对流传递过程的不可逆性及其优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热量、质量和动量传递是能源利用中的重要环节,传递过程性能的提高对节能减排意义重大。基于这些传递现象的类比性,本文引入了质量积和动量积的概念,分别代表介质中质量扩散和动量扩散的能力;定义了质量积和动量积的耗散函数;举例说明了积(热量积、质量积和动量积)的耗散而并非熵产是不涉及热功转换的传递过程不可逆性的量度;提出了最小积耗散原理就是传递过程的最小作用量原理的观点,并导出了输运系数为常数的牛顿粘性定律、傅立叶导热定律和菲克扩散定律,表明这些定律本身反映的就是最优的传递过程。
     为了揭示对流换热的热力学优化与传递过程优化的差别,用积耗散极值原理和熵产最小原理分别导出了对流换热性能最佳时流体速度场所需满足的相应欧拉方程。对圆管层流换热优化的结果表明,积耗散极值原理更适合于与热功转换无关的对流换热过程的优化。
     通过定义了湍流换热中的热量积及其耗散函数,以及采用零方程湍流模型导得了泵功给定时湍流换热性能最优的速度场需满足的欧拉方程,从而把层流换热中的热量积耗散极值原理推广至湍流换热。对平行平板通道内湍流换热的优化结果表明了微肋管能有效强化湍流换热,指出了不同Re下微肋的最佳高度。
     将对流换热的场协同理论推广到对流传质过程,导得了对流传质的场(速度场与组分浓度梯度场)协同方程,即为质量积耗散取极值时需满足的用于对流传质优化的欧拉方程。利用空气与水的对流传质实验验证了对流传质场协同理论,并将其用于空间站实验舱内通风排污过程和光催化反应器内对流传质过程的优化。结果表明,采用集中进风代替均匀进风,舱内污染物浓度最大值从0.47%降为0.22%;双斜内肋板式反应器比平板反应器的排污效率高22%。
     将对流换热的场协同理论也推广到流动过程,导得了流动过程的场(速度场和速度梯度场)协同方程,即为动量积耗散取极值时需满足的用于流动过程优化的欧拉方程。将其用于并联通道流和稠油输运过程的优化结果表明,设置适当的导流片使流动阻力减小了5%;管内形成多纵向涡的流动结构使稠油保温输运过程中的粘性耗散降低了19%。
Heat, mass and momentum transport processes are the three important parts in energy utilization. Transport performance improvement is of great significance to the energy conservation and emission reduction. In terms of the analogy among the heat, mass and momentum transport phenomena, the concepts of mass entransy and momentum entransy have been introduced, they represent mass and momentum transfer ability of a system. The mass entransy dissipation function and the momentum entransy dissipation function have also been defined, and it is the entransy dissipation rather than entropy generation that measures the irreversibility of a transfer process, that is unrelated with the heat-work conversion in a thermodynamic cycle. Further, the minimum entransy dissipation principle is pointed out to be the least action principle in transport processes. For constant transport coefficient, the Newton’s law of viscosity, Fourier’s law of heat conduction and Fick’s law of diffusion have been deduced from this least action principle, suggesting that these laws themselves reflect the optimal transport processes.
     In order to illuminate the differences between the thermodynamic optimization and the transport optimization for convective heat transfer, two different Euler’s equations have been deduced from the extremum principle of entransy dissipation and the entropy generation minimum principle, respectively, which lead to two different fluid velocity fields with the best heat transfer performance. The optimization results of the convective heat transfer of laminar flow in a tube show that the extremum principle of entransy dissipation is more suitable for the convective heat transfer optimization than the entropy generation minimum principle.
     By defining the concepts of heat entransy and the heat entransy dissipation function for the convective heat transfer of turbulent flow and utilizing a zero equation turbulence flow model, an Euler’s equation, which leads to a velocity field with the best turbulent heat transfer performance, has been developed for a given pumping power. The extremum principle of entransy dissipation for laminar heat transfer optimization has then been extended to the turbulent heat transfer optimization. As an example, the field synergy analysis for turbulent heat transfer between parallel plates is presented. The results support that the tubes with micro fins effectively enhance heat transfer, and have clarified the best heights of the fins for different Reynolds numbers.
