石油中噻吩型硫化物的γ射线辐射—催化转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们的环境保护意识不断增强以及越来越严格的环境法规的颁布,世界各国对石油及其产品中含硫量的控制也越来越严格。目前常规的石油脱硫工艺普遍存在工艺复杂、设备要求苛刻、投资运行费用高等问题,特别是对油品中的低浓度噻吩型硫化物的深度去除还比较困难。因此,探索新的石油脱硫方法显得非常必要。
     针对石油中所存在的噻吩型硫化物不易去除的问题,本研究首次提出并探索了以γ射线辐照技术为基础的辐射转化方法,通过其作用将石油中的噻吩硫转化为相对容易去除的硫化物,以便于其进一步去除。本文以十二烷为模拟油品,研究了其中的噻吩型硫化物在γ射线辐照下的转化反应规律及作用机制等问题,并取得了如下重要结论:
     单独以γ射线对油品进行辐照处理时,辐射对噻吩型硫化物有明显的转化作用。当辐射剂量率为3.8kGy/h、总辐射剂量为160kGy时,浓度为500mg/L的苯并噻吩(BT)及二苯并噻吩(DBT)转化率分别约为74%和33%。同等辐射剂量条件下,初始浓度越低时,DBT的转化率越高;剂量率越高,DBT的转化率也越高;氧气对DBT的辐射转化有一定抑制作用。噻吩型硫化物中的硫在单独辐射作用下的主要转化产物为二硫化物。
     考察了一些化学添加物对噻吩型硫化物的辐射转化作用的影响。当以四氯化碳作为辐射敏化剂,其只对二甲基噻吩和苯并噻吩的转化有比较明显的促进作用,而对DBT的辐射转化作用不明显。而在反应体系中添加双氧水和乙酸以后,DBT的转化率得到了显著地提升。当油相、双氧水、乙酸的比例为3:1:1,辐射剂量为200kGy左右时,二苯并噻吩的转化率在90%以上,而且几乎全部转化为二苯并砜。
     制备并筛选了部分催化剂,考察了其在辐射共同作用下对DBT的转化作用。结果发现,负载在γ-氧化铝上的氧化钴或氧化锆均具有明显的催化活性。在剂量率为3.9kGy/h,辐射剂量为179.2kGy时,500mg/L的DBT在钴催化剂或锆催化剂的作用下,转化率分别达到了80%和95%以上。不同的制备条件对DBT的辐射转化率有直接的影响。有催化剂存在时,辐射剂量率越低,DBT的转化率反而越高;通气条件可显著促进DBT的转化。DBT在辐射与催化剂共同作用下转化的主要产物是二苯并砜,且该产物通过在催化剂上的吸附而从油相中分离,达到脱硫效果。另外,对催化剂的寿命及再生方法进行了初步考察。通过X-射线衍射、X-射线电子能谱、扫描电子显微镜等技术对催化剂进行表征,结果表明射线对催化剂的晶体结构、元素价态以及表面形态等都没有影响。一级反应动力学模型可以较好地描述DBT的辐射转化规律,催化剂可使反应速率明显加快、辐射能量利用率显著提升。
     本文研究初步探明了噻吩型硫化物在不同辐射条件下的转化规律。所探索出辐射结合催化的方法具有较好应用潜力,可望为石油的深度脱硫提供一条新途径。
As the environmental standard is getting stricter, the limitation values of sulfur content in oil and oil products have kept decreasing worldwide. However, there exist many problems with the conventional petroleum desulfurizaiton technologies, such as complicated techniques, rigorous operation requirements and high investment. Especially, it is very difficult to remove low concentration thiophenes compounds in the oil. Therefore, it is necessary to develop a novel desulfurization technology.
     In the present study,γ-rays radiation method was put forward and investigated to convert thiophenes to any other compounds that were easily removed from the oil. Dodecane was used to simulate oil to study the radiated conversion of thiophene type compounds, and the kinetic model was studied.
     The results indicated that the gamma-rays radiation was effective to convert thiophenes compounds, and the conversion efficiency went up with the increase of the radiation dose. When the radiation dose rate was 3.8 kGy/h and the radiation dose was about 160 kGy, the conversion efficiency of benzothiophene (BT) and dibenzothiophene (DBT) was about 74% and 33%, respectively. At the same radiation dose, the conversion of DBT was higher at the lower initial DBT concentration or the higher radiation dose rate. The main conversion product of DBT was bisulfide, and oxygen in air showed slight inhibition to the conversion of DBT in the merely radiation system (without additives or catalysts).
