新型配合物合成表征及与DNA/蛋白的相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无机化学领域中金属配合物的结构和它们的生物活性是一个比较热门的研究领域。DNA结合的研究对新发展的治疗试剂寻找DNA探针的有非常重要的作用。此外,血清白蛋白(SA)是血浆中最丰富的蛋白,并具有非常重要的生理功能,如运输,缓冲,营养等。这引起了科学家研究金属配合物生物化学特性的兴趣,包括配合物与主要目标分子DNA和血清白蛋白的相互作用。
     论文共分为四部分:
     第一章:介绍了DNA、蛋白的结构、功能和性质,综述了金属配合物与DNA、蛋白的作用机制与应用研究进展。
     第二章:合成了四种含硫氨基葡萄糖金属配合物(M-GLUS,M=Co,Cu,Ni,Zn),利用元素分析,摩尔电导,核磁共振氢谱进行了结构表征,结果表明含硫配体与这四种二价金属离子均形成了2:1型非电解质配合物。在pH=7.08 Tris缓冲液中,采用紫外吸收光谱和荧光光谱研究了金属配合物与小牛胸腺DNA的作用机制,发现随着金属配合物量的逐渐增加,DNA电子吸收光谱的最大吸收峰呈增色效应,对配合物DNA-EB体系也能产生荧光猝灭作用,说明四种金属配合物均可与DNA发生相互作用,结合方式为部分插入;进而在近似生理酸度条件下,利用荧光光谱,对金属配合物与HSA/BSA的结合特性进行了初步分析,发现配合物均能猝灭HSA/BSA的荧光强度,利用Scatchard方程计算了四种金属配合物与HSA/BSA的结合常数和结合位点数,结果表明金属配合物与血清白蛋白有较强的结合且只有1类键合位,其中Co-GLUS与蛋白的结合力最强。
     第三章:合成了N,N’-联苄基-1,2-二胺(L)及四种过渡金属配合物,ML_2(OAc)_2·2H_2O(M=Cu,Ni,Zn,Co,并利用元素分析,质谱,摩尔电导,NMR及IR进行结构表征。另外,利用单晶X射线衍射仪测定Cu(Ⅱ)和Ni(Ⅱ)金属配合物的晶体结构,表明配合物有相似的分子结构。Ni(Ⅱ)配合物为一个规则的正八面体配位环境,但受典型Jahn Teller效应影响,Cu(Ⅱ)处于一个拉长的八面体环境。利用UV和荧光光谱法分析配合物与小牛胸腺DNA的作用机制,结果表明,配合物与DNA之间的结合方式为插入。在近似生理酸度条件下,研究Cu(OAc)_2L_2·2H_2O和Ni(OAc)_2L_2·2H_2O与蛋白相互作用的情况。应用荧光分析法对其与HSA的结合特征以及热力学作用进行分析。结果表明,主要作用力为疏水作用。根据Scatchard's方程计算,Cu(OAc)_2L_2·2H_2O、Ni(OAc)_2L_2·2H_2O的焓变和熵变分别为-11.533 kJ·mol~(-1)和46.339 J·mol~(-1)·K~(-1),-11.026 kJ·mol~(-1)和46.396J·mol~(-1)·K~(-1)。
     第四章:苯甲醛与二乙烯三胺浓缩反应得到的Schiff碱,经KBH_4还原得到一个新配体,N-苯甲基-N'-[2-(苄氨基)乙基]乙烷-1,2-二胺,其与过渡金属氯酸盐合成金属配合物,通式为M_2L_2Cl_3(M=Cu,Ni,Zn,Co)。利用摩尔电导,元素分析,IR光谱对其进行表征,通过X射线单晶衍射仪确定Ni(Ⅱ)配合物的晶体结构,氯原子为桥联原子。应用紫外和荧光光谱法,研究小牛胸腺DNA与配合物的相互作用,表明配合物与DNA的结合模式为静电作用,结合力为Cu(Ⅱ)配合物>Zn(Ⅱ)配合物>Ni(Ⅱ)配合物>Co(Ⅱ)配合物。通过Scatchard方程分析金属配合物与人血白蛋白的结合常数与结合位点,结果表明配合物与HSA有很强的相互作用。热力学作用分析,主要作用力为疏水作用。
Many studies on the molecular structure of metal complexes and their biological activity caused much interest in the field of inorganic chemistry. DNA binding studies are very important for the development of new therapeutic reagents and DNA probes. Furthermore, human serum albumin (HSA) is the most abundant protein in the blood plasma, and has very important physiological functions, such as transportation, buffering, nutrition, etc. These inspire considerable interest in the study of the biochemical behavior of these complexes including their interactions with DNA and serum proteins, which are primary target molecules, when metal compound is administered intravenously.
     This dissertation consists of four chapters:
     Chapter 1: The structure, function and properties of DNA and protein were introduced, the methods for the analysis of the interaction of drugs with DNA, protein and research progress in preparation, bioactivities and application of complexes were summarized.
