蛋白激酶D在高血压主动脉重塑中的作用及分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     高血压是心血管疾病最重要的危险因素,而血管重塑是导致高血压患者心血管事件发生率显著增加的独立危险因素。与高血压相伴随的血管结构和功能的改变即高血压血管重塑,主要包括管壁增厚、管壁管腔比值增大和小血管减少,以及随之产生的血管功能异常。血管重塑不仅仅是一种代偿反应,也是高血压的主要病理基础之一,是引起高血压各种严重并发症以及循环系统功能紊乱的重要原因。血管重塑可导致一系列的临床事件,如高血压、动脉粥样硬化和血管狭窄等。目前的研究表明,高血压主动脉重塑是死亡率增加的主要原因之一。因此预防和改善血管重塑也是高血压治疗的主要目标之一和评价高血压治疗效果的重要指标。血管重塑的发病机制和防治措施已成为国内外的研究热点。高血压血管重塑是一个非常复杂的病理过程,其确切的机制仍不十分明确。研究发现,血管重塑涉及多个细胞过程的变化,如细胞肥大、增殖、调亡、重塑、炎症反应、氧化应激、细胞因子的活化、细胞外基质产生与降解等。高血压主动脉重塑的中心环节是因血管平滑肌细胞肥大导致的血管中膜增厚。
     蛋白激酶D(PKD)家族是一种新发现的Ca2+/钙调蛋白依赖性的丝氨酸/苏氨酸蛋白激酶,主要包括PKD1、PKD2, PKD3三个成员。PKD结构与酶的活性均和PKC家族不同。越来越多的证据表明,PKD介导的信号通路在心血管系统中发挥重要作用,尤其在调节心肌收缩、心室肥厚及重塑中的作用。最近的研究显示血管平滑肌细胞也表达PKD,且PKD的活性能被一些刺激因素激活,如血管紧张素Ⅱ,血小板源性生长因子和血栓素等。用血管紧张素Ⅱ刺激血管平滑肌细胞时,PKD通过AT1/PKCδ途经被激活。另外有研究证实PKD可通过使组蛋白去乙酰酶5(HDAC5)磷酸化介导血管紧张素Ⅱ诱导的血管平滑肌细胞肥大。然而,PKD在自发性高血压大鼠主动脉组织中的活性表达及其在主动脉重塑中的作用机制还不是很明确。
     高血压患者经常伴随血脂代谢紊乱,因此他汀类药物在高血压患者中应用广泛。越来越多的证据表明,他汀类药物除了能够有效降低血脂水平外,还能发挥其降脂以外的多项心血管保护效应,如:改善血管内皮功能、稳定动脉粥样硬化斑块、抗炎抗氧化以及阻止心室肥厚、改善心室重塑等。无论患者血脂是否正常,应用他汀类药物均能降低心血管疾病的致残率和死亡率。最近的研究表明,阿托伐他汀能抑制心肌肥厚及纤维化。然而,它在血管重塑中的保护作用及其具体机制还不是很清楚。
     本课题动态观察高血压大鼠主动脉组织中PKD表达和活化特点及其与主动脉重塑的关系;研究PKD在高血压主动脉重塑中的作用机制;初步探讨阿托伐他汀对高血压主动脉重塑的改善作用及其分子机制。旨在从分子角度阐明高血压血管重塑的发病机制和他汀类药物改善血管重塑的机制。为高血压血管重塑的防治提供新思路和理论依据。
     目的
     1.进一步明确自发性高血压大鼠主动脉重塑的发生发展过程;
     2.探讨自发性高血压大鼠主动脉组织中蛋白激酶D的活性表达在血管重塑中的作用。
     3.评价阿托伐他汀在改善高血压主动脉重塑发生发展中的作用及与PKD的关系。
     方法
     8周龄WKY大鼠40只、自发性高血压(SHR)大鼠50只。WKY大鼠随机分为四组,A组:8周龄(n=10只);B组:16周龄(n=10只);C组:24周龄(n=10只),G组:WKY安慰剂(n=10只)。SHR大鼠随机分为五组:D组:8周龄(n=10只);E组:16周龄(n=10只);F组:24周龄(n=10只);H组:SHR安慰剂(n=10只);Ⅰ组:SHR阿托伐他汀(ATV)50mg·kg-1·d-1 (n=10只)。以标准大鼠饲料喂养及普通饮水。另外,WKY安慰剂组、SHR安慰剂组及SHR阿托伐他汀治疗组,自16周龄开始每天以蒸馏水或阿托伐他汀分别灌胃,持续8周。于8、16、24周处死动物,留取胸主动脉组织标本备用。实验过程中,进行以下检测:(1)各组大鼠每隔2周测量体重、心率及尾动脉血压一次;(2)分别于喂养前、喂养至16周、24周抽血测定空腹血脂;(3) HE、Masson及天狼腥红染色,观察主动脉壁内膜结构、中膜厚度、弹力纤维和胶原沉积变化;(4)测量主动脉壁中层厚度(MT)、内径(LD)、胶原体积分数(VFC),并计算MT/LD比值;(5)计算羟脯氨酸含量;(6) ELISA法检测炎症因子IL-6和TNF-α; (7) Western blot法检测硝基酪氨酸、PKD、p-PKD744/748、p-PKD916蛋白的表达。
     结果
     1.实验动物基本情况
     实验过程中共有2只大鼠死亡,SHR大鼠组16及24周龄组各一只。在普通喂养周期内死亡。SHR阿托伐他汀治疗组无死亡。共88只大鼠完成实验,其中WKY组40只,SHR组48只。
     2.各组大鼠基本指标比较
     喂养前,各组大鼠心率、血脂均无显著差异(P>0.05);SHR大鼠尾动脉收缩压高于WKY大鼠,差异显著(P<0.05)。WKY大鼠的血压在整个喂养过程中无明显升高,与WKY组比较,SHR大鼠血压随周龄逐渐升高,差异有显著性意义(P<0.05);SHR阿托伐他汀治疗组尾动脉收缩压明显降低,有显著性差异(P<0.05)
     实验前各组大鼠血甘油三酯(TG)、总胆固醇(TC)、高密度脂蛋白(HDL-C)、低密度脂蛋白(LDL-C)间差异无显著性统计学意义(P>0.05)。SHR阿托伐他汀组血清TC及LDL均较WKY安慰剂、SHR安慰剂组明显降低,差异有统计学意义(P<0.05),TG和HDL-C变化不明显(P>0.05)。
     3.主动脉形态及组织病理观察
     HE染色显示:WKY大鼠血管壁无明显增厚,平滑肌细胞体积较小,大小均一,排列整齐,中膜层弹力纤维排列有序,内膜均一,无增厚;SHR大鼠中膜明显增厚,中膜内平滑肌细胞肥大,形态不规则,排列紊乱,弹力纤维层扭曲,内皮细胞排列紊乱,内膜略有增厚,部分内皮细胞有脱落。随着周龄的增加,上述表现愈加明显。阿托伐他汀组与SHR安慰剂组相比较,内、中膜结构均明显改善,内膜较平滑均一,中膜增厚明显减弱,平滑肌细胞肥大减退,排列较规则,中层弹力纤维结构较完整有序。
     Masson染色显示:WKY组弹力纤维排列整齐,胶原增生不明显;SHR组胶原纤维明显增多,弹力纤维减少、排列紊乱甚至断裂;阿托伐他汀组与SHR安慰剂组相比较,胶原增生减少,弹力层增多,排列较整齐。
     天狼腥红染色显示:与WKY对照组相比,SHR组随着周龄增加,Ⅰ型胶原纤维和Ⅲ型胶原显著增加,阿托伐他汀组比SHR安慰剂组胶原纤维明显减少。
     4.主动脉重塑相关指标变化
     与WKY组比较,SHR组MT、MT/LD、VFC均显著增加(P<0.05);阿托伐他汀组较SHR安慰剂组MT、MT/LD、VFC显著降低(P<0.05)。
     5.羟脯氨酸含量变化
     WKY大鼠在整个喂养过程中,羟脯氨酸含量无明显增加。与WKY组比较,SHR组羟脯氨酸随周龄显著增加(P<0.05);阿托伐他汀组较SHR安慰剂组羟脯氨酸显著降低(P<0.05)。
     6.炎症因子表达变化
     与WKY组比较,SHR组IL-6和TNF-α均显著增加(P<0.05);阿托伐他汀可明显降低IL-6和TNF-α(P<0.05)。
     7.氧化应激
     硝基酪氨酸是氧化应激的标志物,与WKY组相比,SHR组硝基酪氨酸表达明显增加(P<0.05);阿托伐他汀可明显降低硝基酪氨酸表达(P<0.05)。
     8. Westen blot检测各组主动脉组织中PKD及磷酸化PKD的表达
     与同周龄WKY对照组相比,SHR8、16.24周龄组大鼠主动脉组织中p-PKD744/748、p-PKD916表达明显升高(P<0.05);随着周龄的增加SHR组p-PKD744/748、p-PKD916表达水平逐渐升高(P<0.05)。同期WKY各组大鼠的P-PKD744/748、p-PKD916没有显著性变化。SHR阿托伐他汀组P-PKD744/748. P-PKD916较SHR安慰剂组的表达减弱,有统计学意义(P<0.05)。SHR各组总的PKD表达无明显变化。
     结论
     1.SHR大鼠随着喂养时间延长呈增龄性主动脉重塑,为高血压主动脉重塑发病机制的研究提供了可靠的动物模型平台。
     2.SHR大鼠主动脉组织中磷酸化PKD的表达随着主动脉重塑过程逐渐升高,提示磷酸化PKD参与了自发性高血压大鼠主动脉重塑的发生发展过程。
     3.阿托伐他汀可以改善自发性高血压大鼠主动脉重塑的发展,这与其抗炎抗氧化特性有关,其作用靶点可能与PKD有关。
     研究背景
     高血压状态下,大小动脉的结构和功能都会发生变化,从而引起血管重塑及心血管疾病的危险性增加。血管壁中膜增厚是高血压主动脉重塑最重要的特征性病理改变,其主要形成原因是管壁中层血管平滑肌细胞的肥大。高血压血管肥厚和重塑是对病理状态下血流动力学长期变化的一种代偿反应。高血压血管肥厚包含的细胞分子学过程有:VSMC肥大、增殖、迁移、凋亡、炎症反应、氧化应激和纤维化。
     肾素血管紧张素系统(RAS)在高血压和心血管疾病的发生发展过程中发挥重要作用。实验证据证明,在高血压血管重塑的发生发展过程中,伴随着血管局部RAS的激活和血管紧张素Ⅱ(AngⅡ)的高水平表达。RAS的中心环节是AngⅡ识别其特异性受体,并通过一定的信号通路发挥作用。作为RAS系统的主要效应因子,AngⅡ是高血压心血管重塑的重要调节因子。AngⅡ是一种血管活性肽,通过升高血压引起血管重塑和内皮功能紊乱。然而,AngⅡ还可以通过不依赖血流动力学的作用介导血管重塑。大量的证据表明,AngⅡ通过刺激VSMC肥大而诱导病理性的血管重塑。AngⅡ还参与血管纤维化,通过TGF-β依赖性和非依赖性Smad通路引起血管纤维化。另外,AngⅡ是血管组织中ROS和促炎转录因子的主要调节因子。
     ERK5是最近发现的MAPK家族的新成员,在不同类型细胞中的定位不同。多种刺激因素,如神经生长因子,表皮生长因子,血小板源性生长因子和血管紧张素Ⅱ都能激活ERK5。ERK5在将信号从细胞膜传递到细胞核的过程中激活了一个三级级联反应:MAPKKK或MEKK2/MEKK3; MAPKK或MEK5; MAPK或ERK5,受到刺激后,这些激酶持续磷酸化并活化下游的效应因子,包括肌细胞增强因子(MEF2)。ERK5在调节肥厚相关基因,尤其是MEF2依赖的c-jun基因方面有潜在作用,通过直接磷酸化MEF2使其活化,从而调节肥大反应。ERK5在AngⅡ刺激的大鼠主动脉平滑肌细胞中可激活下游的MEF2。
     PKD作为肥厚调节因子,参与心脏与血管的肥厚性重塑。PKD对MAPK家族信号通路具有调节作用,如PKD通过磷酸化Ras结合蛋白RIN1而上调Ras和ERK1/2信号通路的活性;通过磷酸化c-Jun而下调JNK的活性。但是关于PKD对ERK5是否有调节作用,目前尚无相关研究。因此,本实验将进行体外AngⅡ诱导人主动脉平滑肌细胞(HASMCs)肥大实验,验证PKD/ERK5/MEF2信号通路是否参与其中,从而为高血压血管重塑的逆转提供新的治疗靶点。