     Tetrachloromethane displayed an improvement on the conversion efficiency of dimethyl thiophene and BT as a sensibilizer in the presence of gamma radiation at room temperature. The results also showed that the mixture of hydrogen preoxide and acetic acid appeared to be synergic with the radiation to convert DBT. When the ratio of oil: hydrogen preoxide: acetic acid was 3:1:1 and the radiation dose was about 200 kGy, the conversion efficiency of DBT was over 90%.
     The catalysts that could enhance the conversion of DBT in the simulated petroleum were selected. Among the tested catalysts, cobalt oxide and zirconium oxide impregnated onγ-alumina showed high catalytic activities under gamma-rays irradiation. The preparation conditions of the catalysts were also optimized experimentally. The main factors that affected the conversion of dibenzothiophene were studied. The results showed when the applied radiation dose rate was 3.9kGy and the radiation dose was about 179.2 kGy, the conversion efficiency of DBT was over 80% and 95% in the presence of cobalt oxide and zirconium oxide, respectively. The main conversion product of DBT was Dibenzo-sulfone.
     The effect of gamma-rays irradiation upon the structure of the catalyst was investigated by XRD, XPS and SEM techniques. The catalyst appeared to be stable under the gamma-rays irradiation except for the surface coverage by the oxidized organic compound. In addition, the possible mechanism for the synergistic effect of gamma-rays irradiation and catalyst was proposed.
     The first-order rate model could be used to well describe the conversion reaction kinetics of DBT. The reaction constant and G factor have been compared in different experiment condition. It is obvious that the reaction constant and G factor was higher when the catalysts were employed.
     According to the present study, the method by means of gamma-rays radiation to convert thiophene type compounds has been understood. The combination of the radiation with the catalyst has been proved to be an effective way to convert DBT to Dibenzo-sulfone, which could be easily removed from the oil. This study has provided a potential alternative to the deep petroleum desulfurization in the future.
引文
[1] EIA/IEA, International Energy Annual 2001, Energy Information Administration, US Department of Energy, Washington, DC, 2002。
    [2] 国际能源署,《石油市场月度报告》,2006。
    [3] 张广久,刘长林,《石油和石油产品中非烃化合物》,中国石化出版社,1991,19-20。
    [4] 任海平,《世界石油形势与中国的石油战略》,科学新闻,2006,第22期,1-2。
    [5] European Union, EU Directive 98/70/EC, 1998,Quality of petrol and diesel fuel [S]。
    [6] EPA, Reducing Non-road Diesel Emissions, US Environmental Protection Agency, April 2003。
    [7] 张广久,刘长林,《石油和石油产品中非烃化合物》,中国石化出版社,1991年,52-58。
    [8] 张广久,刘长林,《石油和石油产品中非烃化合物》,中国石化出版社,1991年,1-5。
    [9] Breysse M, Djega-Mariadassou G, Pessayre S, Deep desulfurizaiton: reactions, catalysts and technological challenges, [J].Catalysis Today, 2003,84(3-4),129-138。
    [10] 石亚华,李大东,加氢脱硫的技术进展,炼油设计,1999,29(8),16-22。
    [11] 孙仲超,王瑶,王安杰,姚平经,氮化钼深度加氢脱硫催化剂研究进展,现代化工,2003,23(5),17-20。
    [12] HusnuAtakul, Wakker J.P, Albert W. Gerritsen, Regeneration of MnO/γ-Al2O3 used for high temperature desulfurizaiton of fuel gases,Fuel 1996, 75(3), 373-378。