     The field synergy principle for convective heat transfer has been extended to the convective mass transfer. The concept of field synergy between the velocity vectors and concentration gradients is introduced, and then the convective mass transfer field synergy equation is deduced, it is just the Euler’s equation for convective mass transfer optimization with the extremum value of the mass entransy dissipation. This principle has been validated experimentally through a convective mass transfer process between air and liquid water, and then been used to optimize the decontamination ventilation designs in space station cabins and the geometric structure designs of photocatalytic oxidation reactors. The results show that by utilizing the concentrated air supply system to substitute the uniform air supply system, the maximum contaminant concentration in the cabin is decreased from 0.47% to 0.22%, and the contaminant removal effectiveness for the discrete double-inclined ribs plate reactor is increased by 22 % compared to the smooth plate reactor.
     The field synergy principle for convective heat transfer has also been extended to the fluid flow. The concept of field synergy between the velocity vectors and velocity gradients is introduced, and then the fluid flow field synergy equation is deduced, it is just the Euler’s equation for fluid flow optimization with the extremum value of the momentum entransy dissipation. As an example, the field synergy analyses for duct flow with two parallel branches and insulated transport process of thick oil are presented. The results show that by adding a flow divider nearby the fork may reduce the flow drag of duct flow by 5%, and the resulting multi-longitudinal vortex flow reduces the flow drag by 19% during the insulated transport process of the thick oil.
引文
[1] National Energy Policy, 2001, www.whitehouse.gov/energy
    [2]中共中央关于制订国民经济和社会发展第十一个五年规划的建议.中国共产党第十六届中央委员会第五次全体会议通过,2005-10-13
    [3] Bergles A E. Handbook of heat transfer applications. NewYork: McGraw-Hill, 1985
    [4] Bergles A E. Heat transfer enhancement --- the encouragement and accommodation of high heat fluxes. ASME Journal of Heat Transfer, 1997, 119: 8-19
    [5]顾维藻,神家锐,马重芳等.强化换热.北京:科学出版社, 1990
    [6] Webb R L, Bergles A E. Heat transfer enhancement: second generation technology. Mechanical Engineering, 1983, 115(6): 60-67
    [7] Bergles A E. Some perspectives on enhanced heat transfer second Generation heat transfer technology, ASME Journal of Heat Transfer, 1988, 110: 1082-1096
    [8] O’Connor J P, You S M. A painting technique to enhance pool boiling heat transfer in saturated FC-72, ASME Journal of Heat Transfer, 1995, 117: 387-393
    [9] Ciofalo M, Collins M W. Predictions of heat transfer for turbulent flow in plane and rib-roughened channels using large eddy simulation. Proceedings of the Seventh National Congress on Heat Transfer, Bologna, Italy, 1989: 57-72
    [10] Eckels S J, Doerr T M, Pate M B. Heat transfer and pressure drop of R-134a and Ester Lubricant mixtures in a smooth and a micro-fin tube: part I-evaporation, ASHRAE Transactions, 1994, 100(Part 2): 265-281
    [11] Eckels S J, Doerr T M, Pate M G. Heat transfer and pressure drop of R-134a and Ester Lubricant mixtures in a smooth tube and a micro-fin tube: part II-condensation, ASHRAE Transactions, 1994, 100(Part 2): 283-294
    [12] Fiebig M, Sanchez M A. Enhancement of heat transfer and pressure Loss by winglet vortex generators in a fin-tube element, Compact Heat Exchangers for Power and Process Industries, 1992, HTD-v201, ASME, New York, NY, pp. 7-14
    [13]陈听宽,田永生,陈宣政等.顺排翅片管束加扰流件强化传热和阻力特性的试验研究.化工机械, 1994, 21(3): 125-131