     研究目的
     1.验证AngⅡ诱导人主动脉血管平滑肌细胞(HASMCs)肥大的作用;
     2.明确AT1/PKCδ/PKD/ERK5/MEF2信号转导通路在Angll诱导HASMCs肥大中的作用机制;
     研究方法
     1.人主动脉血管平滑肌细胞的体外培养
     HASMCs购自ScienCell (San Diego, CA)公司,在MEM培养基,37℃和5%CO2中培养,取代数在4-8,处于生长对数期的细胞进行实验。
     4细胞分组处理
     1)无刺激因素孵育细胞;
     2) AngⅡ刺激细胞,筛选最佳刺激浓度和时间;
     3) AngⅡ刺激+DMSO孵育细胞;
     4) AngⅡ刺激+AT1拮抗剂Losartan孵育细胞;
     5) AngⅡ刺激+AT2拮抗剂PD123319孵育细胞;
     6) AngⅡ刺激+PKC抑制剂Go6983孵育细胞;
     7) AngⅡ刺激+Control siRNA孵育细胞;
     8) AngⅡ刺激+PKCδsiRNA孵育细胞;
     9) AngⅡ刺激+PKD siRNA孵育细胞;
     10) AngⅡ刺激+ERK5 siRNA孵育细胞。
     3.对各组HASMCs进行如下检测:
     1)电镜观察细胞形态学改变;
     2)3H-亮氨酸摄入率测定,评估细胞肥大的程度;
     3) Western blot测定PKC, p-PKCα/β,ζ,ε,δ, PKD、p-PKD744/748、P-PKD916、ERK1/2、p-ERK 1/2、ERK5、p-ERK5、MEF2C、p-MEF2C的表达,用特异性的抑制剂或si RNA阻断通路的各环节,观察下游分子的表达变化;
     4)免疫荧光测定各分子的表达及ERK5在胞浆胞核之间的转位。
     研究结果
     1.AngⅡ刺激HASMCs的形态学变化
     AngⅡ刺激组:加AngⅡ(以无血清培养液溶解)使终浓度为100nM;正常对照组(control):培养液中加等量无血清培养液。处理一定时间后在显微镜下观察细胞形态学变化。镜下观察可见在加用AngⅡ刺激后,HASMCs较正常对照组表现明显肥大。
     2. AngⅡ刺激的HASMCs 3H—亮氨酸掺入率的测定
     一定浓度的AngⅡ(100nM)刺激不同时间(0min、5min、15min、30min、60min),15分钟后HASMCs 3H-亮氨酸掺入较空白组明显增高(P<0.01)。当时间恒定时(15min),HASMCs 3H-亮氨酸掺入随着AngⅡ浓度(1nM、10nM、100nM、1000 nM)的增加呈剂量依赖性增加,后三组明显高于对照组,差异非常显著(P<0.01)。
     3. Western blot测定AT1/PKCδ/PKD/ERK5/MEF2C信号通路
     1) AngⅡ刺激HASMCs后,PKC不同亚型的激活
     AngⅡ100nM不同时间(0、5、15、30、60min)刺激平滑肌细胞,观察不同亚型PKC磷酸化蛋白的表达,结果发现磷酸化PKCδ在5分钟时开始表达,15到30min达到表达高峰,以后则呈逐渐下降趋势,60min时表达恢复基线水平。PKCa/p和PKCε表达随时间无明显变化,PKCζ则在30min时开始表达,60min时表达有所增加。
     2) AngⅡ对HASMs中ERK1/2和ERK5的激活
     AngⅡ100nM不同时间(0、5、15、30、60min)刺激平滑肌细胞,观察ERK1/2、ERK5总蛋白及磷酸化蛋白的表达,结果发现磷酸化ERK5在5分钟时开始表达,15到30min达到表达高峰,以后则呈逐渐下降趋势,60min时表达恢复基线水平。磷酸化ERK1/2表达较早,5min表达达高峰,较0、15、30、60min有显著性差异(p<0.01)。ERK1/2、ERK5总蛋白表达在各时间段没有变化。
     3)AngⅡ通过AT1激活ERK5
     AngⅡ受体有两个亚型AT1、AT2。应用ATl特异性拮抗剂Losartan(0.3、1.0、3.0μmol/L)及AT2特异性拮抗剂PD123319(5、10、20μmol/L)预处理平滑肌细胞30min,然后AngⅡ100nM刺激15min,结果显示Losartan剂量依赖性阻断p-ERK5的表达,而PD123319对p-ERK5的表达没有影响。
     4)AngⅡ激活ERK5依赖于PKCδ通路
     应用PKC的抑制剂Go6983不同浓度(0.3、1、3μmol/L)预处理平滑肌细胞30min,AngⅡ100nM刺激15min,结果显示Go6983呈剂量依赖性抑制磷酸化ERK5的表达,由此证明PKC参与AngⅡ激活ERK5的过程。
     用PKC8 siRNA预处理细胞后,再加入AngⅡ刺激,ERK5的磷酸化明显受到抑制,说明PKCδ是ERK5的上游分子。
     5)AngⅡ介导的PKD激活呈AT1/PKCδ依赖性
     AngⅡ诱导的PKD活化呈时间和浓度依赖性。AT1受体拮抗剂Losartan 3mmol/L阻断p-PKD的表达,而AT2受体拮抗剂PD123319 10mmol/L对p-PKD的表达没有影响;PKC抑制剂Go6983呈剂量依赖性抑制磷酸化PKD的表达;PKCδsiRNA明显抑制PKD的活化。由此证明AT1/PKCδ参与AngⅡ激活PKD的过程。
     6)PKD参与AngⅡ介导的ERK5的激活
     应用PKD siRNA转染HASMCs,观察下游分子ERK5的表达。结果显示:PKD siRNA抑制p-ERK5的表达,与对照组有显著性差异(P<0.01)。
     7)PKCδ/PKD/ERK5参与了AngⅡ介导的MEF2C的激活
     AngⅡ100nM不同时间(0、5、15、30、60min)刺激HASMCs,观察MEF2C的激活。结果显示:磷酸化MEF2C在5分钟时开始表达,15min达到表达高峰(p<0.01),30min表达恢复基线水平。PKC抑制剂、PKCδsiRNA、PKD siRNA、ERK5 siRNA显著减少磷酸化MEF2C的表达(p<0.01)。
     8) PKCδ/PKD/ERK5参与了Angll介导的HASMCs肥大
     AngⅡ100nM刺激15分钟,HASMCs 3H-亮氨酸摄入率明显增加(p<0.01);PKC抑制剂、PKCδsiRNA、PKD siRNA、ERK5 siRNA显著降低3H-亮氨酸摄入率(p<0.01)。
     4.免疫荧光
     1)免疫荧光测定各分子的表达用免疫荧光细胞化学染色观察AngⅡ100nM刺激不同时间后HASMCs PKD、ERK5和MEF2C的表达。结果显示:PKD胞质表达,MEF2C胞核表达,而ERK5随着刺激时间不同在胞浆和胞核之间转位。
     2)ERK5胞浆胞核之间的转位
     静息状态下,ERK5位于细胞质中,AngⅡ100nM刺激5分钟后,ERK5逐渐向细胞核转位,15分钟时基本全部位于胞核内,随后ERK5又重新向细胞质转移,在1小时时基本恢复基线水平。
     3) AT1/PKCδ/PKD信号通路参与了Angll介导的ERK5转位
     AngⅡ100nM刺激15分钟后,ERK5的细胞核表达水平达最高。分别应用AT1受体拮抗剂,PKC抑制剂、PKCδsiRNA和PKD siRNA干扰细胞,阻断ERK5的磷酸化,ERK5的转位明显被抑制,提示ERK5的转位依赖于其磷酸化情况。
     结论
     1.验证了AngⅡ具有诱导HASMCs肥大的作用;
     2.首次证明AT1/PKCδ/PKD/ERK5/MEF2C信号通路参与AngⅡ诱导的HASMCs肥大的过程。
Background
     Hypertension is the most important risk factor for cardiovascular diseases. Vascular remodeling (VR) in hypertensive patients is an independent risk factor for cardiovascular events. Changes of the structure and function companied with hypertension is defined as VR in hypertension, which consist of thickness of the wall, increase of medium/lumen ratio, decrease of arterioles and consequent dysfunction of the vessel. VR is not only an adaptive response, but also the main foundation of hypertension pathology, which contributes to serious vascular complications and dysfunction of the circulation. It's a prime contributor to the pathogenesis of a number of clinical disorders, including hypertension, atherosclerosis and restenosis. Current evidence shows that pathological remodeling of aorta in hypertension is one major mechanism responsible for morbidity and mortality. Thus the prevention and reversal of VR is the major objective for treatment of hypertension and as an important indicator of treatment evaluation. The study on the pathogenesis and control of VR has become a worldwide hot topic. VR is a complex course, and the pathogenesis mechanism still remains unclear. It is well-known that cell hypertrophy, hyperplasia, apoptosis, remodeling, inflammation, oxidative stress, cytokines and extracellular matrix changes are involved in VR. The main feature of aortic remodeling is thickness of medium, due to hypertrophy of vascular smooth muscle cells (VSMC).
