在高速网络下时滞系统的最优扰动抑制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了在高速网络下时滞系统的最优扰动抑制问题,主要内容概括如下:
     1.在高速通讯网络环境下建立含有控制时滞与测量时滞的系统的数学模型,并将其离散化。
     2.利用模型转换将离散化的含有控制时滞与测量时滞线性系统转化为形式上无时滞的线性系统。然后通过求解离散Riccati方程和Stein方程设计含有状态反馈、扰动状态前馈和控制记忆项的最优控制律,前馈项和控制记忆项分别补偿了扰动和控制时滞对系统性能的影响。通过构造扰动状态观测器,解决前馈补偿器的物理不可实现问题.
     3.研究高速通讯网络环境下受持续扰动的含有控制时滞与测量时滞的非线性离散系统的基于高增益观测器的扰动抑制。通过模型转换,构造了基于高增益观测器的扰动控制律,证明了高增益观测器可以消除扰动系统建模时的不确定性。通过对非线性离散系统在期望平衡点的线性化,对系统设计反馈控制器。由闭环系统原点邻域内的Lyapunov函数估计其吸引域,证明了系统的稳定性。
     4.研究高速通讯网络下受持续扰动的含有控制时滞和测量时滞的离散线性系统,通过构造内模系统产生出较好的控制信号克服扰动信号,设计了能够镇定闭环系统的镇定控制器,以确保闭环系统的稳定性。使用内模原理,设计了内模动态补偿控制器,从而使系统达到无静差的、完全的扰动抑制。
In this paper, the problem of optimal disturbance rejection for systems with time-delays in high-speed networks is considered. The main contents are given as follows:
     1. The mathematical models for systems with delayed control and measurement in high-speed networks are established and then the discrete-time models are founded.
     2. Based on a model transformation, the discrete-time system with control and measurement delays is transformed to a formal nondelay system. Then the optimal control law with a state feedback, a disturbance feedforward and a control memory term is derived from a discrete Riccati equation and a Stein equation. The feedforward control term and control memory term compensate for the effects of disturbances and the control delay, respectively. A disturbance state observer is constructed to make the feedforward compensator physically realize. Simulation results demonstrate the effectiveness of the optimal control law.
     3. Consider the optimal disturbance rejection for nonlinear discrete-time systems with delayed control and measurement in high-speed communication networks via a high-gain observer. Based on a model transformation, the optimal control law via the high-gain observer is constructed and the high-gain observer, which can remove the uncertainty come from disturbance model transformation, is proved. By linearizing the system around the desired equilibrium point, a state feedback controller is designed for the linearization system under disturbances. The Lyapunov function for the closed-loop system in the neighborhood of the origin is used to estimate the region of attraction. The stability of this system is proved.
     4. Consider the optimal disturbance rejection for linear discrete-time systems with delayed control and measurement in high-speed communication networks, by constructing the internal model principle, make the better control signal to overcome disturbance signal, design the stabilizing controller can stabilize the closed-loop system to ensure the stability of the closed-loop system. Use the internal model principle, by designing the internal model controller with a dynamic model compensator, make the unsteady-state error, complete disturbance rejection of the system.
引文
[1]Yue D, Han Q L, Lam J. Network-Based Robust H∞ Control of Systems with Uncertainty. Automatica,2005,41(6):999~1007
    [2]岳东,彭晨,HanQL网络控制系统的分析与综合,2007
    [3]Bastin G, Guffens V. Congestion Control in Compartmental Network Systems. Systems & Control Letters,2006,55 (8):689~696
    [4]Naghshtabrizi P, Hespanha J P. Designing an Observer-Based Controller for a Network Control System.44th IEEE Conference on Decision and Control,2005 and 2005 European Control Conference. CDC-ECC'05,2005,848~853
    [5]Hirosawa T, Shibamiya M. Network Control System for Dynamically Switching a Logical Connection Between an Identified Terminal Device and an Indicated Processing Unit. U S Paten:5,121,486,1992
    [6]Azimi-Sadjadi B. Stability of Networked Control Systems in the Presence of Packet Losses. 42nd IEEE Conference on Decision and Control,2003
    [7]Altman E, Avrachenkov K, Barakat C. Analysis of Mimd Congestion Control Algorithm for High Speed Networks. Computer Networks,2005,48 (6):972~989
    [8]Schmidt D C, Harrison T H, Al-Shaer E. Object-Oriented Components for High-Speed Network Programming. Proceedings of the USENIX Conference on Object-Oriented Technologies (COOTS) Monterey, California, June 1995
    [9]Guerin R, Ahmadi H, Naghshineh M. Equivalent Capacity and its Application to Bandwidth Allocation in High-Speed Networks. IEEE Journal on Selected Areas in Communications, 1991,9 (7):968~981
