GaAs基矢量水声传感器工艺设计及性能测试
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微/纳电子机械系统(M/NEMS)具有小型化、低功耗、集成度高等优点,可以完成大尺寸机电系统所不能完成的任务,也可嵌入大系统中,把自动化、智能化和可靠性提高到一个新的水平。基于掺杂硅压阻效应的MEMS器件研究已经有几十年的历史,并获得了广泛地应用。但是硅压阻效应存在灵敏度不够高,且电阻率变化对温度的依赖性较大等缺点,限制了其在高精度、高灵敏传感场合的应用。
     本论文基于共振隧穿结构(RTS)的介观压阻效应,对GaAs基矢量水声传感器的设计、加工方法和测试等进行了研究。论文主要包括三个方面的工作:RTS的压阻系数标定、GaAs体加工工艺和水声传感器设计与测试。论文采用分子束外延(MBE)技术在半绝缘GaAs衬底上生长了GaAs/AlAs/InGaAs双势垒RTS,并加工出了具有明显微分负阻(NDR)效应的共振隧穿器件。分别采用显微拉曼-探针加压系统、离心机-Agilent4156C半导体特性分析仪测试系统和振动台-电桥解算电路系统对RTS的介观压阻现象进行实验测试,获得了较相近的最大介观压阻系数:10-9Pa-1量级(NDR区);对GaAs基控制孔和腐蚀自停止体加工工艺进行了研究,设计并采用控制孔技术加工出了四梁-方块水声传感器基础结构;最后,在杭州应用声学研究所(715所),对封装后的矢量水声传感器指向性、频响和灵敏度等进行了初步测试。获得了较好的“8”字形矢量指向性和频响曲线,水声传感器的灵敏度在1KHz时达到-184.6dB。
     本论文的创新点在于将量子阱共振隧穿材料与M/NEMS相结合,研究纳米尺度的力电耦合现象,并将其应用在矢量水声传感器结构中。优化GaAs基单步工艺,完善了GaAs基成套工艺,加工出介观压阻型M/NEMS器件。
Micro/nano-electro-mechanic System (MEMS) has many merits, such as extreme miniaturization, low power consumption, high integrated level and so on. They can complete tasks that large-dimension electro-mechanic system can not achieve, and raise automatization, intelligentized ability and reliability to a new level by embedding in large system. The study of MEMS devices based on the piezoresistive effect of doped silicon has several ten years history with widely applications. Because of the relative low sensitivity and resistance variety dependency on temperature et al of the piezoresistive effect based on doped silicon, the uses of it are restrained under conditions such as accurate precision and high sensitivity.
     Based on the piezo-resistive effect of resonant tunneling structure (RTS), design, process methods and measurement et al of GaAs vector hydrophone are studied in this paper. The works mainly contain three targets: calibration of the piezoresistive coefficient of RTS, GaAs bulk process methods and design, measurements of the hydrophone. By molecular beam epitaxy (MBE) technology, the GaAs/AlAs/InGaAs double barrier RTS is grown on semi-insulating GaAs substrate, and the resonant tunneling devices are fabricated with obvious negative differential resistance (NDR) effect. The meso-piezoresistive phenomena of RTS is measured, either by micro Raman-probe stress system, centrifugal machine-Agilent4156C semiconductor characteristic analyzer system and/or jarring table-Wheatstone bridge solution circuit system, and the consistent largest piezoresistive coefficients: 10-9Pa-1 are discovered (NDR region); The control-hole technology and etch-stop technology of GaAs bulk process methods are studied too, and by control-hole technology, the basic hydrophone structure with four beam-block is designed and fabricated; At last, In Hangzhou Applied Acoustics Research Institute (715 institute), the directivity, frequency response and sensitivity et al of the packaged vector hydrophone are measured primarily. The good“8”cosine vector directivity and frequency response curves are obtained, and the sensor’s sensitivity reaches -184.6dB at 1 KHz.
     The innovations of this paper are the combination of quantum well resonant tunneling materials and M/NEMS, the study of the electro-mechanic coupling phenomena in nano-dimension, and its application in vector hydrophone structure. Others contain optimizing GaAs process steps, perfecting series of GaAs fabrication technology, and processing the meso-piezoresistive M/NEMS devices.