     Chapter 2: Four sulfur-containing D(+)-glucosamine metal complexes have been synthesized (M-GLUS, M = Co, Cu, Ni, Zn) and characterized by elementary analysis, molar conductance, and proton nuclear magnetic resonance. The yields of all these complexes were about 70%, they dissolved easily in water. The ligand coordinate metal ions mainly between sulphur and metalions, the coordination molar ratio of the ligand to metalion was 2:1, the molar conductivity indicated that all the complexes are nonelectrolyte. The mechanism of the interaction between metal complexes and calf thymus (ct) DNA has also been studied by ultraviolet absorption and fluorescence spectroscopy in Tris buffer (pH=7.08). The results from varied experiments show that the intensity of the maximal absorption peaks increased with gradual addition of metal complexes, but the metal ions can decrease the maximal absorption and the ligand has no effect on it. Meanwhile, metal complexes could remarkably quench the emission intensity of the DNA-EB system, the metal complexes could be bound to ct DNA. The quenching mechanism was discussed by Stern-Volmer's equation, the figure showed that it is influenced by static quenching and dynamic quenching, so the partial interaction of the complexes and ct DNA was the major mode. Under physiological pH condition, this study was designed to examine the effect of complexes on human serum albumin and bovine serum albumin by fluorescence, the complexes can decrease the intensity. The binding constants and sites of the interaction with serum albumin were analyzed by the Scatchard's equation, the results indicated that there was a strong interaction between the four metal complexes and serum albumin, the binding force was Co-GLUS > Zn-GLUS > Cu-GLUS>Cu-GLUS, and the binding site is only one.
     Chapter 3: A new ligand, V,V'-dibenzylethane-l,2-diamine (L) and its four transition metal(Ⅱ) complexes, ML_2(OAc)_2·2H_2O (M = Cu, Ni, Zn, Co), have been synthesized and characterized by elemental analysis, mass spectra, molar conductivity, NMR and IR. Moreover, the crystals structure of Cu(Ⅱ) and Ni(Ⅱ) complexes characterized by single crystal X-ray diffraction showed that the complexes have a similar molecular structure. Ni(Ⅱ) has an regular octahedral coordination environment complexes, but typical Jahn Teller effect influenced Cu(Ⅱ) in an elongated octahedral environment. The interaction between complexes and calf thymus DNA were studied by UV and fluorescence spectra measure, which showed that the binding mode of complexes with DNA is intercalation. Under physiological pH condition, the effects of Cu(OAc)_2L_2·2H_2O and Ni(OAc)_2L_2·2H_2O on human serum albumin were examined by fluorescence. The results of spectroscopic measurements suggested that the hydrophobic interaction is the predominant intermolecular force. The enthalpy change△H~0 and the entropy change△S~0 of Cu(OAc)_2L_2·2H_2O and Ni(OAc)_2L_2·2H_2O were calculated to be -11.533 kJ·mol~(-1) and 46.339 J·mol~(-1)·K~(-1), -11.026 kJ·mol~(-1) and 46.396 J·mol~(-1)·K~(-1) respectively, according to the Scatchard's equation. The quenching mechanism and the number of binding site (n≈l) were also obtained from fluorescence titration data.
     Chapter 4: A new ligand, N-benzyl-N'-[2-(benzylamino)ethyl]ethane-l,2-diamine, is a KBH_4 reduction product of the Schiff base derived from the condensation reaction of A-(2-aminoethyl)ethane-l,2-diamine with 2 equiv of benzaldehyde. Its complexes with transition metal chlorides were synthesized. These complexes with the general formula of M_2L_2Cl_3 (M=Cu, Ni, Zn, Co) were characterized by molar conductivity, elemental analysis, IR spectra. And the crystal structure of Ni (II) complex determined by single crystal X-ray diffraction show that there was a chlorine atom as bridge. The interaction of complexes with calf thymus DNA was investigated by ultraviolet spectroscope and fluorescent spectroscopy, which showed that the mode of complexes binding to DNA was electrostatic binding, and the binding affinity with DNA was Cu(Ⅱ) complex>Zn(Ⅱ) complex>Ni(Ⅱ) complex>Co(Ⅱ) complex. The binding constants and sites of the interaction with human serum albumin were analyzed by the Scatchard' equation, the results indicated that there was a strong interaction between the metal complexes and HSA. As indication by thermodynamic analyses, the binding was mainly based on hydrophobic interaction.
引文
[1] Dervan P B. Design of sequence-specific DNA-binding molecules [J]. Science, 1986, 232(4749): 464-471.
    [2] Sundquist W I, Bancroft D P, Lippard S J. Synthesis, characterization, and biological activity of cis-diamine platinum(Ⅱ) complexes of the DNA intercalators 9-aminoacridine and chloroqine[J]. J. Am. Chem. Soc, 1990,112: 1590-1596.
    [3] Sundquist W I, Bancroft D P, Chassot L, et al. DNA promotes the reaction of cis-diaminedichloro platinum(Ⅱ) with the exocyclic amino groups of ethidium bromide[J]. J. Am. Chem. Soc, 1988,110: 8559-8560.
    [4] Weiss A J, Manthel R W. Experience with the use of anticancer in combination with other anticancer agents using a weekly schedule with particular reference to lack of cardiac toxicity[J]. Cancer, 1977,40: 2046-2051.
    [5] Huang C Z, Li K A, Tong S Y. Spectrophotometry of nucleic acids by their effect on the complex cobalt(Ⅱ) with 4-(5-chloro-2-pyridyl)azo, 3-diaminobenzene[J]. Anal. Chim Acta, 1997, 345(1): 235-238.