     The protein kinase D (PKD) family is a recent addition to the calcium/calmodulin-dependent protein kinase group of serine/threonine kinases. PKD family consists of 3 isoforms PKD1, PKD2 and PKD3. It's structural and enzymatic properties distinguish it from PKC isoforms. Increasing evidence now points toward important roles for PKD-mediated signaling pathways in the cardiovascular system, particularly in the regulation of myocardial contraction, hypertrophy and remodeling. In recent years, evidence has suggested that vascular smooth muscle cells also express PKD, and PKD activity in them has been shown to be increased by physiologically important stimuli, such as angiotensinⅡ, platelet-derived growth factor, and thrombin. Functionally, PKD activity appears to regulate hypertrophy in VSMCs. Studies have indicated that PKD may control hypertrophy of VSMCs via the AT1/PKCδpathway by Ang II. Most recently, it has been proposed that PKD mediated HDAC5 phosphorylation may facilitate angiotensinⅡ-induced hypertrophy in VSMCs. However, the activation of PKD and it's possible mechanisms in hypertensive aortic remodeling remain unclear.
     As hypertension is often accompanied by dyslipidemia, the treatment frequently involves statins. More and more evidences established that statins not only effectively reduced serum cholesterol level, but also exerted pleiotropic beneficial effects on cardiovascular disease, including improvement of endothelial function, stabilization of atherosclerotic plaques, antioxidant properties, inhibition of inflammatory responses and prevention of cardiac hypertrophy or remodeling. Statins reduce cardiovascular morbidity and mortality in patients with high and moderate hypercholesterolemia or even normal cholesterol levels. Recently, atorvastatin have been shown to inhibit cardiac hypertrophy and fibrosis. However, the precise mechanism of vascular protective effects of atorvastatin remains to be fully clarified. This study was therefore designed to observe the expression and activation of PKD; to analyze its relationship with hypertensive aortic remodeling; to study the effects and the mechanism of atorvastatin in the prevention and treatment of aortic remodeling. The purpose of the study is to elucidate the cellular and molecular mechanisms of vascular remodeling associated with hypertension and the interventional effects of atorvastatin on it, and provide novel theoretical evidences and strategy for prevention and treatment of hypertensive vascular remodeling.
     Objectives
     1. To study the development of aortic remodeling in SHR.
     2. To investigate the involvement of PKD in aortic remodeling in SHR
     3. To evaluate the effects and the mechanisms of atorvastatin in the prevention and treatment of aortic remodeling.
     Methods
     8-week-old male SHRs were obtained from Genetic Models Inc. (Indianapolis, IN). Age-matched normotensive male WKY rats were purchased from animal center of Shandong University as the control. Rats were divided into the following groups:A Group:WKY-8W; B Group:WKY-16W; C Group:WKY-24W; G Group: WKY-placebo; D Group:SHR-8W; E Group:SHR-16W; F Group:SHR-24W; H Group:SHR-placebo; I Group:SHR-atorvastatin. Each group has 10 rats for 16 weeks treatment. WKY placebo, SHR placebo and SHR atorvastatin received distilled water or atorvastatin at 50 mg/kg/day by intragastric administration from 16 weeks to 24 weeks. Animals were killed when they were 8 weeks,16 weeks and 24 weeks old by decapitation. The aortas were immediately harvested and weighed. The following parameters were measured during the study:(1) All the rats have their body weight, heart rate and tail blood pressure measured once per 2 week; (2) Blood was collected at 8 weeks,16 weeks and 24 weeks respectively. Plasma lipids were determined using routine method; (3) Changes of vascular morphology and histology were measured by special H-E, tricrome Masson and Sirius red staining methods. Thickness of the media, collagen fibers and elastic fibers were used for the detection of remodeling. (4)Media thickness (MT), luminal diameter (LD), ratio of media to lumen (M/L) and volume fraction of collagen (VFC) were measured. (5) Hydroxyproline, an indicator to reflect collagen amount in mammalian tissues was measured. (6) Measure IL-6 and TNF-a by ELISA. (7) Nitrotyrosine is considered to be an indirect marker of oxidative stress, Western blot for the expression of nitrotyrosine. (8) Western blot for the expression of PKD、p-PKD744/748、p-PKD916.