引文
[1] P. See, Member, High Performance Si/Si1-xGex Resonant Tunneling Diodes, IEEE ELECTRON DEVICE LETTERS, VOL. 22, NO. 4, APRIL 2001.
    [2] Janet L. Pan , J.E. McManis, Gallium-arsenide deep-level tunnel diode with record negative conductance and record peak current density , Solid-State Electronics 48 (2004).
    [3] Dwight Woolard , Weidong Zhang, A novel interband-resonant tunneling diode (I-RTD) based high-frequency oscillator, Solid-State Electronics 49 (2005) 257–266.
    [4] 温廷敦, 张文栋,介观压阻效应,微纳电子技术,2003 年第 7/ 8 期,41-43
    [5] Wendong Zhang, Chenyang Xue, Jijun Xiong, Bin Xie, Tianjie Wei, Yong Chen. Piezoresistive effects of resonant tunneling structure for application in micro-sensors [J]. Indian Journal of Pure & Applied Physics, 2007, 45: 294—298.
    [6] Miao J M, Hartnagel H L. Micromachining of three-dimensional GaAs membrane structures using high-energy nitrogen implantation. J. Micromech. Microeng, 2003, 13:35–39.
    [7] Lalinsky T, Burian E et al. Thermal actuation of a GaAs cantilever beam. J. Micromech. Microeng, 2000, 10:293–298.
    [8] R. G. Beck, M. A. Eriksson, M. A. Topinka et al, GaAs/AlGaAs self-sensing cantilevers for low temperature scanning probe microscopy, APPLIED PHYSICS LETTERS VOLUME 73, NUMBER 8 24 AUGUST 1998.
    [9] Robert G. Knobel, Andrew N. Cleland, Nanometre-scale displacement sensing using a single electron transistor, NATURE ,VOL 424, 17 JULY 2003.
    [10] K Fobeletstz, R Vounckxt and G Borghsz, A GaAs pressure sensor based on resonant tunnelling diodes, J. Micromech. Microeng. 4, p. 123-128 (1994).
    [11] K. Mutamba, M. Flath and A. Sigurdardóttir et al, A GaAs Pressure Sensor with Frequency Output based on Resonant Tunneling Diodes, IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 48,p.1333-1338, 1999.
    [12] Hiroshi Yamaguchi, Sen Miyashita and Yoshiro Hirayama, Microelectromechan- ical displacement sensing using InAs/AlGaSb heterostructures, APPLIED PHYSICS LETTERS VOLUME 82, NUMBER 3 20 JANUARY 2003.
    [13] Leslie C B. Hydrophone for measuring particle velocity [J]. Acoust. Soc. Am., 1956, 28 (4): 711 - 715.
    [14] D’Spain G L. Energetics of the deep ocean’s infrasonic sound field[ J ]. Acoust. Soc. Am. , 1991, 89 (3) : 1134 - 1158.
    [15] Shchurov V A. Coherent and diffusive fields of underwater acoustic ambient noise [J]. Acoust. Soc. Am, 1991, 90 (2): 991 -1001.
    [16] Shchurov V A. The interaction of energy flows of underwater ambient noise and local source [J]. Acoust. Soc. Am, 1991, 90 (2):1002 - 1004.
    [17] Berliner M J, Lindberg J F. Acoustic particle velocity sensor: design, performance and applications [C]. Woodbury, N Y: AIP Press, 1996. 368.
    [18] 孙贵青,李启虎. 声矢量传感器研究进展[J]. 声学学报, 2004, (11) : 481 - 489.
    [19] 何祚庸,赵玉芳编. 声学基础[M]北京: 国防工业出版社, 1986. 9.
    [20] 惠俊英,李春旭,梁国龙,等. 声压和振速联合信号处理抗相干干扰[J]. 声学学报, 2000, 25 (5) : 389 - 394.
    [21] 冯海泓,梁国龙,惠俊英. 目标方位的声压、振速联合估计[J]. 声学学报, 200025 (6) : 516 - 520.
    [22] Thomas B G. Underwater Acoustic Intensity Probe [P]. United States Patent: 5392258, 1995 - 02.
    [23] 陈洪娟. 中频小型矢量水听器[D ]. 哈尔滨:哈尔滨工程大学, 2005. 3.
    [24] Fellow A N. Acoustic Vector2Sensor Array Processing[J]. IEEE TransactorsOn Signal Processing, 1994, 49 (9) : 576.