    [13] Song C, Keynote: new approaches to deep desulfurizaiton for ultra-clean gasoline and diesel fuels: an overview, Am. Chem. Soc., Div. Fuel Chem. Prepr. ,2002 (47),438-439。
    [14] Phillipson J.J, Kinetics of hydrodesulfurization of lighte and middle distillates, in: Paper Presented at the American Institute of Chemical Engineers Meeting, Houston, TX, 1971。
    [15] Frye C.G, Mosby J.F, Kinetics of hydrodesulurization, Chem. Eng. Prog. ,1967 (63), 66-68。
    [16] Kilanowski D.R, Teeuwen H, De Beer V.H.J. Hydrodesulfurization of thiophene, benzothiophene, dibenzothiophene, and reated compounds catalyzed by sulfided of CoO-MoO3/γAl2O3: low-pressure reactivity studies, J. Catal., 1978 (55), 129-134。
    [17] Houalla M, Broderick D.H, Sapre A.V , Hydrodesulfurization of methyl-substituteddibenzothiophene catalyzed by sulfided CoO-MoO3/γAl2O3, J. Catal., 1980 (61),523-527。
    [18] Girgis M.J, Gate s B.C, Reactivities, reaction networks, and kinetics in high-pressure catalytic hydroprocessing, Ind. Eng. Chem., 1991 (30),20-21。
    [19] Vasudevan P.T, G.Fierro J.L, A review of deep hydrodesulfurization catalysis, Catal. Rev. Sci. Eng., 1996 (38),161-164。
    [20] Ma X, Sun L, Song C. A new approach to deep desulfurizaiton of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applications, Catal. Today, 2002 (77),107-110。
    [21] X. Ma, M. Sprague, L. Sun. Deep desulfurizaiton of liquid hydrocarbons by selective adsorption for fuel cell applications, Am. Chem. Soc., Div. Petrol. Chem. Prepr. ,2002 (47), 48-50。
    [22] Nakayama, N.,Matsubara, T., Biochem.Biophys.Acta., 2002,1598,122-130。
    [23] 柯明. 轻质油品非加氢脱硫进展,[J]石油与天然气化工,1997,26(2),100-103。
    [24] 战风涛,吕志凤, 催化裂化柴油非加氢精制方法的研究进展,[J]石油大学学报(自然科学版),2000,24(3),116-120。
    [25] 杨洪云,赵德智,沈耀亚,油品脱硫工艺技术及其发展趋势, [J]石油化工高等学校学报,2001,14(3),26-31。
    [26] Babich I.V., Moulijn J.A., Fuel, 2003 (82), 607-631。
    [27] Hernandez-Maldonado A.J, Yang R.T., Ind. Eng. Chem. Res. ,2004,43(4) ,1081-1089。
    [28] Costa P.D, Potvin C, Manoli J.M, Fuel ,2004,83(13),1717-1726。
    [29] Setti L ,Developments in Destructive and Non-destructive pathways for selective destructive Path for Selective Desulfurization in oil Biorefining Processes, [J].Applied Microbiology and Biotechnology ,1999,52(1),111-117。
    [30] Ohshiro T,Lzumi Y . Microbial Desulfurization of Organic Sulfur Compounds in Petroleun, [J].Bioscience Biotechnology and Biochemistry, 1999,63(1):1-9。
    [31] 姜成英. [J]过程工程学报,2001,1(1):80-85。
    [32] Moticello , Daniel.,Biondesulfuzation and the Upgrading of Petroleum Distillates , [J].Current Opinion in Biotechnology, 2000,11(6),540-546。
    [33] McFarland B. Biodesulfurization,[J] .Current Opinion in Microbiol,1999(2),257-264。
    [34] 钱伯章,生物技术的应用及其发展前景,[J]江西石油化工,1996(2),8-11。
    [35] Lzumi Y, Ohshiro T, Desulfurization of Dibenzothiophene to 2-hydroxybiphenyl by some Newly Isolated Bacteria Straims,[J].Appl. Environ. Microb, 1994(60),223-226。
