大豆MADS-box家族两个基因功能的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在植物的许多发育阶段,MADS-box家族基因都扮演了重要的角色。它控制了植物的花器官发育,在植物侧根,果实,种皮的发育过程中也起了很重要的作用。拟南芥中报道的MADS-box基因有107个,而在大豆中还知之甚少。GmMADS28及GmAGL15是MADS-box家族基因两个重要成员,GmMADS28在花中优势表达,序列分析和系统发生分析表明是SEP亚家族成员,GmAGL15在幼胚中表达量较高。本研究对这两个基因进行了初步的研究。
     为了研究GmAGL15基因功能,首先本实验利用洋葱表皮对GmAGL15进行了亚细胞定位,发现其定位于细胞核和细胞膜。对其进行序列比对与系统发生分析,发现GmAGL15与拟南芥的AGL15相似性较高,达69%。该基因的基因组结构的分析表明它们都含有7个内含子,蛋白的N,C末端都含有一段保守序列,推测GmAGL15基因与拟南芥AGL15同源。
     为探明大豆GmAGL15基因的表达调控规律,应用电子克隆技术从大豆基因组中克隆了GmAGL15翻译启始位点上游1000bp的DNA片段,用PLACE在线启动子预测工具分析表明:该序列含有启动子的特定结构,如TATA-BOX、CAAT-BOX。另外还含有一些顺式作用元件,如调控GmAGL15的组织特异的和特定发育阶段的表达,对胁迫的应答,光调节,以及反馈调节,推测大豆GmAGL15基因表达有相应组织特异性,可能受蔗糖、生长素和乙烯等的调控。用PLACE在线启动子预测工具对大豆与拟南芥等其他4种植物的同源基因启动子的顺式元件进行统计比较,发现不同植物的启动子既有保守性,又有多样性,转录因子结合位点的分布相似,但也有区别,暗示了GmAGL15基因表达调控的精确性或多样性。
     本研究还初步进行了GmAGL15基因在烟草中的异位表达,并对转化植株的基因表达进行了荧光定量检测,表明该基因得到了表达,但是植株与对照相比无明显表型变化。
     为了研究GmMADS28基因功能,本实验利用农杆菌介导法初步进行了GmMADS28基因在大豆中的增强表达,获得了62株抗性植株,发现少数有提早开花现象。同时应用Gateway技术体系替代传统载体的构建方法,并结合近年来广泛应用于植物基因功能研究的RNA干涉技术,构建了大豆基因GmMADS28的RNA干涉载体,并转化了根癌农杆菌,为下一步的转基因研究奠定了基础。
MADS-box genes are known to be involved in many important processes during plant development.They are key components regulating flowering transition and play an important role during the development of lateral root,fruit and seed-coat.Genome-wide identification of MADS-box genes has revealed I07 genes in Arabidopsis,but little is known in the soybean.GmMADS28 and GmAGL15 are two important members of MADS-box genes family.GmMADS28 has high expression in flowers.Analysis of sequence alignment and phylogenetic tree indicated that it belongs to SEP subfamily. GmAGL15 expresses only in embryos.This paper made primary research on the two MADS-box genes.
     In order to investigate the function of GmAGL15,subcellular localization by transient expression of GmAGL15-GFP fusion protein on onion epiderm showed that GmAGL15 was localized in nucleolus and membrane.Pairwise comparison of GmAGL 15 protein with AGL15 revealed a similarity of approximately 69%.An alignment of the genomic and cDNA sequences revealed that GmAGL15 contained eight exons and seven introns,which was similar to AGL15.N-terminal and C-terminal of the soybean sequence displayed overall homology to the AGL15 proteins.Therefore,it is likely that GmAGL15 is the soybean ortholog of AGL15.
     In order to study the rule of GmAGL15 gene expression and regulation in soybean,we cloned a 1kb upstream of the translation start site from soybean genome in silico.Promoter sequence analyzed by PLACE showed that it had TATA-box,CA.AT-box and some cis-acting element which regulated specific expression in different organs and responses to stresses,light,and self-feedback.Therefore,GmAGL15 may be regulated by sucrose,auxin and ethylene.Compared the promoter of soybean GmAGL15 with homologue of other plants by FootPrinter analysis,we found that these promoters had conservatism and diversity and the distributing of transcription factor-binding sites had similarity and difference.It implied the accuracy and diversity of GmAGL15 gene expression and regulation.
     GmAGL15 was transferred into tobacco by Agrobacterium-mediated method.Real Time RT-PCR assay revealed GmAGL15 expressed in all these lines.But there is no noticeable phenotypic change to the wild-type plants.
     In order to investigate the function of GmMADS28,GmMADS28 was transferred to soybean through Agrobacterium-mediated co-transformation system to enhance its expression.62 resistant plantlets were obtained through antibiotic screening,and a few of them were found to be early flowering.RNAi technology has been widely used in resent years.In this paper,Gateway technology was used to replace the conventional method to construct GmMADS28 RNAi vectors.Then the vector was transferred to Agrobacterium C58C1 for its further transformation in plants.
引文
1.段远霖,李维明,吴为人,刘华清.植物MADS-box基因的研究进展.福建农林大学学报(自然科学版),2003
    2.汪潇琳,陈艳萍,喻德跃.MADS-box基因GmAGL15在大豆种子发育过程中的表达.作物学报,2008,02:330-332
    3.杨健,胡为民,任碧轩,唐恩洁.RNA干扰体外抑制HBeAg的表达.细胞与分子免疫学杂志,2006