    [25] Fellow A N. Vector2Sensor Array Processing for Electromagnetic Source Localization [ J ]. IEEE Transactions On Signal Processing, 1994, 42 (2): 621.
    [26] Anderson L D, Park T,Md. Vector Acoustic Mine Mechanism [P]. United States Patent: 4189999, 1980 - 02.
    [27] PeacockM J, Katy, Tex. Acoustic Leak Detection Systerm[P]. United States Patent: 5231866, 1993 - 08.
    [28] Benjamin A C, West Kinston, R. I. Acoustic Vector Sensing Sonar System[P]. United States Patent: 5930201, 1999 - 07.
    [29] 孙贵青,杨得森,张揽月. 基于矢量水听器的水下目标低频辐射噪声测量方法研究[J]. 声学学报, 2002. 9: 429 - 434.
    [30] Franklin J B, Barry P J. Acoustic Parficle Acceleration Sensors [C]. Acoustic Particle Velocity Sensors: Design、Performance and App lications, 1995. 9.
    [31] Benjamin A. Cray. West Kinston. Acoustic Vector Sensor[P]. United States Patent: US 6370084 B1, 2002 - 04.
    [32] Boston University. A Novel Micro-Electro-Mechanical System (MEMS) Design for an Underwater Acoustic Field Sensor [C]. Berlin: ASA /EAA /DAGA’ 99 Meeting Lay Language Papers, 1999.
    [33] Howard K R, ThomasW K, Pafrick J K et al. A microfabricated Electron Tunneling Accelerometer as a Directional Underwater Acoustic Sensor [C]. American Institute of Physics: Proceeding of APVS’95, 1995.
    [34] Kainam TW, Hoiming C. Beam Patterns of an UnderwaterAcoustic Vector Hydrophone Located Away From Any Reflecting Boundary [J]. IEEE Journal of Engineering, 2002, 27 (3): 628 -637.
    [35] Kainam TW, Michael D Z. Closed From Underwater Acoustic Direction2Finding with Arbitrarily Spaced Vector Hydrophones at Unknown Locations [ J ]. IEEE Journal of Oceanic Engineering, 1997, 22 (4): 649 - 658.
    [36] CHEN Li-jie, YANG Shi-e. The Design of Piezoresistive Vector Hydrophone [C]. Harbin: The 4 th International Symposium on Acoustic Engineering and Technology, 2005. 29 - 30.
    [37] Roycl, Khana. Landauer resistor of thue-morse and Fibonacci lattices and some related issues [J]. Phys. Rev. B, 1994, 49(21):14979.
    [38] R. Tsu and L. Esaki. Tunneling in a finite superlattice [J]. Apply. Phys. Lett., 1973, Vol.22, 562.
    [39] Funato M, Fuj1ta S, Fuj1ta S. Energy states in ZnSe-GaAs heterovalent quantum structures [J]. Phys Rev B,1999,60(24):1665
    [40] Lu Y Q, Zhu Y Y, Chen Y F. Optical properties of an ionic-type phononic crystal [J]. Science, 1999, vol. 284, pp. 1822
    [41] Wen T. D, Xu L.P, Anastassakis E. On the piezoelectric signals of multilayer systems [J]. Phys Stat Sol (a), 2000, vol. 3, pp. 467.
    [42] Garry K.Fedder. Top-Down design of MEMS. Technical Proceedings of the MSM 2000 International Conference on Modeling and Simulation of Microsystem, 2000.
    [43] Roycl, Khana. Landauer resistor of thue-morse and Fibonacci lattices and some related issues [J]. Phys. Rev. B, 1994,49(21):14979
    [44] 郭维廉,梁惠来,张世林等.共振隧穿二极管(J). 微纳电子技术,2002,39(5):11-15.
    [45] 王振坤.谐振隧穿二极管(RTD)及其集成技术的研究.天津大学硕士学位论文,2002.
    [46] Evers. N, Vendier. O, Chun. C et al, Thin film pseudomorphic AlAs/In0.53Ga0.47As/InAs resonant tunnellingdiodes integrated onto Si substrates, Electron Device Letters, IEEE, 1996, Vol.17, pp. 443 – 445.