    [14] Bergles A E, Lee R A, Mikic B B. Heat transfer in rough tubes with tape-generated swirl flow, ASME Journal of Heat Transfer, 1969, 91: 443-450
    [15] Eason R M, Bayazitoglu Y, Miade A. Enhancement of heat transfer in square helical ducts. International Journal of Heat and Mass Transfer, 1994, 37(14): 2077-2087
    [16] Fukusako S, Yamada M, Kimoshita K, et al. Boiling heat transfer in liquid-saturated porous bed. Proceedings of the 1991 ASME-JSME Thermal Engineering Joint Conference, Tokyo, JSME, and New York, ASME, 1991: 281-288
    [17] Mcgillis W R, Carey V P. On the role of marangoni effects on the critical heat flux for pool boiling of binary mixtures. ASME Journal of Heat Transfer, 1996, 118: 103-109
    [18] Eastman J A, Choi S U S, Li S, et al. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Apllied physics letter, 2001, 78(6): 718-720
    [19] Ma C F, Zhuang Y, Lee S C, et al. Impingement heat transfer and recovery effect with submerged jets of large Prandtl number liquid-I: unconfined circular jets. International Journal of Heat and Mass Transfer, 1997, 40(6): 1481-1490
    [20] Ma C F, Zhuang Y, Lee S C, et al. Impingement heat transfer and recovery effect with submerged jets of large Prandtl number liquid-II: initially laminar confined slot jets. International Journal of Heat and Mass Transfer, 1997, 40(6): 1491-1500
    [21] Chen Y C, Ma C F, Yuan Z X, et al. Heat transfer enhancement with impinging free surface liquid jets flowing over heated wall coated by a ferrolluid. Int. J. Heat and Mass Transfer, 2001, 44: 499-502
    [22] Lee J H, Singh R K. Mathematical models of scraped surface heat exchangers in relation to food sterilization, Chemical Engineering Communications, 1990, 87: 21-52
    [23] Soria J, Norton M P. The effect of transverse plate vibration on the mean laminar convective boundary layer heat transfer rate. Experimental Thermal and Fluid Science, 1991, 4: 226-238
    [24] Hong J S. The study of ultrasonic enhancement in phase-changer process. ASME paper No. 93-HT-2, 1993
    [25] Cheng L, Qiu Y. The research of complex heat transfer enhancement by fluid induced vibration, J. Hydrodynamics, Ser. B, 2003, 1: 84-89
    [26] Ohadi M M, Nelson D A, Zia S. Heat transfer enhancement of laminar and turbulent pipe flow via corona discharge. International Journal of Heat and Mass Transfer, 1991, 34: 1175-1187
    [27]李瑞阳,施伯红,郁鸿凌等. EHD强化水平管外沸腾传热的试验研究.工程热物理学报, 2000, 21(1): 97-100
    [28] Yang L J, Ren J X, Song Y Z, et al. Convection heat transfer enhancement of air in a rectangular duct by application of a magnetic quadrupole field. International Journal of Engineering Science, 2004, 42(5-6): 491-507
    [29] Inagaki T, Komori K. Experimental study of heat transfer enhancement in turbulent natural convection along a vertical flow plate-part I: the effect of injection or suction.Heat Transfer Japanese Research, 1993, 22: 387-397
    [30]姜培学,余磊,任泽霈.变物性与热辐射对发汗冷却过程的影响规律研究.航空动力学报, 2004, 19(2): 184-190
    [31] Sandberg M. What is ventilation efficiency? Building and Environment, 1981, 16:123-135
    [32] Sandberg M. Ventilation efficiency as a guide to design. ASHRAE Transactions, 1983 (2B): 455-479
    [33] Sandberg M, Sjoberg M. Use of moments for assessing air quality in ventilated rooms. Building and Environment, 1983, 18: 181-197
    [34] Yang J R, Li X T, Zhao B. Prediction of transient contaminant dispersion and ventilation performance using the concept of accessibility. Energy and buildings, 2004, 36: 293-299
    [35] Chung K C, Hsu S P. Effect of ventilation pattern on room air and contaminant distribution. Building and Environment, 2001, 36: 989-998
    [36] Zhang Y. et al. Quantifying ventilation effectiveness for air quality control. Transaction of ASME. 2001, 44(2): 385-390