    4.Adamczyk B J,Lehti-Shiu M D,Fernandez D E.The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis.Plant Journal,2007,50:1007-1019
    5.Alvarez-Buylla E R,Liljegren S J,Pelaz S,Gold S E,Burgeff C,Ditta G S,Vergara-Silva F,Yanofsky M F.MADS-box gene evolution beyond flowers:expression in pollen,endosperm,guard cells,roots and trichomes.Plant Journal,2000,24:457-466
    6.Angenent G C,Franken J,Busscher M,van Dijken A,van Went J L,Dons H J,van Tunen A J.A novel class of MADS box genes is involved in ovule development in petunia.The Plant Cell,1995,7:1569
    7.Arora R,Agarwal P,Ray S,Singh A K,Singh V P,Tyagi A K,Kapoor S.MADS-box gene family in rice:genome-wide identification,organization and expression profiling during reproductive development and stress.Bmc Genomics,2007,8
    8.Battaglia R,Brambilla V,Colombo L,Stuitje A R,Kater M M.Functional analysis of MADS-box genes controlling ovule developm ent in Arabidopsis using the ethanol-inducible alc gene-expression system.Mechanisms of Development,2006,123:267-276
    9.Becker A,Theissen G.The major clades of MADS-box genes and their role in the development and evolution of flowering plants.Molecular Phylogenetics and Evolution,2003,29:464-489
    10.Blanchette M,Tompa M.FootPrinter:a program designed for phylogenetic footprinting.Nucleic Acids Research,2003,31:3840-3842
    11.Bowman J L.Genetic interactions among floral homeotic genes of Arabidopsis.Development,1991,112:1-20.
    12.Buratowski S,Moazed D.Gene regulation:expression and silencing coupled.Nature,2005,435:1174-5
    13.Byzova M,Verduyn C,Brouwer D D,Block M D.Transforming petals into sepaloid organs in Arabidopsis and oilseed rape:implementation of the hairpin RNA-mediated gene silencing technology in an organ-specific manner.Planta,2004,218:379-387
    14.Causier B,Kieffer M,Davies B.Plant biology:MADS-Box genes reach maturity.Science,2002,296:275-276
    15.Chuang C F,Meyerowitz E M.Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana.Proceedings of the National Academy of Sciences,2000,97:4985
    16.Ditta G.Pinyopich A,Robles P,Pelaz S,Yanofsky M F.The SEP4 Gene of Arabidopsis thaliana Functions in Floral Organ and Meristem Identity.Current Biology,2004,14:1935-1940
    17.Dreni L,Jacchia S,Fornara F,Fornari M,Ouwerkerk P B F,An G H,Colombo L,Kater M M.The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice.Plant Journal,2007,52:690-699
    18.Favaro R,Pinyopich A,Battaglia R,Kooiker M,Borghi L,Ditta G.Yanofsky M F,Kater M M,Colombo L.MADS-box protein complexes control carpel and ovule development in A rabidopsis.Plant Cell,2003,15:2603-2611
    19.Ferrandiz C,Liljegren S J,Yanofsky M F.Negative Regulation of the SHATTERPROOF Genes by FRUITFULL During Arabidopsis Fruit Development.Science's STKE,2000,289:436
    20.Ferrario S,Immink R G H,Angenent G C.Conservation and diversity in flower land.Current Opinion in Plant Biology,2004,7:84-91
    21.Ferrario S,Immink R G,Shchennikova A,Busscher-Lange J,Angenent G C.The MADS box gene FBP2 is required for SEPALLATA function in petunia.Plant Cell,2003,15:914-25
    22.Gu Q,Ferrandiz C,Yanofsky M F,Martienssen R.The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development.Development,1998,125:1509-17
    23.Hartley J L,Temple G F,Brasch M A,Stoutjesdijk P A,Green A G,Waterhouse P M.DNA Cloning Using In Vitro Site-Specific Recombination.Genome Research,2000,10:1788
    24.Herr J M.The origin of the ovule.Am J Bot,1995,82:547-564
    25.Higo K,Ugawa Y,Iwamoto M,Korenaga T.Plant cis-acting regulatory DNA elements(PLACE)database.Nucleic Acids Research,1999,27:297-300
    26.Himber C,Dunoyer P,Moissiard G,Ritzenthaler C,Voinnet O.Transitivity-dependent and-independent cell-to-cell movement of RNA silencing.The EMBO Journal,2003,22:4523-4533
    27.Holen T,Amarzguioui M,Wiiger M T,Babaie E,Prydz H.Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor.Nucleic Acids Research,2002,30:1757-1766
    28.Honma T,Goto K.Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 2001, 409: 525-529
    