    [36] Norikazu Nakayama . A novel enzyme, 2V-hydroxybiphenyl-2-sulfinate desulfinase (DszB), from a dibenzothiophene-desulfurizing bacterium Rhodococcus erythropolis KA2-5-1: gene overexpression and enzyme characterization, [J].Biochimica et Biophysica Acta (BBA)/Protein Structure and Molecular Enzymology, 2002, 1589(1~2):122-130。
    [37] Morio Kobayashi, Desulfurization of alkylated forms of both dibenzothiophene and benzothiophene by a single bacterial strain, [J]. FEMS Microbiology Letters,2000,187(2),123-126。
    [38] Bell K, The genus Rhodococcus,[J].Appl Microbiol 1998 (85),195-210。
    [39] Maghsoudi S , [J].Biochemical Engineering Journal,2001,8(2),151-165。
    [40] Castorena Gladys , FEMS Microbiology Letters,2002,215(1),157-161。
    [41] Chang J.H, Desulfurization of light gas oil in immobilized-cell systems of Gordona sp. CYKS1 and Nocardia sp. CYKS2, [J]. FEMS Microbiology Letters,2000,182(2),309-312。
    [42] Fu LiLi, , [J]. FEMS Microbiology Letters,2003,223(2),301-307。
    [43] Konishi, Demonstration of the carbon-sulfur bond targeted Desulfurization of Benzothiphene by Thermophilic Paenibacillus sp.strain A11-2 capable of desulfurizing dibenzothiophene,[J].FEMS Microbiology Letters, 2000,187(2),151-154。
    [44] Toshiki Furuya.,[J] FEMS Microbiology Letters,2003,221(1),137-142。
    [45] Eric N K, James B H. Comparison of Batch-stirred and Electro-spray Reactors for Biodesulfuzation of Dibenzothiophiphene in crude Oil and Hydrocarbon Feeds Tocks, [J]. Appl.Biochem.Biotechnol.,1998(73),127-144。
    [46] Eric N. Kaufman, Development of an electro-spray for crude oil crude oil processing, [J]. Fuel Processing Technology,1997,52(1-3),127-144。
    [47] 许平,[J]. 石油微生物脱有机硫及苯磺酸盐副产品生产精细化工与专用化学品,2001,9(8)15-16。
    [48] 罗国华,沸石分子筛选择吸附焦化苯的噻吩,[J]燃料化学学报,1999,27(5),476-480。
    [49] Konyukhova T P, Vlasov V V, Adsorption of organic sulfur compounds by acid-actived natural zollites, [J]. lzv Vyssh Uchebn Zaved, 1989(12),56-59。
    [50] 曾建桥,新型噻吩脱硫剂的研究,[J]. 天然气化工,1998,23(4),18-21。
    [51] 韦桂湘, [J].华东交通大学学报,2003,20(1),100-102。
    [52] S.Mikhail, T.Zaki, L.Khalil. Desulfurization by an economically adsorption technique ,[J].Applied Catalyst A General, 2002,227(1-2),265-278。
    [53] 徐志达,活性炭纤维用于汽油脱硫醇的研究(Ⅱ)动态吸附,[J].石油炼制与化工,2000,31(5),42-45。
    [54] Gyanesh P, Desulfurization and novel sorbents [p].US 6346190, 2002-2-12。
    [55] Robert L, Process for desulfurizing gasoline and hydrocarbon feedstocks [p]. US 5730860, 1998-03-24。
    [56] Teh C, Deep desulfurization of distillate fuels[p].US 54544933, 1995-10-03。
    [57] 侯芙生, [J].石油炼制与化工,2002,33(1):1-9。
    [58] Balko J W, [J].Grace Davison FCC Catalytic Technologies for Managing New Feuls Regulations, NPRA, AM-00-14, Washington, D.C.2000。
    [59] Jeyagowry T, Sampanthar, Huang Xiao, Jian Dou, A novel oxidative desulfurization process to remove refractory sulfur compounds from diesel fuel, Applied Catalysis B: Environmental, 2006 (63), 85-93。
    [60] Jose Luis Garcia-Gutierrez, Gustavo A. Fuentes, Maria Eugenia Hernandez-Teran, Ultra-deep oxidative desulfurization of diesel fuel with H2O2 catalyzed under mild conditions by polymolybdates supported on Al2O3, Applied Catalysis A: General,2006 (305), 15-20。
    [61] 山红红, FCC 汽油中流分布和催化脱硫研究,[J].石油大学学报(自然科学版),2001,25(6),78-81。
    [62] 王鹏, 傅军,何鸣元. 含噻吩烷烃在分子筛上裂解脱硫的研究,[J].石油炼制与化工,2000,31(3),58-62。