    [6] Dandliker P J, Holmlin R Z, Barton J K. Oxidative thymine dimmer repair in the DNA helix[J]. Science, 1997,275: 1465-1469.
    [7] 曹凯鸣,李碧羽.核酸化学导论[M],上海:复旦大学出版社,1991.1-24.
    [8] 张大庆,韩启德.超越双螺旋:DNA对科学与社会文化的影响[J].医学与哲学,2003,24(7):1-5.
    [9] 向义和.DNA双螺旋结构是怎样发现的[J].物理与工程,2005,15(2):44-49.
    [10] Gielen M, Peter L, Dick V, et al. In vitro effect of organotin-substituted steroids in human tumor cell lines[J]. Inorg.chim.Acta, 1992,196(1):115-117.
    [11] Li Qingshan, Yang Pin, Hua Erbing. Diorganotin(Ⅳ) antitumour agents. Aqueous and solid-state coordination chemistry of nucleotides with R_2SnCl_2[J]. J. Coord. Chem. 1996, 40(3): 227-236.
    [12] 杨频,郭茂林.金属抗癌剂研究进展与两级互补理论[J].化学通报,1996,59(1):6-11.
    [13] 张立金.贾萘威、乙霉威和百克威与DNA的相互作用[D].北京:中国农业大学硕士学位论文,2004.
    [14] 计亮年,张黔玲,刘劲刚.生物医学中DNA的结构、构象、作用机制及生物功能的研究进展[J].中国科学(B辑),2001,31(3):194-204.
    [15] Zhang Zhigang, Yang Pin, Guo Maolin. Study of interaction between titanocene dichloride and mononucleotides by high-resolution 1H- and 31P-nuclear magnetic resonance[J]. Transit. Met. Chem, 1996,21(4): 322-326.
    [16] Hurley L H, Reynolds V L, Swenson D H, et al. Reaction of the antitumor antibiotic CC-1065 with DNA: structure of a DNA adduct with DNA sequence apecificity[J], Science, 1984, 226(4676): 843-844.
    [17] 吴会灵,杨芃原,张重杰等.小分子与核酸相互作用的研究进展[J].分析化学,2004,32(9):1256-1261.
    [18] 徐春,何品刚,方禹之.溴化乙锭标记 DNA 电化学探针的研究[J].高等学校化学学报 2000,21(8):1187-1190.
    [19] 凌连生,何治柯,曾云鄂.脱氧核糖核酸荧光探针的研究进展[J].分析化学,2001,29(6):721-724.
    [20] Yinglin Zhou, Yuanzong Lin. Studies of the interaction between poly(diallyldimethyl ammonium chloride) and DNA by spectroscopic methods, Colloids and Surfaces A: Physicochem[J]. Eng. Aspects, 2004,233:129-135.
    [21] Hawkins Mary E, Pfleiderer, Wolfgang, Jungmann Oliver, et al. Synthesis and fluorescence characterization of pteridine adenosine nucleoside analogs for DNA incorporation[J]. Analytical Biochemistry, 2001, 298(2): 231-241.
    [22] Liu J G, Ye B H, Ji L N, et al. Luminescence retrieval of [Ru(bpy)_2(HNOIP)]~(2+): A novel molecular "Light swith" for DNA[J]. Chem. Lett., 1999,28 (10): 1085-1086.
    [23] Prohaska S J, Fried C, Flamn C, et al. Surveying phylogenetic footprints in large gene clusters: applications to Hox cluster duplications[J]. Molecula Phylogenetics and Evolution, 2004, 31(2): 581-604.
    [24] Susanne K, Michael A, Jakupec, et al. The heterocyclic ruthenium(Ⅲ) complex KP1019 (FFC14A) causes DNA damage and oxidative stress in colorectal tumor cells[J]. Cancer Letters, 2005,226(2):115-121.
    [25] Oliveira M C B, Couto M S, Severino P C, et al. Nucleic acid cleavage by a Cu(Ⅱ) polyaza macrocyclic complex[J]. Polyhedron, 2005,24 (4):495-199.
    [26] 沈同,王镜岩.生物化学(第二版)[M].北京:高等教育出版社,1990.54-68.
    [27] 凌连生,杨洗,何治柯等.Ru(t)ipy)_2(dppz)~(2+)与DNA相互作用的光谱研究[J].分析科学学报,200l,17(1):11-15.
    [28] 韩大雄,杨频.分子模拟手性金属配合物-Co(phen)_2dppz]~(3+)与 B-DNA 的作用模型 [J] 中国科学(B辑),2000,30(5):392-398.
    [29] Jin L, Yang P, Li Q S. Studies on the mechanism of the chiral metal complexes with DNA by fluorimetry method[J]. Chem. Chin. Univ., 1996,17(9): 1345-1348.
    [30] 孙雪光,曹恩华,秦静芬等.双链、三链、四链DNA与溴乙锭相互作用的荧光研究 [J].中国科学(B辑),1998,28(6):554-560.
    [31] 叶勇,胡继明,曾云鹗.抗癌金属络合物与脱氧核糖核酸作用的谱学研究比较[J].分析化学研究报告,2000,8(7):798-804.
    [32] Marzilli L G, Petho G, Lin M, et al. Tentacle porphyrins: DNA interactions[J]. J. Am. Chem. Soc, 1992,114:7575-7577.