    29. Kato Y, Zhao M, Morikawa A, Sugiyama T, Chakravortty D, Koide N, Yoshida T, Tapping R I, Yang Y, Yokochi T. Big Mitogen-activated Kinase Regulates Multiple Members of the MEF2 Protein Family. Journal of Biological Chemistry, 2000, 275: 18534-18540
    
    30. Kaufmann K, Melzer R, Theissen G. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene, 2005, 347: 183-198
    
    31. Korbes A P, Droste A. Carbon sources and polyethylene glycol on soybean somatic embryo conversion. PesquisaAgropecuaria Brasileira, 2005, 40: 211-216
    
    32. Lamb R S, Irish V F. Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. Proceedings of the National Academy of Sciences, 2003, 100: 6558
    
    33. Leseberg C H, Li A L, Kang H, Duvall M, Mao L. Genome-wide analysis of the MADS-box gene family in Populus trichocarpa. Gene, 2006, 378: 84-94
    
    34. Liu Q, Singh S P, Green A G High-stearic and high-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiol, 2002, 129: 1732-1743
    
    35. Lucioli A, Noris E, Brunetti A, Tavazza R, Ruzza V, Castillo A G, Bejarano E R, Accotto G P, Tavazza M. Tomato Yellow Leaf Curl Sardinia Virus Rep-Derived Resistance to Homologous and Heterologous Geminiviruses Occurs by Different Mechanisms and Is Overcome if Virus-Mediated Transgene Silencing Is Activated. Journal of Virology, 2003, 77: 6785
    
    36. Mansoor S, Amin I, Hussain M, Zafar Y, Briddon R W. Engineering novel traits in plants through RNA interference. Trends in Plant Science, 2006, 11: 559-565
    
    37. Michaels S D, Ditta G, Gustafson-Brown C, Pelaz S, Yanofsky M, Amasino R M. AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. The Plant Journal, 2003,33:867-874
    
    38. Moritoh S, Miki D, Akiyama M, Kawahara M, Izawa T, Maki H, Shimamoto K. RNAi-mediated Silencing of OsGEN-L (OsGEN-like), a New Member of the RAD2/XPG Nuclease Family, Causes Male Sterility by Defect of Microspore Development in Rice. Plant and Cell Physiology, 2005, 46: 699-715
    