     Results
     1. The experimental animals
     Two rats of SHR group(E and F) died in the entire experiment. A total of 88 rats finished the study,40 rats in WKY group,48 rats in SHR group.
     2. Comparisons of HR, SBP and Lipids level between WKY and SHR groups
     There were no significant differences in terms of heart rat and lipids at the beginning of the experiment. SBPs in SHRs at 8.16 and 24 weeks are higher than those in WKY rats (P<0.05). In SHR group, SBP increased during the course, while the one in WKY group remained unchanged. After treatment with atorvastatin, SBP decreased significantly (P<0.05). The serum lipid levels of SHRs and those of WKY rats were not significantly different at the beginning of the experiment. Atorvastatin at 50 mg/kg/day significantly reduced the serum cholesterol and LDL-cholesterol of SHRs (P<0.05). However, no significant changes were found in TG and HDL-cholesterol levels with atorvastatin treatment.
     3. Changes of vascular morphology and histology
     H-E staining:In SHR group, aortic media were thickening; VSMCs in media were hypertrophy and disordered; elastic fibers were decreased and unregular; More smoothing aortic tunica intima, thinner vascular wall, less media VSMCs hypertrophy, more regular array of media VSMCs and elastic fibers were observed in atorvastatin group.
     Masson staining:Aortic elastic fibers of WKY rats arranged in order and no hyperplasia of collagen; Aortic wall of untreated SHR was thickening; collagen fibers in media were hyperplastic; elastic fibers were decreased, disordered, and even ruptured; Aortic elastic fibers in Atorvastatin group were fairly ordered, collagen fibers were not hyperplastic significantly compared with SHR group.
     Sirius red staining:Under polarization microscope, type I collagen is in colour red or orange, and type III collagen is in colour green. Much more collagen I and III existing in the vascular wall of untreated SHR group compared with WKY rats, which decreased significantly in the atorvastatin group.
     4. Aortic remodeling parameters
     Arterial MT of untreated SHR were significantly higher than WKY rats, and atorvastatin treated animals had lower MT compared with untreated animals in the model group. Luminal diameter (LD) in each group was no significant difference. The ratio of MT to LD in untreated SHR was significantly higher than WKY rats, whereas animals in the atorvastatin group had lower ratio of MT to LD compared with untreated SHR. Volume fraction of collagen (VFC) was significantly higher in untreated SHR than it in WKY rats, and it decreased in the atorvastatin group.
     5. Effect of atorvastatin on hydroxyproline
     Compared to WKY group, the groups of SHRs in 16W and 24W showed a significant rise in hydroxyproline content in aorta tissue (P<0.05), which were reduced by atorvastatin treatment.
     6. Effect of atorvastatin on inflammatory cytokines
     Compared to WKY group, IL-6 and TNF-a in SHRs increased significantly(P<0.05), which were reduced by atorvastatin treatment.
     7. Effect of atorvastatin on oxidative stress in SHRs
     Nitrotyrosine is considered to be an indirect marker of oxidative stress. In SHR group, nitrotyrosine increased during the course (P<0.05). while these in WKY group remained unchanged. These changes were attenuated by atorvastatin (P<0.05).
     8. Expression of PKD, p-PKD744/748 and p-PKD916 by Western-blot
     Compared to WKY group, the groups of SHRs in 16W and 24W showed a significant rise in p-PKD protein in aorta tissue (P<0.05). In SHR group, expression of p-PKD increased during the course (P<0.05). while these in WKY group remained unchanged. These changes were attenuated by atorvastatin (P<0.05).
     Conclusions
     1. The age-related aortic remodeling occured with the development of hypertension in SHRs, which offers reliable animal model for the researches on the mechanisms of hypertensive aortic remodeling.
     2. The over-expression of p-PKD has been confirmed in the aorta tissue of SHR, which suggested that activation of PKD was involved in the development and process of aortic remodeling in SHR.
     3. Atorvastatin could partially reverse the hypertension-induced aortic remodeling through its anti-inflammatory and anti-oxidant effects. Another mechanism for atorvastatins to reverse remodeling is down-regulation of PKD activation.
     Background
     In hypertension small and large arteries undergo structural, mechanical and functional changes that contribute to vascular remodeling and increased cardiovascular risk. Increase of vascular media thickness due to hypertrophy of vascular smooth muscle cell is the most important pathological change in hypertensive aortic remodeling. It is well established that vascular hypertrophy and remodeling in hypertension is an adaptive process in response to chronic changes in hemodynamic conditions during development and vascular pathologies. The cellular events underlying vascular hypertrophy during hypertension involve VSMC hypertrophy, hyperplasia, migration, apoptosis, inflammation, oxidative stress and fibrosis.
     The renin-angiotensin system (RAS)-plays a key role in the development and pathophysiology of hypertension and cardiovascular disease (CVD). Evidences show that activation of local RAS and levels of angiotensinⅡ(AngⅡ) are elevated in the development of vascular remodeling in hypertension.The central part of RAS is recognizing of different receptors by AngⅡand then carrying out its functions through different signal pathways. AngⅡ, the main effector of the renin-angiotensin system (RAS), is one of the major mediators of vascular remodeling in hypertension. Ang II, a potent vasoactive peptide, induces vascular remodeling and endothelial dysfunction in association with increases in levels of BP. However, AngⅡis able to induce vascular remodeling independently of its haemodynamic effects. Mounting evidence shows that AngⅡactivation contributes to pathological vascular remodeling, largely by stimulating VSMCs hypertrophy. Ang II also is crucially involved in fibrosis, Ang II induced vascular fibrosis via both TGF-β-dependent and-independent Smad signaling pathways. Furthermore, Ang II is a strong modulator of ROS production and proinflammatory transcription factors in the vasculature.
     ERK5 has recently been identified as a new member of the MAPK family, the subcellular localization of ERK5 is cell type specific. Various stimuli, including nerve growth factor, epidermal growth factor, platelet-derived growth factor, and angiotensin II (Ang II), activate ERK5. The central part of ERK5 cascades involved in signal transduction from the membrane to the nucleus is structured by three sequentially activated kinases:a MAPKKK family, or MEKK2/MEKK3; a MAPKK family, or MEK.5; and a MAP kinase, or ERK5. On stimulation, these kinases are consecutively phosphorylated and thus activated, leading to the activation of downstream effectors including MEF2. ERK5 has a potential role in the transcriptional regulation of hypertrophic genes, in particular MEF2-dependent genes such as c-jun gene through direct phosphorylation and activation of MEF2C, and govern the hypertrophic growth. ERK5 was recently found to interact with MEF2C on Ang II stimulation in rat aortic SMCs.
     As a hypertrophic modulator, PKD was involved in cardiac and vascular hypertrophy. PKD regulates the signal pathway of the MAPK family. For example, PKD upregulates Ras activity and ERK1/2 signaling by phosphorylating the Ras-binding protein RIN1, and downregulates JNK activity, possibly by phosphorylating c-Jun. But, to our knowledge, little is known about the effect of PKD on ERK5. Therefore the aim of this study is to investigate the role of PKD/ERK5/MEF2C signaling pathway in Ang II induced hypertrophy of VSMC, which may provide a new target for reversal of hypertensive vascular remodeling.
     Objectives
     1. To observe the hypertrophy of HASMCs stimulated by Ang II.
     2. To explore the AT1/PKCδ/PKD/ERK5/MEF2C pathway in Ang II-induced hypertrophy of HASMCs.
     Methods
     1. Cell culture
     The human aortic smooth muscle cells, which was purchased from ScienCell (San Diego, CA), was cultured in MEM growth medium at 37℃and 5% CO2. Cells in generation 7-15 were used in the treatment.