    [37] Zhai J Z. A new building ventilation effectiveness index. Proceedings of the 10th International Conference on Indoor Air Quality and Climate, Beijing, China: 3195~3199
    [38] Melikov A K, Cermak R, Majer M. Personalized ventilation: evaluation of different air terminal devices. Energy and Buildings, 2002, 34: 829– 836
    [39] Nevings R G, Miller P L. Analysis, evaluation and comparison of room air distribution performance—A summary. ASHRAE Transactions, 1972, 78(2): 235-242
    [40] Nielsen P V. Flow in air conditioned rooms (English Translation). [PHD. Thesis]. Copenhagen: Technical University of Denmark, 1976
    [41] Fitzner K F. Air flow experiments in full-scale test rooms. ASHRAE Transactions, 1981, 87(2): 1143-1153
    [42] Thorshauge J. Air velocity fluctuation in the occupied zone of ventilated spaces. ASHRAE Transactions, 1982, 88(2): 753-764
    [43] Chen Q, Van der kovi J, Meyers A. Measurements and computations of ventilation efficiency and temperature efficiency in a ventilation room. Energy and Buildings, 1988, 12(2): 85-99
    [44] Chen Q. A Numerical study of indoor air quality and thermal comfort under six kinds of air diffusion. ASHRAE Transactions, 1992, 98(1): 203-217
    [45] Brohus H, Nielsen P V. Personal exposure in displacement ventilated rooms. Indoor Air, 1996, 6: 157– 167
    [46] Yaghoubi M A, Dnappmiller K D, Kirkpatrick A T. Three– dimensional numericalsimulation of air contamination dispersal in a room. ASHRAE Transactions, 1995, 101(1): 1031-1041
    [47] Chung I P, Derek D R. Using numerical simulation to predict ventilation efficiency in a model room. Energy and Buildings, 1998, 28: 43-50
    [48] Yang X D, Srebric J, Li X T, et al. Performance of three air distribution systems in VOC removal from an area source. Building and Environment, 2004, 39: 1289-1299
    [49] Cermak R, Melikov A K. Air quality and thermal comfort in a room with under floor, displacement and mixing ventilation. Proceedings of the 10th International Conference on Indoor Air Quality and Climate, Beijing, China: 2566-2570
    [50] Cermak R, Melikov A K. Air quality and thermal comfort in a room with under floor, displacement and mixing ventilation. Proceedings of the 10th International Conference on Indoor Air Quality and Climate, Beijing, China: 2566-2570
    [51] Moser A, Roy S, Rusch D. Assessment of effectiveness of an air cleaner unit in an isolation room with stratified air using computational fluid dynamics (CFD). Proceedings of the 10th International Conference on Indoor Air Quality and Climate, Beijing, China: 1455-1459
    [52] Zhao B, Guan P. Modeling particle dispersion in personalized ventilated room. Building and Environment, 2007, 42: 1099-1109
    [53] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37-38
    [54]韩兆慧,赵化侨.半导体多相光催化应用研究进展.化学进展, 1999, 11(1): 1-10
    [55] Alberici R M, Jardim W E. Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide. Applied Catalysis B-Environment, 1997, 14(1-2): 55-68
    [56] Obee T N. Photooxidation of sub-parts-per-million toluene and formaldehyde levels on titania using a glass-plate reactor. Environmental Sicience & Technology, 1996, 30(12): 3578-3584
    [57] Obee T N, Hay S O. Effect of moisture and temperature on the photooxidation of ethylene on titania. Environmental Sicience & Technology, 1997, 31(7): 2034-2038
    [58] Jocaby W A, Blake D M, Noble R D, et al. Kinetics of the oxidation of trichloroethylene in air via heterogeneous photocatalysis. Journal of Catalysis, 1995, 157(1): 87-96
    [59] Mo J, Zhang Y P, Yang R, Novel insight into VOC removal performance of photocatalytic oxidation reactors. Indoor Air, 2005, 15: 291–300