    [63] 徐新,焦化苯中噻吩在酸性沸石催化剂的催化裂解性能, [J].过程工程学报,2001,1(4),436-438。
    [64] 李松岳, PDS 脱硫技术简介,[J].北京化工,1992,22(4),15-17。
    [65] 夏道宏,季铵碱化酞氰钴的合成及脱硫动力学,[J].石油大学学报(自然科学版),1994( 5),116。
    [66] Riaz, Desulfurization of organic sulfur compounds mediated by a molybdenum/cabalt/ sulfur cluster, [J].Chem.Soc, 1994,116(10),78-81。
    [67] Batts B D, Zubdan, Farboni A, [J].Energy&Fuel,1991,5(1):2-21。
    [68] 张广久,刘长林. 石油及其产品的非烃化合物,北京:中国石化出版社,1991,447-454。
    [69] Prinkman D W, [J].ASTM Special technical Publication,1981(751),84。
    [70] 舒运贵,沈喜州, 掺炼重油催化裂化柴油化学精制的研究,[J]. 石油炼制,1991,(7),21-25。
    [71] 胡尧良,轻质油品脱硫精制乳化难题的技术突破[J], 炼油设计,1995,29(5),47-53。
    [72] T Aida, Development of oxidative desulfurization process for diesel fuel, [J]. Reviews on Heteroatom Chemistry, 2000(22),241-256。
    [73] Y Shirashi, A desulfurization process for light oils based on the formation and subsequent adsorption of N-tosylsulfimides, [J].Industrial & Engineering Chemistry Research, 2002,41(17):,4376-4382。
    [74] 冯景贤,庄礼秋,方壮义,用二氧化氯煤油脱硫,[J].石油化工,1997,26(3),165-167。
    [75] Tam Patrick S, Eldridge John W, Desulfuration of fuel oil by oxidation and extraction, [J]. Ind. Eng. Chem. Res.,1990(29),321-324。
    [76] 李良助, 有机合成中氧化还原反应[M],北京:高等教育出版社,1989,212-213。
    [77] 吕志凤,用H2O2-有机酸氧化脱出催化裂化柴油中的硫化物,[J].石油大学学报(自然科学版)2001,25(3),27-30。
    [78] 孙刚,正交法设计选择最佳氧化抽提脱硫条件,[J].石油化工高等学校学报,2001,14(4),31-34。
    [79] Y Shirashi, Desulfurization and denitrogenation process for light oils based on chemical oxidation followed by liquid-liquid extraction, [J].Industrial & Engineering Chemistry Research, 2002,41(17), 4362-4375。
    [80] 杨丽娜, 石油二厂催化裂化柴油化学方法脱硫,[J].抚顺石油学院学报,2002,22(2),22-24。
    [81] Mei Hai, [J] Fuel, 2003,84(4),:405-414。
    [82] Lunin VV, Frantsuzov VK, Likhterova NM. Desulfurization and demetalation of heavy petroleum fractions by ozonolysis and radiolysis, [J].Petroleum Chemistry, 2002, 42(3):,173-180。
    [83] Harald Suhr, PREPRINTS Div. Of Petrol, [J]. Chem. ACS, 1980,25(1), 241-244。
    [84] 刘万楹,有机硫化物的等离子体液相氧化脱硫,应用化学,1997,14(5),83-85。
    [85] Matsuzawa S, Photocatalytic oxidation of dibenzothiophenes in acetonitrile using TiO2: effect of hydrogen peroxide and ultrasound irradiation,[J]. Journal of Photochemistry and Photobiology A-Chemistry, 2002,149(1~3),183-189。
    [86] Shiraishi Y, Photochemical desulfurization and denitrogenation process for vacuum gas oil using an organic two-phase extraction system, [J].Industrial & Engineering Chemistry Research, 2001,40(1)293-303。
    [87] Leshchev S, Melsitova I V. ,[J].Lzv Vyssh Uchebn Zaved,1991,34(10),65-68。
    [88] 徐荣,增溶碱液萃取法对凝析汽油脱硫的效果,[J].西南石油学院学报,1994,16(3),97-100。
    [89] 夏道宏, 苏贻勋, 汽油中硫醇的分离及结构,组成分析炼油设计,1995,25(1),46-49。
    [90] 郭荣华, 甲醇-碱液复合溶剂萃取法提高催化裂化柴油安定性的研究,[J].炼油设计,1999,29(6),23-25。
    [91] 包伯荣,吴明红,罗文芸.辐射技术在废水及污泥处理中的应用.核技术,1996,19(12),759-764。
    [92] Getoff N., Environmental radiation,Radiation Physics and Chemistry, 1999, 54(5),377-384。
    [93] Pikaev A, Shubin V., Radiation treatment of liquid wastes,Radiation Physics and Chemistry, 1984, 24(1),77-97。
    [94] Hilarides R, Gray K. Innovative treatment of soil contamination: radiolytic destruction of dioxin and co-contaminants by cobalt-60, USA: Proceedings of the 1994 National Conference on Environmenttal Engineering, 1994,733-739。