    [33] Lyng R, Hard T, Norden B. Induced CD of DNA interactions electric dipole allowed transitions [J]. Biopolymers, 1987,26: 1327-1345.
    [34] Widon J, Baldwin R L. Cation-induced toroidal condensation of DNA studies with Co~(3+)(NH_3)_6[J]. J. MoL. Bio., 1980,144: 431-453.
    [35] Carvlin M J, Datta-Gupta N, FieL R J. Circular Dichroism spectroscopy of cationic porphyrin bound to DNA[J]. Biochem. Et Biophys. Res. Comm, 1982,108: 66-73.
    [36] Uma M P, Palaniandavar M. DNA binding and cleavage properties of certain tetrammine ruthenium(Ⅱ) complexes of modified 1,10-phenanthrolines-effect of hydrogen-bonding on DNA-binding affmity[J]. Journal of Inorganic Biochemistry, 2004, 98: 219-230.
    [37] Yang G, Wu J Z, Ji L N, et al Study of the interaction between novel ruthenium(Ⅱ)-polypyridyl complexes and calf thymus DNA[J]. J. Inorg. Biochem. 1997, 66(2): 141-144.
    [38] Jenkins Y, Friedman A E, Turro N J, et al. Characterization of dipyridophenazion complexes of ruthenium(Ⅱ): the light switch effect as a function of nucleic acid sequence and conformation[J]. Biochemistry, 1992, 31: 10809-10861.
    [39] Satyanarayana S, Dabrowiak J C, Chairs J B. Tris(phenanathroline) ruthenium(Ⅱ) enantionmer interactions with DNA: mode and specificity of binding[J]. Biochemistry, 1993, 32: 2573-2584.
    [40] 吕冬梅,闵吉梅,张礼和.药物-DNA相互作用的序列特异性的研究进展[J].国外医学药学分册,1998,25(2):65-71.
    [41] Sigma D S, Mazumder A, Perrin D M. A chemical nuclease [J]. Chem. Rev., 1993,93(6): 229-2316.
    [42] 张志凌,左超,庞代文.DNA与金属锇配合物相互作用的表面电话许研究[J].化学学报,2005,63(22):2069-2076.
    [43] 罗济文,张敏,张蓉颖等.抗癌药物的电化学研究(Ⅱ)道诺霉素在DNA修饰石磨粉末微电极上的电化学行为及分析应用[J].分析科学学报,2002,18(1):1-5.
    [44] Lu Q, Pang D W, Hu S, et al. DNA-modified electrodes(Ⅶ)-preparation and characterization of DNA-bonded and DNA-adsored SAM/Au electrodes[J]. Scinece in China(Series B), 1999,42(4): 425-432.
    [45] Xu X H, Bard A J. Immobilization and hybridization of DNA on an aluminum(Ⅲ) alkanebisphosphonate thin-film with electrogenatated chemiluminescent detection[J]. J. Am. Chem. Soc, 1995,117(9): 2627-2671.
    [46] 王素芬,彭图治,李建平.电化学方法研究 DNA 与不可逆靶向分子的相互作用[J].化学学报,2002,60(2):310-316.
    [47] Carter M T, Rodriguez M, Bard A J. Voltammetric studies of the interacton of metal chelates with DNA Tris-Chelated complexes of cobalt(Ⅲ) and Iron(Ⅱ) with1,10-phenanthroline and 2,2'-bipyridine[J]. J. Am. Chem. Soc, 1989,111(24): 8901-8911.
    [48] Pang D W, Abruna H D. Micromethod for investigation of the interaction between DNA and redox-active molecules[J]. Anal. Chem., 1998, 70(15): 3162-3169.
    [49] Zhao Y D, Pang D W, Wang Z L, et al. DNA-modified electrode. Part 2. Electrochemical characterization of gold electrodes modified with DNA[J]. J. Electroanal. Chem., 1997, 431(2): 203-209.
    [50] 冶保献,木合塔尔·吐尔洪,曲松.抗癌药物 6-巯基嘌呤与DNA相互作用的电化学研究[J].分析科学学报,2004,20(4):364-366.
    [51] 殷玉和,王颖,傅学奇.靶向RNA药物检测和筛选的生物物理学方法[J].生命的化学,2001,21(3):234-236.
    [52] Hopkins H P, Yang M, Wilson W D, et al. Intercalation binding of 6-substituted naphthothiopheneamides to DNA: enthalpy andentropy components[J] Biopolymers, 1991, 31(9): 1105-1114.
    [53] 杨铭,胡齐悦,周田彦等.手性环方铂络合物与DNA相互作用中的分子识别[J].中国生物化学与分子生物学报,1998,14(5):599-603.
    [54] 邹承鲁.第二遗传密码-新生肽链及蛋白质折叠的研究[M].长沙:湖南科学技术出版社,1997.
    [55] 林钧材主编.血液生物化学[M].北京:人们卫生出版社,1988.
    [56] 陶慰孙、李维、姜涌明主编.蛋白质分子基础[M].北京:高等教育出版社,1995.
    [57] 魏永巨.蛋白质分子吸收与散射光谱探针的研究,北京大学博士论文[D],1996.
    [58] 林钧材.血液生物化学[M].人民卫生出版社,1988,32:39.
    [59] 刘峥,夏之宁.光谱法在分子间相互作用中的应用[J].激光杂志,2001,22(6):9-11.