    [60] Li P W, Kawaguchi Y, Yabe A. Transitional heat transfer and turbulent characteristics of drag-reducing flow through a contracted channel. Journal of Enhanced Heat Transfer, 2001, 8(1): 23-40
    [61] Gaudet L. Properties of riblets at supersonic speed. Applied Scientific Research, 1989,46(3): 245-254
    [62] Neumann D, Dinkelacker A. Drag measurements on V-grooved surfaces on a body of revolution in axial flow. Applied Scientific Research, 1991, 48(1): 105-114
    [63] Wang J J, Lan S L, Chen G. Experimental study on the turbulent boundary layer flow over riblets surface. Fluid Dynamics Research, 2000, 27(4): 217-229
    [64] Storm D A, McKeon R J, McKinzie H L, et al. Drag reduction in heavy oil. Journal of Energy Resources Technology, 1999, 121: 145-148
    [65] Shigemoto N, Al-Maamari R S, Jibril B Y, et al. Effect of water content and surfactant type on viscosity and stability of emulsified heavy mukhaizna crude oil. Energy & Fuels, 2007, 21: 1014-1018
    [66]赵法军,刘永建,闻守斌等.稠油水热裂解催化剂研究进展.油田化学, 2006, 23(3): 277-283
    [67]刘晓燕,张兰双,徐颖.稠油集输伴热管道轴向温度及伴热效果影响因素分析.热科学与技术, 2007, 6(3): 224-229
    [68]赖英旭,郑之初,吴应湘.蒸汽引射稠油输送新技术.流体力学实验与测量, 2003, 12(2): 78-83
    [69]香山科学会议“室内空气质量和污染物控制”学术讨论会简介.第251次香山科学会议《室内空气质量和污染物控制》学术讨论会.中国北京, 2005: 1
    [70] Onsager L. Reciprocal relations in irreversible process I. Physical Review, 1931, 37: 405-426
    [71] Onsager L. Reciprocal relations in irreversible process II. Physical Review, 1931, 38: 2265-2279
    [72] Prigogine I. Introduction to thermodynamics of irreversible processes. 3rd ed. New York: Wiley, 1967
    [73] Andresen B, Berry R S, Nitzan A, et al. Thermodynamics in finite time I: the step Carnot cycle. Physics Review A, 1977, 15: 2086-2093
    [74] Salamon P, Andresen B, Berry R S. Thermodynamics in finite time II: potentials for finite time processes. Physics Review A, 1977, 15: 2094-2101
    [75] Berry R S, Salamon P, Heal G. On a relation between economic and thermodynamic optima. Resources and Energy, 1978, 1: 125-137
    [76] Bejan A. Advanced Engineering thermodynamics, New York: Wiley & Sons, 1977
    [77] Bejan A. Entropy Generation Minimization. Florida: CRC Press, 1996
    [78] Bejan A. Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. Applied Physics Reviews, 1996, 79(3): 1191-1218
    [79] Bejan A. A study of entropy generation in fundamental convective heat transfer. ASMEJournal of Heat Transfer, 1979, 101: 718-725
    [80] Bejan A. Entropy Generation through Heat and Fluid Flow. New York: Wiley, 1982
    [81] Bejan A. Second-law analysis in heat transfer and thermal design. Advaced Heat Transfer, 1982, 15: 1-58
    [82] Poulikakos D, Bejan A. Fin geometry for minimum entropy generation in forced convection. ASME Journal of Heat Transfer, 1982, 104: 616-623
    [83] Sarangi S, Chowdhury K. On the generation of entropy in a counterflow heat exchanger. Cryogenics, 1982, 22(2): 63-65
    [84] Nag P K, Mukherjee P. Thermodynamic optimization of convective heat transfer through a duct with constant wall temperature. International Journal of Heat and Mass Transfer, 1987, 30: 401-405
    [85] Nag P K, Kumar N. Second law optimization of convective heat transfer through a duct with constant hear flux. International Journal of Energy Research, 1989, 13: 537-543
    [86] Sekulic D, Campo A, Morales J C. Irreversibility phenomena associated with heat transfer and fluid friction in laminar flows through singly connected ducts. International Journal of Heat and Mass Transfer, 1997, 40(4): 905-914
    [87] Sahin A Z. Thermodynamics of laminar viscous flow through a duct subjected to constant heat flux, Energy, 1996, 21: 1179-1187
    [88] Sahin A Z. Second law analysis of laminar viscous flow through a duct subjected to constant wall temperature. ASME Journal of Heat Transfer, 1998, 120: 76-83