    [47] Peiji Zhao, H.L.Cui, et al. Operation principle of resonant tunneling THz oscillator at fixedbias voltages, Computational Electronics, 2000, pp.146 – 147.
    [48] Shengbo. Sang, Chengyang Xue, and Wendong Zhang, Raman quantitate stress in Nano-thin film of MEMS. Solid State Phenomena, 2007, 121-123:943
    [49] J. N. Schulman, H. J. De Los Santos, IEEE Electron Device Letters, Vol.17, No.5, P. 220, 1996.
    [50] 牛萍娟,共振隧穿器件及其应用的研究,博士学位论文,天津:天津大学,2002.
    [51] 李永平, 董欣主编,蒋宏宇, PSpice 电路设计实用教程,国防工业出版;2004.
    [52] Donald A. Neamen 著,赵毅强等译,半导体物理与器件,电子工业出版社,2005.
    [53] Zh. M. Wang, L. Zhang, K. Holmes, and G. J. Salamo. Selective etching of InGaAs/GaAs (100) multilayers of quantum-dot chains [J]. APPLIED PHYSICS LETTERS, 2005, 86:143106(1)-(3).
    [54] A. J. Tang, K. Sadra, and B. G. Streetman. Selective Etching of AIxGa1-xAs and In(AIxGa1-x)AS Alloys in Succinic Acid-Hydrogen Peroxide Solutions [J]. J.Electrochem. Soc., 1993, 140(5):82-83.
    [55] M. Gorska, H. Wrzesinska, J. Muszalski, J. Ratajczak, B. Mroziewicz. A simple method of mesa fabrication on DBR containing heterostructures [J]. Materials Science in Semiconductor Processing, 2002, 5(6): 505–509.
    [56] Arno F?rster, Jürgen Stock, Simone Montanari, Mihail Ion Lepsa, and Hans Lüth. Fabrication and Characterisation of GaAs Gunn Diode Chips for Applications at 77 GHz in Automotive Industry [J]. Sensors 2006, 2006, 6:350-360.
    [57] K. F. Yarna, C. I. Liaob, Y. H. Wangb, M. P. Houngb, M. C. Churea. Gate-recessed delta-doping enhancement-mode Al0.2Ga0.8As/In0.15Ga0.85As PHEMTs using a new citric buffer etchant [J]. Materials Science in Semiconductor Processing, 2005, 8: 550–554.
    [58] Tong M, Nummila K, Sec J W, et al. Process for enhancement/depletion mode GaAs/InGaAs/AlGaAs pseudomorphic MODFETS using selective wet gate recessing [J]. Electron Lett, 1992, 28(17): 1633-1634.
    [59] C.S. Lin, Y.K. Fang, S.F. Chen, et al. Improving reactive ion etching selectivity of GaAs/AlGaAs with He plus. Materials Science in Semiconductor Processing, 2004, 7:59
    [60] D.C. Hays, H. Cho, and K.B. Jung, Selective dry etching using inductively coupled plasmas Part I. GaAs/AlGaAs and GaAs/InGaP. Applied Surface Science, 1999, 147:125
    [61] S.Salimian and C.B.Cooper, Selective dry etching of GaAs over AlGaAs in SF6/SiCl4 mixtures. J. Vac. Sci. Technol. B, 1988, 6(6):1641
    [62] S. K. Murad, P. D. Wang, and N. I. Cameron, Damage free and selective RIE of GaAs/AIGaAs in SiCI4/SiF4 plasma for MESFET and pseudomorphic HEMT’s gate recess etching. Microelectronic Engineering, 1995, 27:439
    [63] Wang Wei-lin, Liu Xun-chun, Wei Ke, et al. Selective etching of GaAs/AlGaAs by ICP. Journal of Function Materials and Devices, 2000, 6(3):174 [王惟林,刘训春, 魏珂,等. GaAs 的 ICP 选择刻蚀研究. 功能材料与器件学报. 2000, 6(3):174]
    [64] R. J. Malik, L. M. Lunardi, R. W. Ryan, et al. Submicron scaling of AIGaAs/GaAs self-aliened thin emitter heterojunction bipolar transistors (sate-HBT)with current gain independent of emitter area. Electronics Letters, 1989, 25(17):1175
    [65] Ronald J. DiSabatino Jr., Package of an Iron-gallium Nanowire Acoustic sensor, 2006.