     2. Cells were divided into several groups:
     1) Control Group:no stmulation factor;
     2) AngⅡstmulation Group:different dosges of AngⅡwith different times;
     3) AngⅡstmulation +DMSO Group;
     4) AngⅡstmulation+AT1 antagonist Losartan Group;
     5) AngⅡstmulation+AT2 antagonist PD123319 Group;
     6) AngⅡstmulation+PKC inhibitor Go6983 Group;
     7) AngⅡstmulation+Control siRNA Group;
     8) AngⅡstmulation+PKCδsiRNA Group;
     9) AngⅡstmulation+PKD siRNA Group;
     10) AngⅡstmulation+ERK5 siRNA Group.
     3. Detecting
     1) Observing changes of HASMCs form by electron microscope;
     2) 3H-leu incorporation rate, evaluated the level of cell hypertrophy;
     3) Western blot dectected expression of p-PKCα/β,ζ,ε,δ,PKD、p-PKD744/748、
     p-PKD916、ERK1/2、p-ERK1/2、ERK5、p-ERK5、MEF2C、p-MEF2C;
     4) Detecting the expression of PKD、ERK5 and MEF2C and EKR5 translocation between cytoplasm and nucelus by immunofluorescence.
     Results
     1. Morphological changes of HASMCs stimulated by AngⅡAngⅡgroup:the final concentration is 100nM; Control group:HASMCs were incubated in serum-free medium. Morphological changes were observed by electron microscope after stimulation by AngⅡ. Hypertrophy phenomenon of HASMCs was significantly greater after stimulation with AngⅡ.
     2. Measurement of [3H]-Leu incorporation HASMCs which were incubated in 24 orifice plates were made quiescent by incubation in serum-free DMEM medium for 24 h. Cells were stimulated by different concentrations of AngⅡ(0 nM, 1nM, 10nM,100 nM and 1000nM). [3H]-Leu incorporation were determined using a scintillation counter. [3H]-Leu incorporation was concentration dependent, beginning at 10 nmol/l AngⅡand with maximum effect at 1000 nmol/l AngⅡ.100nM AngⅡrapidly increased [3H]-Leu incorporation with peak incorporation at 15 and 30 min.
     3. Western blot for AT1/PKCδ/PKD/ERK5/MEF2C signal-transduction pathway
     1) Activation of PKCs by AngⅡinHASMCs HASMCs were stimulated by AngⅡat 100nM for different times (0,5,15,30, 60min), AngⅡ(100 nmol/L) induced phosphorylation of PKCδafter 5 min, with peak phosphorylation between 15 and 30 min (P<0.01), which returned to base line after 1 hr. However, the phosphorylation of PKCaα/βand PKCεremain the same, PKCζphosphorylation was later than that of PKCδ.
     2) Activation of ERK1/2 and ERK5 by AngⅡinHASMCs HASMCs were stimulated by AngⅡat 100nM for different times (0,5,15,30, 60min), AngⅡ(100 nmol/L) induced phosphorylation of ERK5 after 5 min, with peak phosphorylation between 15 and 30 min (P<0.01), which returned to base line after 1 hr. However, the phosphorylation of ERK1/2 were earlier than that of ERK5, with peak phosphorylation at 5 min (P<0.01). Total protein level of ERK5 and ERK1/2 did not change.
     3) AngⅡstimulates ERK5 activation through a AT1-dependent pathway AngⅡreceptor has two subtypes:AT1 and AT2, cells were pretreated for 30 mins with losartan (0.3,1.0,3.0μmol/L, a specific antagonist for AT1, or PD123319 (5, 10,20μmol/L), an antagonist for AT2, then stimulated with AngⅡ(100 nmol/L) for 15 mins. Losartan inhibited AngⅡ-induced ERK5 activation in a dose-dependent manner, whereas PD123319 had no effect on AngⅡactivation of ERK5.
     4) Activation of ERK5 by AngⅡis PKCδ-dependent Cells were pretreated with the general PKC inhibitor Go6983 (0.3,1,3μmol/L) or PKCδsiRNA before exposure to AngⅡ(100 nmol/L) for 15 mins. Go6983 blocked ERK5 phosphorylation in a dose-dependent manner, PKC8 siRNA also inhibited the activation of ERK5, which suggests that PKC8 is involved in AngⅡ-stimulated ERK5 phosphorylation in HASMCs.
     5) Ang II induces AT1/PKCδ-dependent activation of PKD in HASMCs AngⅡtime-and dose-dependently induces PKD phosphorylation both at Ser744/748 and at Ser916. Losartan (3 mmol/L) but not PD123319 (10 mmol/L) abolished AngⅡ-induced PKD phosphorylation, suggesting that AngⅡinduces activation of PKD via ATI receptor. Go 6983 also dose-dependently inhibited AngⅡ-stimulated PKD activation, PKC8 siRNA blocked PKD phosphorylation, which demonstrated that PKD activation is PKCδdependent.
     6) Knockdown of PKD by siRNA inhibited AngⅡ-induced activation of ERK5 in HASMCs HASMCs were transfected with PKD siRNA and then stimulated with AngⅡfor the time indicated. Treatment of HASMCs with PKD siRNA significantly reduced endogenous PKD expression, whereas control siRNA had no effect. Decreasing PKD expression by its siRNA significantly inhibited AngⅡ-induced ERK5 activation in HASMCs.
     7) PKCδ/PKD/ERK5 pathway is involved in Ang II-induced activation of MEF2C
     AngⅡsignificantly (P<0.05) stimulated the phosphorylation of MEF2C by 15 min of treatment and returned to basal levels by 30 min. Go 6983 markedly blocked MEF2C activation while knocking down PKCδ, PKD and ERK5 expression by siRNA significantly attenuated activation of MEF2C.
     8) PKCδ/PKD/ERK5 pathway is implicated in AngⅡ-stimulated HASMCs hypertrophy [3H]-leucine incorporation were significantly greater in AngⅡ(100 nM) treated cells than in controls (P<0.05). PKCs inhibitor, PKCδ, PKD and ERK5 siRNA greatly suppressed AngⅡ-induced [3H]-leucine incorporation (P<0.05).
     3. Immunofluorescence staining
     1) Immunofluorescence for expression of all molecules The expression of p-PKD744/748、p-PKD916、p-ERK5、p-MEF2C was observed by immunofluorescence staining. After stimulation by AngⅡfor 15 min, P-PKD744/748 and p-PKD916 were expressed in cytoplasm while p-ERK5 and p-MEF2C were in the nucleus.
     2) Translocation of ERK5
     Before stimulation of AngⅡ, ERK5 was located primarily in the cytoplasm of HASMCs, ERK5 nuclear entry was seen at 5 min after AngⅡstimulation, striking translocation from the cytoplasm to the nucleus was observed by 15 min after addition of AngⅡ, after 60 min of AngⅡtreatment, ERK5 gradually shuttled back to the cytoplasma.
     3) Ang II stimulates ERK5 translocation via ATl/PKCδ/PKD-dependent Pathway
     The pharmacological inhibitors for AT1 and PKC significantly inhibited AngⅡ-induced ERK5 translocation. Knocking down PKCδand PKD expression by siRNA also greatly attenuated AngⅡ-induced translocation of ERK5 in HASMCs, which suggest that ERK5 phosphorylation plays an important role in ERK5 translocation.
     Conclusions
     1. AngⅡinduced hypertrophy of HASMCs.
     2. AT1/PKC8/PKD/ERK5/MEF2C signal pathway was involved in hypertrophy of HASMCs induced by AngⅡ.
引文
1. Heagerty AM. Aalkjaer C, Bund SJ, Korsgaard N, Mulvany MJ. Small artery structure in hypertension. Dual processes of remodeling and growth. Hypertension 1993, 21(4):391-397.
    2. Hughes JM, Bund SJ. Influence of experimental reduction of media/lumen ratio on arterial myogenic properties of spontaneously hypertensive and Wistar-Kyoto rats. Clin Sci (Lond) 2004,106(2):163-171.
    3. Papafaklis MI, Koskinas K.C, Chatzizisis YS, Stone PH, Feldman CL. In-vivo assessment of the natural history of coronary atherosclerosis:vascular remodeling and endothelial shear stress determine the complexity of atherosclerotic disease progression. Curr Opin Cardiol 2010,25(6):627-638.
    4. Baumbach GL, Heistad DD. Remodeling of cerebral arterioles in chronic hypertension. Hypertension 1989,13(6 Pt 2):968-972.
    5. Gomez Sandoval YH, Anand-Srivastava MB. Enhanced levels of endogenous endothelin-1 contribute to the over expression of Gia protein in vascular smooth muscle cells from SHR:Role of growth factor receptor activation. Cell Signal 2011,23(2):354-362.