    [89] Sahin A Z. The effect of variable viscosity on the entropy generation and pumping power in a laminar fluid flow through a duct subjected to constant heat flux. Heat and Mass Transfer, 1999, 35: 499-506
    [90] Demirel Y. Thermodynamic analysis of thermomechanical coupling in couette flow. International Journal of Heat and Mass Transfer, 2000, 43: 4205-4212
    [91] Sara O N, Yapici S, Yilmaz M. Second law analysis of rectangular channels with square pin-fins. International Commucation in Heat and Mass Transfer, 2001, 28: 617-630
    [92] Johannessen E, Nummedal L, Kjelstrup S. Minimizing the entropy production in heat exchange. International Journal of Heat and Mass Transfr, 2002, 45: 2649-2654
    [93] Saouli S, Aiboud-Saouli S. Second law analysis of laminar falling liquid film along an incluined heated plate. International Communication in Heat and Mass Transfer, 2004, 31(6): 879-886
    [94] Haddad O M, Alkam M K, Khasawneh M T. Entropy generation due to laminar forced convection in the entrance region of a concentric annulus. Energy, 2004, 29(1): 35-55
    [95] Mahmud S, Andrew F R. Flow, thermal, and entropy generation characteristics inside a porous channel with viscous dissipation. International Journal of Thermal Sciences,2005, 44(1): 21-32
    [96] Ko T H, Ting K. Entropy generation and thermodynamic optimization of fully developed laminar convection in a helical coil. Internatioinal Communication in Heat and Mass transfer, 2005, 32: 214-223
    [97] Ko T H. Numerical analysis of entropy generation and optimal Reynolds number for developing laminar forced convection in double-sine ducts with various aspect ratios, International Journal of Heat and Mass Transfer, 2006, 49: 718-726
    [98] Ko T H, Ting K. Entropy generation and optimal analysis for laminar forced convection in curved rectangular ducts: a numerical study, 2006, 45: 138-150
    [99] Ko T H. A numerical study on entropy generation and optimization for laminar forced convection in a rectangular curved duct with longitudinal ribs. International Journal of Thermal Sciences, 2006, 45:1113-1125
    [100] Shuja S Z, Yilbas B S, Khan M S. Entropy generation in laminar jet: effect of velocity profiles at nozzle exit, 2006, 42: 771-777
    [101] Aiboud-Saouli S, Settou N, Saouli S, et al. Second-law analysis of laminar fluid flow ini a heated channel with hydromagnetic and viscous dissipation effects. Applied Energy, 2007, 84: 279-289
    [102] Erek A, Dincer I. An approach to entropy analysis of a latent heat storage module. International Journal of Thermal Sciences, in press
    [103] Guo Z Y, Li D Y, Wang B X. A novel concept for convective heat transfer enhancement. International Journal of Heat and Mass Transfer, 1998, 41(2): 2221-2225
    [104]过增元.对流换热的物理机制及其控制.科学通报, 2001, 45(19): 2118-2122
    [105] Guo Z Y, Tao W Q, Shah R K. The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer. International Journal of Heat and Mass Transfer, 2005, 48(9): 1797-1807
    [106] Tao W Q, Guo Z Y, Wang B X. Field synergy principle for enhancing convective heat transfer --- its extension and numerical verifications. International Journal of Heat and Mass Transfer, 2002, 45: 3849-3856
    [107] Tao W Q, He Y L, Wang Q W, et al. A unified analysis on enhancing single phase convective heat transfer with field synergy principle. International Journal of Heat and Mass Transfer, 2002, 45: 4871-4879
    [108]王娴,宋富强,屈治国等.场协同理论椭圆型流动中的数值验证.工程热物理学报, 2002, 23(1): 59-62
    [109]屈治国,何雅玲,陶文铨.平直开缝翅片传热特性的三维数值模拟及场协同原理分析.工程热物理学报, 2003, 24(5): 825-827
    [110] Zeng M, Tao W Q, Numerical verification of the field synergy principle for turbulentflow. Proceedings of the international conference on energy saving and enhancement of heat transfer, Guangzhou, 2004