    [60] Caballero-Quintero A, Pineyro-Lopez A, Waksman N. In vitro binding studies of the peroxisomicine Al-BSA and -HSA interactions[J]. International Journal of Pharmaceutics, 2001,229:23-28.
    [61] Baroni S, Mattu M, Vannini A, Cipollone R, et al. Effect of ibuprofen and warfarin on the allosteric properties of haem-human serum albumin A spectroscopic study[J]. Eur. J. Biochem., 2001,268: 6214-6220.
    [62] Zsila F, Bikadi Z, Simonyi M. Probing the binding of the flavonoid, quercetin to human serum albumin by circular dichroism, electronic absorption spectroscopy and molecular modeling methods[J]. Biochem. Pharm., 2003,65: 447-456.
    [63] 魏用巨.蛋白质分子吸收与散射光谱探针的研究.北京大学博士论文[D],1996.
    [64] 杨频.我国生物化学的发展[J].化学通报,1999,12:1-11.
    [65] 梁宏,边贺东,徐楚娇等.La(Ⅲ)与HSA或BSA的结合平衡研究[J].高等化学学报,2001,22(1):21-25.
    [66] 周永洽,太俊哲,梁宏等.金属-血清白蛋白的结构研究(LX)-Ni(Ⅱ)-BSA的新型减色效应[J].高等化学学报,1996,17(9):1331-1337.
    [67] 周永洽,胡绪英,车云霞等.金属-血清白蛋白的结构研究Ⅱ.Cu(Ⅱ)-BSA的四方锥-四方平面结构[J].化学学报,1991,49(1):59-64.
    [68] 周永洽,梁宏,郝韵琴等.金属-血清白蛋白的结构研究Ⅵ.等离子点附近HSA和BSA中Cu(Ⅱ)和Ni(Ⅱ)金属中心的结构[J].无机化学学报,1992,8(4):382-389.
    [69] 梁宏,欧阳砥,胡绪英等.金属-血清白蛋白的结构研究Ⅲ.Ni~(2+)离子诱导的HSA和BSA的缓慢构象变化[J].化学学报,1998,56(7):662-667.
    [70] 周永洽,刘宏,车云霞等.金属-血清白蛋白的结构研究(V)-钴离子与HSA和BSA的相互作用[J].高等学校化学学报,1991,12(4):441-443.
    [71] Zhu Yi-Qia, Zhang Xi-Quan, He Jin-Tian. Chinese Journal of Biochemistry and Molecular Biology, 1998,19(6):879-881.
    [72] 梁宏,邢本刚,吴庆轩等.Cu(Ⅱ),Fe(Ⅲ)与人血白蛋白相互作用的荧光光谱[J].化学学报,1999,57:161-165.
    [73] 张朝平,夏敏.蛋白质-银(Ⅰ)-铜(Ⅱ)络合物的生成及其紫外与红外光谱[J].光谱学与光谱分析,1996,16(5):43-49.
    [74] 黄仲贤,郑起,高红英等.稀土元素与金属硫蛋白作用的研究[J].高等学校化学学报,1996,17(2):190-192.
    [75] Fujita Y, Moril, Toyoda M, et al. Simple and sensitive spectrophotometric determination of albumin with o-Sulfophenylfluorone-Uranium(Ⅵ) complex, and binding study[J]. Chem. Pharm. Bull, 1990, 38(4): 956-959.
    [76] Fujita Y, Morl I, Toyoda M, Analsci, Determination of basic-proteins based on color reaction with the 3,4,5,6-tetrachloro-2-carboxyphenylfluorone-manganese(Ⅱ) complex[J]. Analytical Sciences, 1992, 8(5):693-694.
    [77] 魏永巨,李克安,童沈阳.蛋白质与铁(Ⅲ)-铬天青 s 结合反应的研究[J].高等学校化学学报,1994,15(10):1470-1472.
    [78] 徐岩,黄汉国,沈含熙.喹诺酮类药物对人血白蛋白的荧光猝灭研究[J].分析化学,1998,26(12):1494-1497.
    [79] 江崇球,王敬政,王洪鉴,等.多沙唑嗪与血清白蛋白的作用及血清中多沙唑嗪含量的荧光测定法研究[J].分析化学,1999,27(8):894-898.
    [80] 余天智,陶祖贻.水样素与人血白蛋白相互作用荧光光谱研究[J].光谱学与光谱分析,1999,19(3):453-455.
    [81] 徐文祥,庞月红,双少敏.荧光法研究氢氯噻嗪与人血白蛋白的相互作用[J].分析化学,2004,32(12):1571-1574.
    [82] 胡艳军,刘义,侯安新,等.稀土杂多酸盐EuHSiMo_(l0)W_2O_(40)与BSA相互作用的研究[J].化学学报,2004,62(16):1519-1523.
    [83] 刘永明,李桂芝,孙希芬.荧光法研究水仙碱和牛血清白蛋白的相互作用结合[J].分析化学,2004,32(5):615-618.
    [84] Qin Wen wu, Bao Yong jun, Gong Gou, et al. Fluorescence quenching method for the determination of proteins by alizarin [J]. Journal of Lan zhou University (Natural Sciences), 2000,36(3): 105-110.