    6. Jacob MP. Extracellular matrix remodeling and matrix metalloproteinases in the vascular wall during aging and in pathological conditions. Biomed Pharmacother 2003, 57(5-6):195-202.
    7. Lemarie CA, Tharaux PL, Lehoux S. Extracellular matrix alterations in hypertensive vascular remodeling. Journal of Molecular and Cellular Cardiology 2010,48(3):433-439.
    8. Wilkinson IB, McEniery CM. Arterial stiffness, endothelial function and novel pharmacological approaches. Clin Exp Pharmacol Physiol 2004,31(11):795-799.
    9. Lee H W, Karam J, Hussain B, Winer N. Vascular compliance in hypertension:therapeutic implications. Curr Diabetes Rep 2008,8(3):208-213.
    10. Fortunno A, San JoseG, Moreno MU, Diez J, Zalba G. Oxidative stress and vascular remodeling. Exp Physiol 2005,90(4):457-462.
    11. Wei Y,Whaley-Connell AT, Chen K, Habibi J, Uptergrove GM, Clark SE. Stump CS, Ferrario CM, Sowers JR. NADPH oxidase Contributes to vascular inflammation, insulin resistance, and remodeling in the transgenic (mRen2) rat. Hypertension 2007, 50(2):384-391.
    12. Marchesi C, Paradis P, Schiffrin EL. Role of the renin-angiotensin system in vascular inflammation. Trends Pharmacol Sci 2008,29(7):367-374
    13. Hurd C, Waldron RT, Rozengurt E. Protein kinase D complexes with C-Jun N-terminal kinase via activation loop phosphorylation and phosphorylates the C-Jun N-terminus. Oncogene 2002,21 (14):2154-2160.
    14. Rozengurt E. Protein kinase d signaling:multiple biological functions in health and disease. Physiology (Bethesda) 2011,26(1):23-33.
    15. Storz P, Doppler H, Toker A. Protein kinase D mediates mitochondrionto-nucleus signaling and detoxification from mitochondrial reactive oxygen species. Mol Cell Biol 2005, 25(19):8520-8530.
    16. Harrison BC, Kim MS, van Rooij E, Plato CF, Papst PJ, Vega RB, McAnally JA, Richardson JA, Bassel-Duby R, Olson EN, McKinsey TA. Regulation of cardiac stress signaling by protein kinase D1. Mol Cell Biol 2006,26(10):3875-3888
    17. Johannessen M, Delghandi MP, Rykx A, Dragset M, Vandenheede JR, Van Lint J, Moens U. Protein kinase D induces transcription through direct phosphorylation of the cAMP-response element-binding protein. JBiol Chem 2007,282(20):14777-14787.
    18. Cuello F, Bardswell SC, Haworth RS, Yin X, Lutz S, Wieland T, Mayr M, Kentish JC, Avkiran M. Protein kinase d selectively targets cardiac troponin I and regulates myofilament ca2+ sensitivity in ventricular myocytes. Circ Res 2007,100(6):864-873.
    19. Fielitz J, Kim MS, Shelton JM, Qi X, Hill JA, Richardson JA, Bassel-Duby R, Olson EN. Requirement of protein kinase D1 for pathological cardiac remodeling. Proc. Natl. Acad. Sci. USA 2008,105(8):3059-3063.
    20. Avkiran M, Rowland AJ, Cuello F, Haworth RS. Protein Kinase D in the Cardiovascular System:Emerging Roles in Health and Disease. Circ Res 2008,102(2):157-163.
    21. Tan M, Xu X, Ohba M, Cui MZ. Angiotensin II-induced protein kinase D activation is regulated by protein kinase C delta and mediated via the angiotensin II type 1 receptor in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2004,24(12):2271-2276.
    22. Xu X, Ha CH, Wong C, Wang W, Hausser A, Pfizenmaier K, Olson EN, McKinsey TA, Jin ZG. Angiotensin Ⅱ stimulates protein kinase D dependent histone deacetylase 5 phosphorylation and nuclear export leading to vascular smooth muscle cell hypertrophy. Arterioscler Thromb Vasc Biol 2007.27(11):2355-2362.
    23. Davignon J. Beneficial cardiovascular pleiotropic effects of statins. Circulation 2004,109 (23 Suppl 1):Ⅲ39-43.
    24. Mason RP, Walter MF, Jacob RF. Effects of HMG-CoA reductase inhibitors on endothelial function:role of microdomains and oxidative stress. Circulation 2004,109 (21 Suppl 1):Ⅱ34-41.
    25. Briones AM, Arribas SM, Salaices M. Role of extracellular matrix in vascular remodeling of hypertension. Curr Opin Nephrol Hypertens 2010,19(2):187-94.
    26. Risler NR, Cruzado MC, Miatello RM. Vascular remodeling in experimental hypertension. Scientific World Journal 2005,5:959-971.
    27. Duprez DA. Role of the renin-angiotensin-aldosterone system in vascular remodeling and inflammation:a clinical review. J Hypertens 2006,24(6):983-991.
    28. Rivera J, Sobey CG, Walduck AK, Drummond GR. Nox isoforms in vascular pathophysiology:insights from transgenic and knockout mouse models. Redox Rep 2010, 15(2):50-63
    29. Hein S, Arnon E, Kostin S, Schonburg M, Elsasser A, Polyakova V, Bauer EP, Klovekorn WP, Schaper J. Progression from compensated hypertrophy to failure in the pressure overloaded human heart. Structural deterioration and compensatory mechanisms. Circulation 2003,107(7):984-991.
    30. Arribas SM, Hinek A, Gonzalez MC. Elastic fibres and vascular structure in hypertension. Pharmacol The.2006,111 (3):771-791
    31. McGrath JC, Deighan C. Briones AM, Shafaroudi MM, McBride M, Adler J, Arribas SM, Vila E, Daly CJ. New aspects of vascular remodelling:the involvement of all vascular cell types. Exp Physiol 2005,90(4):469-475.
    32. Siow RCM, Churchman AT. Adventitial growt h factor signalling and vascular remodelling:potential of perivascular gene transfer from the outside-in. Cardiovasc Res 2007,75:659-668
    33. Schulze-Bauer CA, Regitnig P, Hotzapfel GA. Mechanics of the human femoral adventitia including the high pressure response. Am J Physiol Heart Circ Physiol 2002,282 (6):H2427-H2440.
    34. Diez J. Arterial stiffness and extracellular matrix. Adv Cardiol 2007,44:76-95.
    35. Intengan HD, Schiffrin EL. Vascular remodeling in hypertension:roles of apoptosis, inflammation, and fibrosis. Hypertension 2001,38(3 Pt 2):581-587.
    36. Lauth M, Berger MM, Cattarazza M, Hecker M. Elevated perfusion pressure up ragulates endothelin-1 and endothelinp" receptor expression in the rabbit carotid artery. Hypertension 2000,35(2):648-654.
    37. Intengan HD, Schiffrin EL. Structure and mechanical properties of resistance arteries in hypertension:role of adhesion molecules and extracellular matrix determinants. Hypertension 2000,36(3):312-318.
    38. Lehoux S, Castier Y, Tedgui A. Molecular mechanisms of the vascular responses to haemodynamic forces. J Intern Med 2006,259(4):381-392.
    39. Haga JH, Li YS, Chien S. Molecular basis of the effects of mechanical stretch on vascular smooth muscle cells. JBiomech 2007,40(5):947-960.
    40. Qi YX, Jiang J, Jiang XH, Wang XD, Ji SY, Han Y, Long DK, Shen BR, Yan ZQ, Chien S, Jiang ZL. PDGF-BB and TGF-{beta}1 on cross-talk between endothelial and smooth muscle cells in vascular remodeling induced by low shear stress. Proc Natl Acad Sci U S A 2011,08(5):1908-1913
    41. Li YS, Haga JH, Chien S. Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech 2005,38(10):1949-1971.
    42. Shen J, Luscinskas FW, Connolly A, Dewey CF Jr, Gimbrone MA Jr. Fluid shear stress modulates cytosolic free calciumin vascular endothelial cells. Am J Physiol 1992:262(2 Pt 1):C384-390.
    43. Ikeda Y, Aihara K, Yoshida S, Sato T, Yagi S, Iwase T, Sumitomo Y, Ise T, Ishikawa K, Azuma H, Akaike M, Kato S, Matsumoto T. Androgen-androgen receptor system protects against angiotensin Ⅱ-induced vascular remodeling. Endocrinology 2009,150(6):2857-2864.