    [95] Borrely S, Radiation process of sewage and sludge: a review, Progress in Nuclear Energy, 1998, 33(1~2),3-21。
    [96] Hashimoto S, Nishimura K, Machi S. Economic feasibility of irradiation-compositing plant of sewage sludge, Radiation Physics and Chemistry, 1998, 231(1~3),109-114。
    [97] Lessel T, Suess A. Europe’s experience with sludge irradiation activities in the united states, Radiation Physics and Chemistry, 1984, 24(1),3-19。
    [98] Ahlstron S, Irradiation of municipal sludge for pathogen control, Radiation Physics and Chemistry, 1988, 31(1~3),131-138。
    [99] Kawamura K, On the removal of NOX and SO2 in exhaust gas from the sintering machine by electron beam irradiation, Radiation Physics and Chemistry, 1980, 16(2),133-138。
    [100] Frank N, Electron beam treatment of stack gases, Radiation Physics and Chemistry, 1985, 21(1),35-45。
    [101] Jordan s, Progress in the electron beam treatment of stack gases, Radiation Physics and Chemistry, 1988, 31(1),21-28。
    [102] Hashimoto S, Miyata T, Kawakami W, Radiation-induced decomposition of phenol in flow system, Radiation Physics and Chemistry, 1980, 16(1),59-62。
    [103] Schmelling D, Poster D, chaychian M, Application of inonizing radiation to remediation of materials contaminated with heavy metals and polychlorinated biphenyly, Radiation Physics and Chemistry, 1998, 52(1~6),371-377。
    [104] Mahnaz C, McLaughlin A, William L, Mechanisms of removal of heavy metals from water by ionizing radiation, Radiation Physics and Chemistry, 1998, 53(2),145-150。
    [105] Gehringer P, Proksch E, Eschweiler H, Removal of chlorinated ethylenes from drinking water by radiation treatments, Radiation Physics and Chemistry, 1990, 35(1~3),456-460。
    [106] Zona R, Schmid S, Detoxification of aqueous chlorophenol solutions by ionizing radiation, Water Research, 1999, 33(5),1314-1319。
    [107] Mincher B, Liekhus K, PCB radiolysis in isoocatane in the presence of ozone, Applied Radiation and isotopes, 1996, 47(8),713-715。
    [108] 钮银峰,张秀利,含氮含硫的有机物的键裂能的计算,河北省科学院学报,1997,14(2),10-13。
    [109] 张广久,刘长林,石油及其产品的非烃化合物[M],北京:中国石化出版社,1991,61-63。
    [110] Mahadevan V, Tripathi P, Pretreatment of coal potentiality of microwave and gamma ray pretreatment in the desulphurization, Erdol & Kohle Erdgas Petrochemie, 1995, 48 (1),33-38。
    [111] 赵延飞,晏乃强,吴旦,贾金平,刘玉敏,射线辐射作用下硫醚的去除特性研究,高校化学工程学报,2006(19), 98-102。
    [112] 张曼维,《辐射化学入门》,中国科技大学出版社,1993,7-35。
    [113] 吴季兰,戚生初,《辐射化学》,原子能出版社,1993,214-215。
    [114] Speight J.G, The chemistry and technology of petroleum, 2nd ed.,Marcel Dekker: New York, 1991。
    [115] 田扬捷,晏乃强,李道棠,姚思徳,王文峰,射线辐射脱除油品中的硫醇,化工学报,2003(54),1279-1283。
    [116] Buxton, G. V., Radiation Chemistry of the Liquid State. Radiation Chemistry Principles and Application, VCH Publisher, New York, 1987。
    [117] Zhang G.H, Mao Y, Thomas J.K, J.Phys.Chem.B 101 (36) (1997) 7100-7113。
    [118] Zacheis G.A, Gray K.A, Kamat P.V, J.Phys.Chem.B 103 (12) (1999) 2142-2150。
    [119] Shkrob L.A, Trifunac A.D, J.Chem.Phys. 107 (7) (1997) 2374-2385。
    [120] 邦德,《多相催化作用》,北京大学出版社,1982,45-47。