    [10]Kruegel C, Valeur F, Vigna G. Stateful Intrusion Detection for High-Speed Networks. IEEE Symposium on Security and Privacy:Citeseer,2002,285~294
    [11]Threewitt N B. Differential Dynamic Content Addressable Memory and High Speed Network Address Filtering, US Patent 5,949,696,1999
    [12]Lenhart G W. A Fieldbus Approach to Local Control Networks. Advances in instrumentation and controlk,1993,48:357
    [13]Bellato M, Isocrate R, Meng G. Remoting Field Bus Control by Means of a Pci Express-Based Optical Serial Link, Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2007,570 (3):518~524
    [14]David A, Yi W. Modelling and Analysis of a Commercial Field Bus Protocol. Real-Time Systems,2000. Euromicro RTS 2000.12th Euromicro Conference 2000,165~172
    [15]Henriquez H R. Approximate Controllability of Linear Distributed Control Systems. Applied Mathematics Letters,2008,21 (10):1041~1045
    [16]Lian F L, Moyne J, Tilbury D. Network Design Consideration for Distributed Control Systems. IEEE Transactions on Control Systems Technology,2002,10 (2):297~307
    [17]Brennan R W, Fletcher M, Norrie D H. An Agent-Based Approach to Reconfiguration of Real-Time Distributed Control Systems. IEEE Robotics and Automation Society,2002,18 (4):444~451
    [18]Flordal H, Fabian M, Akesson K, SPENSIERI D. Automatic model generation and PLC-code implementation for interlocking policies in industrial robot cells. Control Engineering Practice,2007,15(11):1416~1426
    [19]Wei J, Wenzhong S. Controllability of Singular Systems with Control Delay. Automatica, 2001,37(11):1873~1877
    [20]Tang G Y, Lu S S, Dong R. Optimal Sliding Mode Control for Linear Time-Delay Systems with Sinusoidal Disturbances, Journal of Sound and Vibration,2007,304 (1-2):263~271
    [21]Jazayeri-Rad H. Minimizing the Effects of Unmeasured Disturbances in an Open-Loop Unstable Chemical Plant Containing Measurement Dead Times, Chemical Engineering Research and Design,2008,86 (2):153~163
    [22]Uchida K, Fujita M, Ikeda K. Another Look at Finite Horizon H∞ Control Problems for Systems with Input Delays, Automatica,2004,40 (6):977~984
    [23]Ma H, Tang G Y, Zhao Y D. Feedforward and Feedback Optimal Control for Offshore Structures Subjected to Irregular Wave Forces, Ocean Engineering,2006,33 (8-9):1105~ 1117
    [24]Wang W, Tang G Y. Feedback and Feedforward Optimal Control for Offshore Jacket Platforms, China Ocean Engineering,2004,18 (4):515~526
    [25]Orccotoma J A, Paris J, Perrier M. Paper Machine Controllability:Effect of Disturbances On Basis Weight and First-Pass Retention. Journal of Process Control,2001,11 (4):401~ 408
    [26]Jose J, Taylor R J, de Callafon R A. Characterization of Lateral Tape Motion and Disturbances in the Servo Position Error Signal of a Linear Tape Drive. Tribology International,2005,38 (6-7):625~632
    [27]Rebarber R, Weiss G. Internal Model Based Tracking and Disturbance Rejection for Stable Well-Posed Systems, Automatica,2003,39 (9):1555~1569
    [28]Marino R, Santosuosso G L, Tomei P. Robust Adaptive Compensation of Biased Sinusoidal Disturbances with Unknown Frequency. Automatica,2003,39 (10):1755~1761
    [29]唐功友Feedforward and Feedback Optimal Control for Linear Systems with Sinusoidal Disturbances,高技术通讯,2001,7(4)
    [30]胡立生,孙优贤.非线性系统的鲁棒采样最优控制.控制理论与应用,2001,18(002)191~194
    [31]郭剑鹰,吕恬生,赵福令.放电间隙数字自动伺服控制.制造技术与机床,2003,(005):23~25
    [32]刘建东,张栾英,谷俊杰.数字Pid控制系统的鲁棒性分析与设计.华北电力大学学报,2003,30(006):30~33
    [33]江加和,喻统武.电液伺服加载系统数字控制的研究.北京航空航天大学学报,2000,26(003):318~320
    [34]Janardhanan S, Bandyopadhyay B. Output feedback discrete-time sliding mode control for time delay systems. IEE Proceedings:Control Theory and Applications,2006,153 (4):387 ~396
    [35]Fei J, Chen S, Tao G. Robust Adaptive Control Scheme for Discrete-Time System with Actuator Failures. Journal of Dynamic Systems, Measurement, and Control,2005,127:520
    [36]Tang G Y, Zhang B L. Feedforward and Feedback Optimal Control for Nonlinear Discrete-Time Systems with Deterministic Disturbances控制理论与应用,2006,23(1):25~30
    [37]Califano C, Monaco S, Normand-Cyrot D. Non-Linear Non-Interacting Control with Stability in Discrete Time:A Dynamic Solution. International Journal of Control,2005,78 (6):443~459