    44. Zeng W, Chen W, Leng X, He JG, Ma H. Chronic angiotensin-(1-7) administration improves vascular remodeling after angioplasty through the regulation of the TGF-beta/Smad signaling pathway in rabbits. Biochem Biophys Res Commun 2009, 389(1):138-144.
    45. Vermeersch P. Buys E. Pokreisz P, Marsboom G. Ichinose F. Sips P, Pellens M. Gillijns H. Swinnen M. Graveline A, Collen D, Dewerchin M. Brouckaert P, Bloch KD. Janssens S. Soluble guanylate cyclase-alpha1 deficiency selectively inhibits the pulmonary vasodilator response to nitric oxide and increases the pulmonary vascular remodeling response to chronic hypoxia. Circulation 2007,116(8):936-943.
    46. Androulakis ES, Tousoulis D, Papageorgiou N, Tsioufis C, Kallikazaros I, Stefanadis C. Essential hypertension:is there a role for inflammatory mechanisms? Cardiol Rev 2009, 17(5):216-221.
    47. Kudo H, Kai H, Kajimoto H, Koga M, Takayama N, Mori T, Ikeda A, Yasuoka S, Anegawa T, Mifune H, Kato S, Hirooka Y, Imaizumi T. Exaggerated blood pressure variability superimposed on hypertension aggravates cardiac remodeling in rats via angiotensin Ⅱ system-mediated chronic inflammation. Hypertension 2009,54(4):832-838.
    48. Sedeek M, Hebert RL, Kennedy CR, Burns KD, Touyz RM. Molecular mechanisms of hypertension:role of Nox family NADPH oxidases. Curr Opin Nephrol Hypertens 2009, 18(2):122-127.
    49. Touyz RM, Briones AM. Reactive oxygen species and vascular biology:implications in human hypertension. Hypertens Res 2011.34(1):5-14
    50. Castier Y, Brandes RP, Leseche G, Tedgui A, Lehoux S. p47phox dependent NAD(P)H oxidase regulates flow-induced vascular remodeling. Circ Res 2005,97(6):533-540.
    51. Ndengele MM, Muscoli C, Wang ZQ, Doyle TM, Matuschak GM, Salvemini D. Superoxide potentiates NF-kappaB activation and modulates endotoxin induced cytokine production in alveolar macrophages. Shock 2005,23(2):186-193.
    52. Paravicini, TM, Touyz RM. Redox signaling in hypertension. Cardiovasc Res 2006, 71(2):247-258.
    53. Brassard P, Amiri F, Schiffrin EL. Combined angiotensin Ⅱ type 1 and type 2 receptor blockade on vascular remodeling and matrix metalloproteinases in resistance arteries. Hypertension 2005,46(3),598-606.
    54. Wang W, Huang XR, Canlas E, Oka K, Truong LD, Deng C, Bhowmick NA, Ju W, Bottinger EP, Lan HY. Essential role of Smad3 in angiotensin Ⅱ induced vascular fibrosis. Circ Res 2006,98(8),1032-1039.
    55. Rodriguez-Vita J, Sanchez-Lopez E, Esteban V, Ruperez M, Egido J, Ruiz-Ortega M. Angiotensin Ⅱ activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-p"-independent mechanism. Circulation 2005, 111(19):2509-2517.
    56. Touyz RM. Molecular and cellular mechanisms in vascular injury in hypertension:role of angiotensin II. Curr Opin Nephrol Hypertens 2005,14(2):125-131.
    57. Brasier AR. The nuclear factor-kappaB-interleukin-6 signalling pathway mediating vascular inflammation. Cardiovasc Res 2010,86(2):211-218.
    58. Savoia C, Schiffrin EL. Vascular inflammation in hypertension and diabetes:molecular mechanisms and therapeutic interventions. Clin Sci (Lond) 2007,112(7):375-384.
    59. Touyz RM, Schiffrin EL. Reactive oxygen species and hypertension:a complex association. Antioxid Redox Signal 2008,10(6):1041-1044.
    60. Valverde AM, Sinnett-Smith J, Van Lint J, Rozengurt E. Molecular cloning and characterization of protein kinase D:a target for diacylglycerol and phorbol esters with a distinctive catalytic domain. Proc Natl Acad Sci USA.1994,91(18):8572-8576.
    61. Rozengurt E, Rey O, Waldron RT. Protein kinase D signaling. J Biol Chem 2005, 280(14):13205-13208.
    62. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science 2002,298(5600):1912-1934.
    63. Sinnett-Smith J, Jacamo R, Kui R, Wang YM, Young SH, Rey O, Waldron RT, Rozengurt E. Protein kinase D mediates mitogenic signaling by Gq-coupled receptors through protein kinase C-independent regulation of activation loop Ser744 and Ser748 phosphorylation. JBiol Chem 2009,284(20):13434-13445.
    64. Jacamo R, Sinnett-Smith J, Rey O, Waldron RT, Rozengurt E. Sequential protein kinase C (PKC)-dependent and PKC-independent protein kinase D catalytic activation via Gq-coupled receptors:differential regulation of activation loop Ser(744) and Ser(748) phosphorylation. J Biol Chem 2008,283(19):12877-12887.
    65. Ruwhof C, van der Laarse, A. Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovasc Res 2000,47(1):23-37.
    66. Ozgen N, Obreztchikova M, Guo J, Elouardighi H, Dorn GW 2nd. Wilson BA, Steinberg SF. Protein kinase D links Gq-coupled receptors to cAMP response element-binding protein (CREB)-Ser133 phosphorylation in the heart. JBiol Chem 2008,283(25):17009-17019.
    67. Guo J, Gertsberg Z, Ozgen N, Sabri A, Steinberg SF. Protein Kinase D Isoforms Are Activated in an Agonist-specific Manner in Cardiomyocytes. J Biol Chem 2011, 286(8):6500-6509.
    68. Backs J, Olson EN. Control of cardiac growth by histone acetylation/deacetylation. Circ Res 2006,98(1):15-24.
    69. Wong C, Jin ZG. Protein kinase C-dependent protein kinase D activation modulates ERK signal pathway and endothelial cell proliferation by vascular endothelial growth factor. JBiol Chem 2005,280(39):33262-33269.
    70. Kingwell B, Boutouyrie P. Genetic influences on the arterial wall. Clin Exp Pharmacol Physiol 2007,34(7):652-657.
    71. Yasmin, O'Shaughnessy KM. Genetics of arterial structure and function:towards new biomarkers for aortic stiffness? Clin Sci (Lond) 2008,114(11):661-677.
    72. McEneaney V, Harvey BJ, Thomas W. Aldosterone rapidly activates protein kinase D via a mineralocorticoid receptor/EGFR trans-activation pathway in the M1 kidney CCD cell line. J Steroid Biochem Mol Biol 2007;107(3-5):180-190.
    73. Romero DG, Welsh BL, Gomez-Sanchez EP, Yanes LL, Rilli S, Gomez-Sanchez CE. Angiotensin II-mediated protein kinase d activation stimulates aldosterone and cortisol secretion in H295R human adrenocortical cells. Endocrinology 2006;147(12):6046-6055.
    74. Zhou Q, Liao JK. Statins and cardiovascular diseases:from cholesterol lowering to pleiotropy. Curr Pharm Des 2009,15(5):467-478.
    75. Ruperez M, Rodrigues-Diez R, Blanco-Colio LM, Sanchez-Lopez E, Rodriguez-Vita J, Esteban V, Carvajal G, Plaza JJ, Egido J, Ruiz-Ortega M. HMG-CoA reductase inhibitors decrease angiotensin Ⅱ-induced vascular fibrosis:role of RhoA/ROCK and MAPK pathways. Hypertension 2007,50 (2):377-383.
    76. Zhang XS, Ren JH, Lu JP, Fan Y. Atorvastatin protects against angiotensin Ⅱ-induced injury and dysfunction in human umbilical vein endothelial cells through bradykinin 2 receptors. J Cardiovasc Pharmacol 2010,56(2):171-176.
    77. Correa V Jr, Gus M, Fuchs FD. Does the blood pressure-lowering effect of statins contribute to their beneficial cardiovascular effects? Expert Rev Cardiovasc Ther 2010, 8(6):775-779.
    78. Ishibashi T. Anti-atherosclerotic and anti-inflammatory effects of statin on cardiovascular disease and their mechanisms. Nippon Rinsho 2011,69(1):79-84.
    79. Mitani H, Egashira K, Ohashi N, Yoshikawa M, Niwa S, Nonomura K, Nakashima A, Kimura M. Preservation of endothelial function by the HMG-CoA reductase inhibitor fluvastatin through its lipid-lowering independent antioxidant properties in atherosclerotic rabbits. Pharmacology 2003,68(3):121-130.