    39. Nam J, Kim J, Lee S, An G H, Ma H, Nei M S. Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 1910-1915
    
    40. Ng M, Yanofsky M F. Function and evolution of the plant MADS-box gene family. Nat Rev Genet, 2001,2:186-195
    
    41. Ogita S, Uefuji H, Yamaguchi Y, Koizumi N, Sano H. Producing decaffeinated coffee plants. Nature, 2003,423:823
    42.Olhoft P M,Flagel L E,Donovan C M,Somers D A.Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method.Planta,2003,216:723-735
    43.Parenicova L,Folter S,Kieffer M,Horner D S,Favalli C,Busscher J,Cook H E,Ingram R M,Kater M M,Davies B,Angenent G C,Colombo L.Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis:New openings to the MADS world.Plant Cell,2003,15:1538-1551
    44.Paz M M,Shou H,Zhang Z,Banerjee A K,Wang K.Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant.Euphytica,2004,136:167-179
    45.Perry S E,Lehti M D,Fernandez D E.The MADS-domain protein AGAMOUS-like 15accumulates in embryonic tissues with diverse origins.Plant Physiology,1999,120:121-129
    46.Pfeffer S,Zavolan M,Grasser F A,Chien M,Russo J J,Ju J,John B,Enright A J,Marks D,Sander C.Identification of Virus-Encoded MicroRNAs.American Association for the Advancement of Science.2004,304:734-736.
    47.Philippar U,Schratt G,Dieterich C,Nordhehn,Alfred.The SRF Target Gene Fhl2 Antagonizes RhoA/MAL-Dependent Activation of SRF.Molecular Cell,2004,16:867-880
    48.Pinyopich A,Ditta G S,Savidge B,Liljegren S J,Baumann E,Wisman E,Yanofsky M F.Assessing the redundancy of MADS-box genes during carpel and ovule development.Nature,2003,424:85-88
    49.Riechmann J L,Meyerowitz E M.Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1,AP3,PI,and AG is independent of their DNA-binding specificity.Mol Biol Cell,1997,8:1243-59
    50.Rounsley S D,Ditta G S,Yanofsky M F.Diverse roles for MADS box genes in Arabidopsis development.Plant Cell,1995,7:1259-1269
    51.Shore P,Sharrocks A D.The MADS-box family of transcription factors.Eur J Biochem,1995,229:1-13
    52.Smith N A,Singh S P,Wang M B,Stoutjesdijk P A,Green A G,Waterhouse P M.Total silencing by intron-spliced hairpin RNAs.Nature,2000,407:319-20
    53.Tan S,Hunziker Y,Pellegrini L,Richmond T J.Crystallization of the yeast MATa2/MCM1/DNA ternary complex:general methods and principles for protein/DNA cocrystallization.Journal of Molecular Biology,2000,297:947-959
    54.Thakare D,Tang W,Hill K,Perry S E.The MADS-Domain Transcriptional Regulator AGAMOUS-LIKE15 Promotes Somatic Embryo Development in Arabidopsis and Soybean.Plant Physiology,2008,146:1663-1672
    55.Theissen G,Becker A,Di Rosa A,Kanno A,Kim J T,Munster T,Winter K U,Saedler H.A short history of MADS-box genes in plants.Plant Mol Biol,2000,42:115-49
    56.Theissen G.Development of floral organ identity:stories from the MADS house.Current Opinion in Plant Biology,2001,4:75-85
    57.Tzeng T Y,Chen H Y,Yang C H.Ectopic expression of carpel-specific MADS box genes from lily and lisianthus causes similar homeotic conversion of sepal and petal in Arabidopsis.Plant Physiology,2002,130:1827-1836
    58.Vrebalov J,Ruezinsky D,Padmanabhan V,White R,Medrano D,Drake R,Schuch W,Giovannoni J.A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor(Rin) locus.Science,2002,296:343-346
    59.Wesley S V,Helliwell C A,Smith N A,Wang M B,Rouse D T,Liu Q,Gooding P S,Singh S P,Abbott D,Stoutjesdijk P A.Construct design for efficient,effective and high-throughput gene silencing in plants.The Plant Journal,2001,27:581-590
    60.Wu C,Ma Q,Yam K M,Cheung M Y,Xu Y,Han T,Lain H M,Chong K.In situ expression of the GmNMH7 gene is photoperiod-dependent in a unique soybean(Glycine max[L.]Merr.) flowering reversion system.Planta,2006,223:725-735
    61.Yang Y,Fanning L,Jack T.The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins,APETALA3 and PISTILLATA.The Plant Journal,2003,33:47-59