    [85] Kenneth Kam-Wing Lo, Wai-Ki Huia, Chi-Keung Chung, et al. Biological labeling reagents and probes derived from luminescent transition metal polypyridine complexes [J]. Coordination Chemistry Reviews, 2005,249(13): 1434-1450.
    [86] 李延志,吕昌银,李庆,等.人血清白蛋白猝灭测定水环境中Cu(Ⅱ)[J].中国卫生检验杂质,2004,14(2):180-181.
    [87] 江崇球,高明霞.盐酸表阿霉素与牛血清白蛋白相互作用的研究及药物在血清与尿样中含量的测定[J].光谱学与光谱分析,2003,23(5):937-940.
    [88] 张保林,王文清,白凤莲.蒽醌及黄铜类化合物与人血白蛋白的结合反应研究[J].高等学校化学学报,1994,15(3):373-378.
    [89] Feng-Ling Cui,Jing Fan,Jian-Ping Li, et al, Interactions between 1-benzoyl-4-p-chlorophenyl thiosemicarbazide and serum albumin: investigation by fluorescence spectroscopy[J]. Bioorganic & Medicinal Chemistry, 2004,12(1):151-157.
    [90] Zhang Bao-Lin, Tang Wen-Xiao, Ren Wei-hong. Involvement of metallothionein in the transport of metals[J]. Chinese Science Bulletin, 1994, 39(4):288-291.
    [91] 张琦,岳晟,颜远,等.添加Ag或Ni的V_2O_5表面氧性质及催化性能研究[J]高等学校化学学报,1994,39(4):288-291.
    [92] 徐文祥,庞月红,双少敏.荧光法研究氢氯噻嗪与人血白蛋白的相互作用[J].分析化学,2004,32(12):1571-1574.
    [1] 孙胜玲,王爱勤,高忆慈.D-氨基葡萄糖与锌盐配位的红外光谱研究[J].光谱学与光谱分析,2005,25(3):374-376.
    [2] 郭振楚,韩亮,胡博等.氨基葡萄糖及羧甲基氨基葡萄糖与铁(Ⅱ)、锌(Ⅱ)、钴(Ⅱ)、铜(Ⅱ)配合物的光谱特征[J].光谱学与光谱分析,2002,22(6):963-966.
    [3] 叶勇,胡继明,曾云鹗.D-氨基葡萄糖金属配合物对DNA作用的谱学研究[J].光谱学与光谱分析,2001,21(5):623-626.
    [4] 陈绘丽,杨频.钴(Ⅲ)的联吡啶类混配合物的合成,表征及其与DNA键合的光谱研究[J].光谱学与光谱分析,2002,22(6):983-986.
    [5] 王敬政,贺吉香,江崇球.芦荟大黄素与血清白蛋白的相互作用[J].分析化学,2001,29(7):782-784.
    [6] Cater D C, Ho J X. Structure and ligand binding properties of human serum albumin, Advances in Protein Chemistry(45)[M]. New York: Academic Press. Inc, 1994.
    [7] Karlin K D, Progress in Inorganic Chemistry (53)[M]. John Wiley & Sons, inc, 2005.
    [8] Geary W J. The use of conductivity measurements in organic solvents for the characterization of coordination compounds [J]. Coordination Chemistry Reviews, 1971,
    [9] Marmur J J. Mol. Protein measurement with the folin phenol reagent[J]. Journal of Biological Chemistry, 1961,193(3): 265-275.
    [10] Reichmann M E, Rice S A, Thomas C A, et al. A further examination of the molecular weight and size of desoxypentose nucleic acid[J]. J. American Chemical Society, 1954, 76(11): 3047-3053.
    [11] 王平红,张岐,王流芳,等.鬼臼酰肼(Ⅱ)金属配合物与DNA的相互作用[J].光谱学与光谱分析,2006,26(5):941-947.
    [12] 李连之,宋爱新,黄仲贤.细胞色素c氧化酶CU_A结构域蛋白的荧光猝灭研究[J].无机化学学报,2004,20(1):48-52.
    [13] 杨频,生物无机化学导论[M].西安:西安交通大学出版社,1991:155.
    [14] 张立金,闵顺耕,李国学,等.克百威与 DNA 之间作用的光谱学研究[J].光谱学与光谱分析,2005,25(5):739-742.
    [15] Scatchard G. The attractions of protein for small molecules and ions [J]. Annals of the New York Academy of Sciences, 1949, 51: 660-672.
    [16] 江崇球,贺吉香,王金山.EB荧光探针法研究多粘菌 B 与 DNA 的作用方式[J].光谱学与光谱分析,2002,22(1):103-106.
    [17] Trynda-Lemiesz L, Keppler B K, Kozlowski H. Studies on the interaction between human serum albumin and imidazolium [trans-tetrachlorobis(imidazol)ruthenate(Ⅲ)][J]. Journal of Inorganic Biochemistry, 1999,73 (3): 123-128.
    [18] 杜金风,李颖,张岐,等.芦荟大黄素与人血白蛋白的相互作用[J].科学通报,2006,51(24):2847-2850.
    [1] Datta A, Karan N K, Mitra S, Gramlich V J[J]. J. Chem. Cryst, 2003, 33:579-583.
    [2] Gillon B, Mathoniere C. Ruiz E, et al. Spin densities in a ferromagnetic bimetallic chain compound: Polarized neutron diffraction and DFT calculations[J]. Journal of American Chemical Society, 2002,124 (48) 14433-14441.