    [38]Malek-Zavarei M, Jamshidi M. Time-Delay Systems:Analysis, Optimization and Applications. Elsevier Science Inc. New York, NY, USA,1987
    [39]Cai G P, Huang J Z, Yang S X. An Optimal Control Method for Linear Systems with Time Delay. Computers & Structures,2003,81 (15):1539~1546
    [40]Du Z P, Zhang Q L, Liu L L. Delay-dependent robust stabilization for uncertain singular systems with multiple input delays. Acta Automatica Sinica,2009,35, (2),162~167
    [41]Kolmanovski V B, Nosov V R. Stability of Functional Differential Equations. Academic Press,1986
    [42]Smith O. Closer Control of Loops with Dead Time. Chemical Engineering Progress,1957, 53 (5):217~219
    [43]Dahlin E B. Designing and Tuning Digital Controllers. Instruments and Control Systems, 1968,41 (6):77~83
    [44]Garcia C E, Morari M. Internal Model Control. A Unifying Review and some New Results. Industrial & Engineering Chemistry Process Design and Development,1982,21 (2):308~ 323
    [45]唐功友,刘毅敏.时滞离散系统最优输出跟踪控制的灵敏度法.控制与决策,2005,20(011):1279~1282
    [46]Tsay S C, Wu I L, Lee T T. Optimal Control of Linear Time-Delay Systems Via General Orthogonal Polynomials. International Journal of Systems Science,1988,19 (2):365~376
    [47]解学书.最优控制理论与应用.清华大学出版社,1986
    [48]吕鹏飞,唐功友,贾晓波等.非线性时滞系统次优控制的逐次逼近法.控制与决策,2004,19(002):230~234
    [49]Tao G, Tang X, Joshi S M. Adaptive Output Rejection of Unmatched Input Disturbances. Systems & Control Letters,2002,47(1):25~35
    [50]Na H S, Park Y. An Adaptive Feedforward Controller for Rejection of Periodic Disturbances. Journal of Sound and Vibration,1997,201 (4):427~435
    [51]Hung J Y, Gao W, Hung J C. Variable Structure Control:A Survey. IEEE Transactions on Industrial Electronics,1993,40 (1):2~22
    [52]Xu J X, Lee T H, Wang M. Design of Variable Structure Controllers with Continuous Switching Control. International Journal of Control,1996,65 (3):409~431
    [53]朱位秋.非线性随机动力学与控制-Hamilton理论体系框架.2003
    [54]王俊,奚宏生,季海波等.严格反馈随机非线性系统的自适应逆最优控制.控制与决策,2003,18(006):681~685
    [55]王俊,奚宏生,季海波等.具有不确定Wiener噪声随机非线性系统的自适应逆最优控制.自动化学报,2004,30(006):824~832
    [56]Davison E. The Robust Control of a Servomechanism Problem for Linear Time-Invariant Multivariable Systems. IEEE Transactions on Automatic Control,1976,21 (1):25~34
    [57]Francis B A, Wonham W M. The Internal Model Principle of Control Theory. Automatica, 1976,12 (5):457~465
    [58]Khalil H K. Robust Servomechanism Output Feedback Controllers for Feedback Linearizable Systems. Automatica,1994,30 (10):1587~1599
    [59]Isidori A. A Remark On the Problem of Semiglobal Nonlinear Output Regulation. IEEE Transactions on Automatic Control,1997,42 (12):1734~1738
    [60]Huang J. K-Fold Exosystem and the Robust Nonlinear Servomechanism Problem. Journal of Dynamic Systems, Measurement, and Control,1998,120:149
    [61]Saberi A, Sannuti P, Chen B M. H2 Optimal Control. Series in Systems and Control Engineering,1995
    [62]Isidori A. A Necessary Condition for Nonlinear H∞ Control Via Measurement Feedback, Systems & Control Letters,1994,23 (3):169~177
    [63]Vidyasagar M. Optimal Rejection of Persistent Bounded Disturbances. IEEE Transactions on Automatic Control,1986,31 (6):527~534
    [64]Halder B, Kailath T. LMI Based Design of Mixed H2/H∞ Controllers:The State Feedback Case. American Control Conference, Proceedings of the 1999,1999
    [65]Shengping L. Approximation Methods of Mixed L1/H2 Optimization Problems for Mimo Discrete-Time Systems,系统工程与电子技术(英文版),2004,(03)
    [66]Salapaka M V, Dahleh M, Voulgaris P. Mixed Objective Control Synthesis:Optimal L1/H2 Control, Siam J Control Optimal,1997,35 (5):1672~1689
    [67]Haddad W M, Chellaboina V S, Wu W. Optimal Nonlinear-Nonquadratic Feedback Control for Nonlinear Discrete-Time Systems with L2 and L∞ Disturbances. Nonlinear Analysis,2000,41 (3):287~312
    [68]Haddad W M, Kablar N A, Chellaboina V S. Optimal Disturbance Rejection Control for Nonlinear Impulsive Dynamical Systems. Nonlinear Analysis,2005,62 (8):1466~1489
    [69]De Figueiredo R, Chen G. Optimal Disturbance Rejection for Nonlinear Control Systems. IEEE Transactions on Automatic Control,1989,34 (12):1242~1248