi Y.,Sato T.,Narazaki A.,Niino H.;Fabrication of microarrays on fused silica plates using the laser-induced backside wet etching method Langmuir,2004,20(22):9769-9774.
    [23]Ward J.H.,Bashir R.,Peppas N.A.;Micropatterning of biomedical polymer surfaces by novel UV polymerization techniques.Journal Of Biomedical Materials Research,2001,56(3):351-360.
    [24]Revzin A.,Russell R.J.,Yadavalli V.K.,Koh W.G.,Deister C.,Hile D.D.,Mellott M.B.,Pishko M.V.;Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography.Langmuir,2001,17(18):5440-5447.
    [25]Hoffman A.S.;Hydrogels for biomedical applications.Advanced Drug Delivery Reviews,2002,54(1):3-12.
    [26]Liu H.F.,Fan H.B.,Cui Y.L.,Chen Y.P.,Yao K.D.,Goh J.C.H.;Effects of the controlled-released basic fibroblast growth factor from chitosan-gelatin microspheres on human fibroblasts cultured on a chitosan-gelatin scaffold.Biomacromolecules,2007,8(5):1446-1455.
    [27]Wu D.Q.,Wang T.,Lu B.,Xu X.D.,Cheng S.X.,Jiang X.J.,Zhang X.Z.,Zhuo R.X.;Fabrication of supramolecular hydrogels for drug delivery and stem cell encapsulation.Langmuir,2008,24(18):10306-10312.
    [28]Hong Y.,Song H.Q.,Gong Y.H.,Mao Z.W.,Gao C.Y.,Shen J.C.;Covalently crosslinked chitosan hydrogel:Properties of in vitro degradation and chondrocyte encapsulation.Acta Biomaterialia,2007,3(1):23-31.
    [29]Xi T.F.,Fan C.X.,Feng X.M.,Wan Z.Y.,Wang C.R.,Chou L.L.;Cytotoxicity and altered c-myc gene expression by medical polyacrylamide hydrogel.Journal of Biomedical Materials Research Part A,2006,78A(2):283-290.
    [30]Cui F.Z.,Tian W.M.,Hou S.P.,Xu Q.Y.,Lee I.S.;Hyaluronic acid hydrogel immobilized with RGD peptides for brain tissue engineering.Journal of Materials Science-Materials in Medicine,2006,17(12):1393-1401.
    [31]Yu H.J.,Xu X.Y.,Chen X.S.,Lu T.C.,Zhang P.B.,Jing X.B.;Preparation and antibacterial effects of PVA-PVP hydrogels containing silver nanoparticles.Journal of Applied Polymer Science,2007,103(1):125-133.
    [32]Yu L.,Ding J.D.;Injectable hydrogels as unique biomedical materials.Chemical Society Reviews,2008,37(8):1473-1481.
    [33]Duan S.F.,Zhu W.,Yu L.,Ding J.D.;Negative cooperative effect of cytotoxicity of a di-component initiating system for a novel injectable tissue engineering hydrogel.Chinese Science Bulletin,2005,50(11):1093-1096.
    [34]Mao S.R.,Shuai X.T.,Unger F.,Wittmar M.,Xie X.L.,Kissel T.;Synthesis,characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers.Biomaterials,2005,26(32):6343-6356.
    [35]Bain C.D.,Troughton E.B.,Tao Y.T.,Evall J.,Whitesides G.M.,Nuzzo R.;Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold J.Am.Chem.Soc.,1989,111(1):321-335.
    [36]Ding J.,Yang Y.;Brownian Dynamics Simulation of Rodlike Polymers under Shear-Flow.Rheologica Acta,1994,33(5):405-418.
    [1]Sun J.G.,Graeter S.V.,Yu L.,Duan S.F.,Spatz J.P.,Ding J.D.;Technique of Surface Modification of a Cell-Adhesion-Resistant Hydrogel by a Cell-Adhesion-Available Inorganic Microarray.Biomacromolecules,2008,9(10):2569-2572.
    [2]Sawhney A.S.,Pathak C.P.,Hubbell J.A.;Bioerodible Hydrogels Based On Photopolymerized Poly(Ethylene Glycol)-Co-Poly(Alpha-Hydroxy Acid)Diacrylate Macromers.Macromolecules,1993,26(4):581-587.
    [3]Cruise G.M.,Scharp D.S.,Hubbell J.A.;Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol)diacrylate hydrogels.Biomaterials,1998,19(14):1287-1294.
    [4]Cruise G.M.,Hegre O.D.,Scharp D.S.,Hubbell J.A.;A sensitivity study of the key parameters in the interfacial photopolymerization of poly(ethylene glycol) diacrylate upon porcine islets.Biotechnology And Bioengineering,1998,57(6):655-665.
    [5]Anseth K.S.,Bowman C.N.,BrannonPeppas L.;Mechanical properties of hydrogels and their experimental determination.Biomaterials,1996,17(17):1647-1657.
    [6]Elliott J.E.,Anseth J.W.,Bowman C.N.;Kinetic modeling of the effect of solvent concentration on primary cyclization during polymerization of multifunctional monomers.Chemical Engineering Science,2001,56(10):3173-3184.
    [7]Metters A.T.,Anseth K.S.,Bowman C.N.;Fundamental studies of a novel,biodegradable PEG-b-PLA hydrogel.Polymer,2000,41(11):3993-4004.
    [8]Patel P.N.,Smith C.K.,Patrick C.W.;Rheological and recovery properties of poly(ethylene glycol) diacrylate hydrogels and human adipose tissue.Journal Of Biomedical Materials Research Part A,2005,73A(3):313-319.
    [9]D'Erricot G.,De Lellis M.,Mangiapia G.,Tedeschi A.,Ortona O.,Fusco S., Borzacchiello A.,AmbrosiO L.;Structural and mechanical properties of UV-photo-cross-linked poly(N-vinyl-2-pyrrolidone) hydrogels.Biomacromolecules,2008,9(1):231-240.
    [10]Graeter S.V.,Huang J.H.,Perschmann N.,Lopez-Garcia M.,Kessler H.,Ding J.D.,Spatz J.P.;Mimicking cellular environments by nanostructured soft interfaces.Nano Letters,2007,7(5):1413-1418.
    [11]Discher D.E.,Janmey P.,Wang Y.L.;Tissue cells feel and respond to the stiffness of their substrate.Science,2005,310(5751):1139-1143.
    [12]Balaban N.Q.,Schwarz U.S.,Riveline D.,Goichberg P.,Tzur G.,Sabanay I.,Mahalu D.,Safran S.,Bershadsky A.,Addadi L.,Geiger B.;Force and focal adhesion assembly:a close relationship studied using elastic micropatterned substrates.Nature Cell Biology,2001,3(5):466-472.
    [13]Lee J.N.,Jiang X.,Ryan D.,Whitesides G.M.;Compatibility of mammalian cells on surfaces of poIy(dimethylsiloxane).Langmuir,2004,20(26):11684-11691.