    [111]马良栋,孙德兴,张吉礼.内环肋通道强化换热德场协同分析.哈尔滨工业大学学报, 2005, 37(3): 299-302
    [112] Wang S, Guo Z Y, Li Z X. Heat transfer enhancement by using metallic filament insert in channel flow. International Journal of Heat and Mass Transfer, 2001, 44: 1373-1378
    [113]孟继安.交叉椭形截面换热管.中国发明专利,申请号: 00136122.8
    [114] Meng J A, Liang X G, Chen Z J, et al. Experimental study on convection heat transfer in alternating elliptical axis tubes. Experimental Thermal and Fluid Science, 2005, 29(4): 457-465
    [115]孟继安,李志信,过增元等.螺旋扭曲椭圆管层流换热与流阻特性模拟分析.工程热物理学报, 2003, 23: 117-120
    [116]孟继安,过增元,胡桅林等.不连续双斜内肋强化换热管.中国专利: CN1451937A
    [117] Meng J A, Liang X G, Li Z X. Field synergy optimization and enhanced heat transfer by multi-longitudinal vortices flow in tube. International Journal of Heat and Mass Transfer, 2005, 48: 3331-3337
    [118]李晓伟,孟继安,陈泽敬等.不连续双斜内肋管的管外换热性能.工程热物理学报, 2008, 29(2): 327-330
    [119]杨立军,任建勋,宋耀祖等.方腔自然对流换热中场协同的数值研究.东北大学学报(自然科学版), 2001, 22(S2): 38-41
    [120]杨立军,任建勋,宋耀祖.外磁场下封闭方腔内自然对流的场协同分析.上海理工大学学报, 2003, 25(S): 92-94
    [121]过增元,梁新刚,朱宏晔. ——描述物体传递热量能力的物理量.自然科学进展, 2006, 16(10): 1288-1296
    [122] Guo Z Y, Zhu H Y, Liang X G, Entransy --- a physical quantity describing heat transfer ability, International Journal of Heat and Mass Transfer. 2007, 50: 2545-2556
    [123] Guo Z Y, Cheng X G, Xia Z Z, Least dissipation principle of heat transport potential capacity and its application in heat conduction optimization. Chinese Science Bulletin, 2003, 48: 406–410
    [124]朱宏晔,陈泽敬,过增元.耗散极值原理的电热模拟实验研究.自然科学进展, 2007, 17(12): 1692-1698
    [125] Witte L C, Shamsundar N. A thermodynamic efficiency concept for heat exchange devices. Journal of Engineering for Power, 1983, 105(1): 199-203
    [126] London A L, Shah R K. Costs of irreversibilities in heat exchanger design. Heat Transfer Engineering, 1983, 4(2): 59-73
    [127] Hesselgreaves J E. Rationalisation of second law analysis of heat exchangers. International Journal of Heat and Mass Transfer, 2000, 43: 4189-4204
    [128]许良.最小作用量原理与物理学的发展.成都:四川教育出版社, 2001
    [129]费曼.费曼物理学讲义(第一卷).费曼物理学讲义翻译组译,上海:上海科学技术出版社, 1983
    [130]易明.现代几何光学.南京:南京大学出版社, 1986:1-4
    [131] Marion J B. Classical dynamics of particles and systems. New York: Academic Press, 1969
    [132] Yourgrau W, Mandelstam S. Variational principles in dynamics and quantum theory. London: Sir Isaac Pitman & Sons, Ltd., 1968
    [133]梅凤翔,刘瑞,罗勇.高等分析力学.北京:北京理工大学出版社, 1991
    [134] Goldstein H, Poole C, Safko J. Classical mechanics (影印版). 3rd edition.北京:高等教育出版社, 2004
    [135] Denbigh D. The principle of chemical equilibrium. 4th edition. Cambridge: Cambridge University Press, 1981
    [136]朱宏晔.基于 耗散的最小热阻原理[博士学位论文].北京:清华大学航天航空学院, 2007.
    [137] Wilcox D C. Turbulence Modeling for CFD, Calif.: DCW Industries, 1998
    [138] Chen Q, Xu W. A zero-equation turbulence model for indoor air flow simulation. Energy and Buildings, 1998, 28: 137-177
    [139] Zhao B, Li X, Yan Q. A simplified system for indoor airflow simulation. Building and Environment, 2003, 38: 543-552
    [140]李晓伟.通道湍流强化的数值与实验研究[博士学位论文].北京:清华大学航天航空学院, 2008.
    [141] Batchelor G K. An Introduction to Fluid Dynamics. Cambridge: The University Press, 1967
    [142] Hofacker W, Huckler M. Analysis of Flow Field in the HERMES Cabin, SAE Paper 901286
    [143] Chang S, Barker S R. Numerical Prediction and Evaluation of Space Station Intermodule Ventilation and Air Distribution Performance, SAE Paper 941590
    [144]任建勋,刘云龙,梁新刚等.微重力条件下的流动与传热传质的地面模拟技术.清华大学学报, 1998, 38(7): 8-15
    [145]吴群刚,梁新刚,过增元.微重力场中通风换热的数值研究.中国空间科学技术, 1999, 19(4): 8-13
    [146]吴宏,李娜,梁新刚等.空间站实验舱进出风口大小影响的数值研究.航天医学与医学工程,2001,14(4): 268-271
    [147]郑之初,吴应湘,赖英旭等.由于稠油输送的无界引射器及其输送方法.中国发明专利: CN1403209
    [148]赖英旭,郑之初,石在虹等.稠油输送新工艺方法探索及现场试验.水动力学研究与进展. 2002, 17(5): 521-528