    [3] Kozlov I A, Kubareva E A, Ivanovskaya M G, Design of new re-agents on the base of DNA duplexes for irreversible inhibition of transcription fac-tor NF-kB[J]. Antisense Nucleic Acid Drug Development, 1997, 7: 279-289.
    [4] Purmal A A , Shabarv T V, Gumport R I, A new affinity regent for the site-specific, covalent attachment of DNA to active-site nucleophiles: application to the Rsrl restriction and modification enzymes[J]. Nucleic Acids Res, 1998,26(20) :3713-3719.
    [5] Trawick B N, Daniher AT, Bashkin J K. Inorganic mimics of ribnoucleases and ribozymes: From random cleavage to sequence-specific chemistry to catalytic antisense drugs[J]. Chem. Rev, 1998, 98 (3): 939-960.
    [6] Zhang S C, Shao Y. Oxidative cleavage of DNA by a novel dinuclear copper(Ⅱ) complex in the presence of H_2O_2[J]. Chen. J. Inorg. Chem, 2006,22 (9):1733-1739.
    [7] Cater D C, Ho J X. Structure and ligand binding properties of human serum albumin, Advances in Protein Chemistry(45) [M]. New York: Academic Press. Inc, 1994: 153.
    [8] He X M, Cater D C. Atomic structure and chemistry of human serum albumin[J]. Nature, 1992,358:209-215.
    [9] Peters T. All about albumin: biochemistry, genetics and medical applications[M]. San Diego: Academic press, 1996.
    [10] Shen X C, Yuan Q, Liang H. Hysteresis effects of the interaction between serum albumins and silver nanoparticles[J]. Sci. Chin. Ser. B-Chem, 2003,46 (3) 387-398.
    [11] Wang Y M, Song Y, Kong D L. Study on the interaction of PAMAM dendrimer and its derivatives with bovine serum albumin by fluorescence method[J]. Chin. Sci. Bull, 2005, 50 (17): 1839-1844.
    [12] Mehra R K, Tran K, Scott G W, et al. Ag(I)-binding to phytochelatins[J]. J. Inorg. Biochem, 1996, 61 (2):125-142.
    [13] Spange S, Vlsmeier E,Adolph S,et al.Unusual solvatochromism of the4,4'-bis(dimethylamino)benzophenone (Michler's ketone)-tetracyanoethene electron donor-acceptor complex[J]. J. Phys. Org. Chem, 1999,12 (7):547-556
    [14] Gup R, Kirkan B. Synthesis and spectroscopic studies of mixed-ligand and polymeric dinuclear transition metal complexes with bis-acylhydrazone tetradentate ligands and 1,10-phenanthroline[J]. Spectrochim. Acta, Part A, 2006,64 (3):809-815.
    [15] Mohamed G G, Omarm M, Hndyam M. Synthesis, characterization and biological activity of some transition metals with Schiff base derived from 2-thiophene carboxaldehyde and aminobenzoic acid[J]. Spectrochim. Acta. Part A, 2005,62 (5): 1140-1150.
    [16] Lqbal M S, Bukhari I H, Arif M. Preparation, characterization and biological evaluation of copper(Ⅱ) and zinc(Ⅱ) complexes with Schiff bases derived from amoxicillin and cephalexin[J]. Apll. Organometal. Chem, 19 (2005) 1140-1150.
    [17] Cater D C, Ho J X. Structure and ligand binding properties of human serum albumin, Advances in Protein Chemistry(45) [M]. New York: Academic Press. Inc, 1994: 153.
    [18] Alyea E C, Malek A, Vougioukas A E. Lanthanide complexes of potentially heptadentate Schiff base ligands[J]. Can. J. Chem, 1982, 60 (7):667-672.
    [19] He W Y, Li Y, Si H Z. Molecular modeling and spectroscopic studies on the binding of guaiacol to human serum albumin[J]. J. Photoch. Photobio. A, 2006,182:158-167.
    [20] Geary W J. The use of conductivity measurements in organic solvents of the characterization of coordination compounds[J]. Coord. Chem. Rev, 1971, 7 (1):81-122.
    [21] 王敏,徐志栋,冯殿忠.希土元素与环己基甲酸及磷肥罗琳三元固体配合物的合成和性质的研究[J].无机化学学报,1997,13(3):347-351.
    [22] Deacon G B, Philips R J. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination [J]. Coord. Chem. Rev, 1980,33 (3):227-250.
    [23] 王平红,张岐,王流芳,等.鬼臼酰肼(Ⅱ)金属配合物与DNA的相互作用[J].光谱学与光谱分析,2006,26(5):941-947.
    [24] Zeng Y B, Yang N, Liu W S, et l. Synthesis, characterization and DNA-binding properties of La(Ⅲ) complex of chrysin[J]. J. Inorg. Biochem, 2003, 97 (3):258-264.
    [25] Song Y M, Lu X L, Yang M L, et al. Study on the interaction of platinum(Ⅳ), gold(Ⅲ) and silver(I) ions with DNA[J]. J. Transition Met. Chem, 2005,30 (4):499-502.
    [26] G Scatchard, The attractions of protein for small molecules and ions[J]. Ann. N.Y. Acad. Sci, 1949,51:P660-673.
    [27] Eftink M R, Ghiron C A. Fluorescence quenching of indole and model micelle systems[J]. J. Phys. Chem, 1976, 80 (5):484-487.
    [28] Tian J N, Liu J Q, Yao J P, et al. Interacion of wogonin with bobine serum albumin[J]. Bioorganic medicinal & chemistry, 2005,13 (12):4124-4129.
    [1] Barton J K. Metal and DNA: molecular left-handed complements[J]. Science, 1986, 233(4765):727-734.
    
    [2] Sigman D S, Mazumder A, Perrin D M. Chemical nucleases[J]. Chem. Rev, 1993, 93(6):2295-2316.
    
    [3] Webb T H, Wilcox C S. Enantioselective and diastereoselective molecular recognition of neutral molecules[J]. Chem. Soc. Rev, 1993, 22 (6):383-396.
    
    [4] Kool E T, Preorganization of DNA: Design principles for improving nucleic acid recognition by synthetic oligonucleotides[J]. Chem. Rev. 1997,97 (5):1473-1488.
    
    [5] Dong L J, Chen X G, Hu Z D. Biochem. Study on the binding of Arsenazo-TB to human serum albumin by rayleigh light scattering technique and FI-IR [J]. Biophys. Acta, 2006,1764:257-262.
    
    [6] Mohammed H R, Toru M, Tomoko O, et al. Study of interaction of carprofen and its enantiomers with human serum albumin-1: Mechanism of binding studied by dialysis and spectroscopic methods[J]. Biochem. Pharmcol, 1993,46 (10):1721-1731.
    
    [7] Sakai T, Akira T, Masaki O. Characterization of binding site of uremic toxins on humuan serum albumin[J]. Biol. Pharm. Bull, 1995,18 (12):1755-1761.
    
    [8] Trynda-Lemiesz L, Keppler B K, Kozlowski H. Studies on the interaction between human serum albumin and imidazolium [trans-tetrachlorobis(imidazol)ruthenate(III)] [J]. Journal of Inorganic Biochemistry, 1999,73(3): 123-128
    
    [9] Liu J G, Zhang Q L, Ji L N, et al. Synthesis, characterization and interaction of mixed polypyridyl ruthenium(II) complexes with calf thymus DNA[J]. Transition Met. Chem. 2001,26: 733-738.
    
    [10] Baton J K, Goldberg J M, Kumar C V, et al. Binging modes and base specificity of tris(phenanthroline) ruthenium(II) enantiomers with nucleic acids: tuning the stereoselectibity[J]. J. Am. Chem. Soc, 1986,108 (8):2081-2088.
    
    [11] Zeng Y B, Yang N, Liu W S, et al. Synthesis, characterization and DNA-binding properties of La(III) complex of chrysin[J]. J. Inorg. Biochem, 2003, 97 (3):258-264.
    
    [12] Zsila F, Bikadi Z, Simonyi M. Probing the binding of the flavonoid quercetin to human serum albumin by circular dichroism, electronic absorption spectroscopy and molecular modeling methods[J]. Biochem. Pharmcol, 2003, 65 (3):447-456.
    [13] Li Y, He W Y, Dong Y M, et al. Human serum albumin interaction with formononetin studied using fluorescence anisotropy, FT-IR spectroscopy, and molecular modeling methods[J]. Bioorg. Med. Chem, 2006,14 (5):1431-1436.
    [14] Liu S, Gelmini L, Rettig S J, et al. Synthesis and characterization of lanthanide [Ln(L)]_2 complexes of N_4O_3 amine phenol ligands with phenolate oxygen bridges: evidence for very weak magnetic exchange between lanthanide ions[J]. J. Am. Chem. Soc, 1992,114(15): 6081-6087.
    [15] Alyea E C, Malek A, Vougioukas A E. Lanthanide complexes of potentially heptadentate Schiffbase ligands[J]. Can. J. Chem, 1982, 60 (7):667-672.
    [16] 周庆华,杨频.二(2-苯并咪唑亚甲基)胺合铜(Ⅱ)配合物与DNA作用方式的光谱研究[J].化学学报,2005,63(1):71-74.
    [17] 王平红,张岐,袁文兵,等.鬼臼酰肼金属Ni(Ⅱ),Co(Ⅱ),Zn(Ⅱ)配合物与DNA分子作用机制的研究[J].光谱学与光谱分析,2006,26(7):1298-1302.
    [18] Song Y M, Zheng X R, Yao X Q. Study on the interaction of Rutheium(Ⅲ), Rhodium(Ⅲ) and Palladium(Ⅱ) ions with DNA[J]. Transition Met. Chem, 31 (2006):616-620.
    [19] Yuan T, Weljie A M, Vogel H J. Tryptophan fluorescence quenching by methionine and selenomethionine residues of calmodulin: Orientation of peptide and protein binding[J] Biochemistry, 1998, 37 (9):3187-3195.
    [20] Scatchard G The attractions of protein for small molecules and ions[J]. Ann. N.Y. Acad. Sci, 51 (1949):660-673.
    [21] He W Y, Li Y, Tian J N, ea tl. Spectroscopic studies on binding of shikonin to human serum albumin[J]. J. Photochem. Photobiol. A. Chemistry, 2005,174 (1):53-61.
    [22] Ross P D, Subramanian S. Thermodynamics of protein association reactions: forces contributing to stability[J].Biochemistry, 1981, 20 (11):3096-3102.