    80. Nissen SE, Tuzcu EM, Schoenhagen P, Brown BG, Ganz P, Vogel RA, Crowe T, Howard G, Cooper CJ, Brodie B, Grines CL, DeMaria AN. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis:a randomized controlled trial. JAMA 2004,291 (9):1071-1080.
    81. Inoue T, Node K. Statin therapy for vascular failure. Cardiovasc Drugs Ther 2007,21 (4):281-295.
    82. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM Jr, Kastelein JJ, Koenig W, Libby P, Lorenzatti AJ, MacFadyen JG, Nordestgaard BG, Shepherd J, Willerson JT, Glynn RJ; JUPITER Study Group. Rosuvastatin to prevent vascular events in men and women with elevated c-reactive protein. N Engl J Med 2008,359 (21):2195-2207.
    83. Tavridou A, Efthimiadis A, Efthimiadis I, Paschalidou H. Antioxidant effects of simvastatin in primary and secondary prevention of coronary heart disease. Eur J Clin Pharmacol 2006,62(6):485-489.
    1. Mehta PK, Griendling KK. Angiotensin Ⅱ cell signaling:physiological and pathological effects in the cardiovascular system. Am JPhysiol Cell Physiol 2007,292:C82-97.
    2. Zhong JC, Basu R, Guo D, Chow FL, Byrns S, Shuster M, Loibner H, Wang X, Penninger JM, Kassiri Z, Oudit GY. Angiotensin converting enzyme 2 suppresses pathological hypertrophy, myocardial fibrosis and cardiac dysfunction. Circulation 2010, 122:676-678.
    3. Moustafa-Bayoumi M, Alhaj MA, El-Sayed O, Wisel S, Chotani MA, Abouelnaga ZA,Hassona MD, Rigatto K, Morris M, Nuovo G, Zweier JL, Goldschmidt-Clermont P, Hassanain H. Vascular hypertrophy and hypertension caused by transgenic overexpression of profilin 1. J Biol Chem 2007,282(52):37632-37639.
    4. Cuerrier CM, Benoit M, Guillemette G, Gobeil Jr F, Grandbois M. Real-time monitoring of angiotensin Ⅱ-induced contractile response and cytoskeleton remodeling in individual cells by atomic force microscopy. Pflugers Arch 2009,457:1361-1372.
    5. Horrevoets AJG. Profilin-1:an unexpected molecule linking vascular inflammation to the actin cytoskeleton. Circ Res 2007,101:328-330.
    6. Touyz RM. Reactive oxygen species and angiotensin Ⅱ signaling in vascular cells-implications in cardiovascular disease. Braz JMed Biol Res.2004 Aug; 37(8):1263-73.
    7. Brassard P, Amiri F, Schiffrin EL. Combined angiotensin Ⅱ type 1 and type 2 receptor blockade on vascular remodeling and matrix metalloproteinases in resistance arteries. Hypertension 2005,46(3):598-606.
    8. Wang W, Huang XR, Canlas E, Oka K, Truong LD, Deng C, Bhowmick NA, Ju W, Bottinger EP, Lan HY. Essential role of Smad3 in angiotensin Ⅱ induced vascular fibrosis. Circ Res.2006,98(8):1032-1039.
    9. Rodriguez-Vita J, Sanchez-Lopez E, Esteban V, Ruperez M, Egido J, Ruiz-Ortega M. Angiotensin Ⅱ activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-b-independent mechanism. Circulation 2005, 111(19):2509-2517.
    10. Ruperez M, Lorenzo O. Blanco-Colio LM, Esteban V, Egido J, Ruiz-Ortega M. Connective tissue growth factor is a mediator of angiotensin Ⅱ-induced fibrosis. Circulation 2003, 108(12):1499-1505.
    11. Castoldi G, Di Gioia CR, Pieruzzi F. D'Orlando C, Van De Greef WM, Busca G, Sperti G, Stella A. ANG II increases TIMP-1 expression in rat aortic smooth muscle cells in vivo. Am. J. Physiol. Heart Circ. Physiol.2003.284(12):H635-H643
    12. Savoia C, Schiffrin EL. Inflammation in hypertension. Curr. Opin. Nephrol. Hypertens. 2006,15:152-158
    13. Costanzo A. Moretti F, Burgio VL, Bravi C, Guido F. Levrero M, Puri PL. Endothelial activation by angiotensin Ⅱ through NFkB and p38 pathways:involvement of NFkB-inducible kinase (NIK), free oxygen radicals, and selective inhibition by aspirin. J. Cell. Physiol.2003,195(3):402-410
    14. Nishimoto S, Nishida E. MAPK signalling:ERK5 versus ERK1/2. EMBO. Rep.2006, 7(8):782-786.
    15. Kimura TE, Jin J, Zi M, Prehar S, Liu W, Oceandy D, Abe J, Neyses L, Weston AH, Cartwright EJ, Wang X. Targeted deletion of the extracellular signal-regulated protein kinase 5 attenuates hypertrophic response and promotes pressure overload-induced apoptosis in the heart. Circ Res.2010,106(5):961-70.
    16. Zhao M, Liu Y, Bao M, Kato Y, Han J, Eaton JW. Vascular smooth muscle cell proliferation requires both p38 and BMK1 MAP kinases. Arch Bioch Biophys 2002, 400:199-207.
    17. Touyz RM, Cruzado M. Tabet F. Yao G. Salomon S. Schiffrin EL. Redoxdependent MAP kinase signaling by Ang Ⅱ in vascular smooth muscle cells-role of receptor tyrosine kinase transactivation. Can J Physiol Pharm 2003.81:159-167
    18. Santos RA, Ferreira AJ, Simoes E Silva AC. Recent advances in the angiotensin-converting enzyme 2-angiotensin(1-7)-Mas axis. Exp Physiol.2008,93(5):519-527.
    19. Crowley SD, Gurley SB, Herrera MJ, Ruiz P, Griffiths R, Kumar AP, Kim HS, Smithies O, Le TH, Coffman TM. Angiotensin Ⅱ causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc Natl Acad Sci USA.2006,103(47):17985-17990.
    20. Vieitez P, Gomez O, Uceda ER, Vera ME, Molina-Holgado E:Systemic and local effects of angiotensin II blockade in experimental diabetic nephropathy. J Renin Angiotensin Aldosterone Syst 2008,9:96-102.
    21. Iwanami J, Mogi M, Iwai M, Horiuchi M. Inhibition of the renin-angiotensin system and target organ protection. Hypertens Res.2009,32(4):229-237.
    22. de Resende MM, Mill JG. Effect of high salt intake on local renin-angiotensin system and ventricular dysfunction following myocardial infarction in rats. Clin Exp Pharmacol Physiol.2007,34(4):274-279
    23. Husain A, Li M, Graham RM:Do studies with ACE N-and C-domain-selective inhibitors provide evidence for a non-ACE, non-chymase angiotensin Ⅱ-forming pathway? Circ Res 2003,93:91-93.
    24. Ruilope LM:Renin-angiotensin-aldosterone system blockade and renal protection: angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers? Acta Diabetol 2005,42 Suppl 1:S33-41.
    25. Mehta PK, Griendling KK. Angiotensin II cell signaling:physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 2007,292:C82-C97.
    26. Suzuki Y, Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V, Egido J. Inflammation and angiotensin Ⅱ. Int. J. Biochem. Cell Biol.2003,35:881-900.
    27. Harris RC, Zhang MZ, Cheng HF. Cyclooxygenase-2 and the renal reninangiotensin system. Acta Physiol. Scand.2004,181(4):543-547
    28. Zhao Q, Ishibashi M, Hiasa K, Tan C, Takeshita A, Egashira K. Essential role of vascular endothelial growth factor in angiotensin II-induced vascular inflammation and remodeling. Hypertension 2004,44(3):264-270
    29. Funakoshi Y, Ichiki T, Shimokawa H, Egashira K, Takeda K, Kaibuchi K, Takeya M, Yoshimura T, Takeshita A. Rho-kinase mediates angiotensin Ⅱ-induced monocyte chemoattractant protein-1 expression in rat vascular smooth muscle cells. Hypertension 2001,38(1):100-104
    30. Guo RW, Yang LX, Wang H, Liu B, Wang L. Angiotensin Ⅱ induces matrix metalloproteinase-9 expression via a nuclear factor-kappaB-dependent pathway in vascular smooth muscle cells. Regul Pept.2008,147(1-3):37-44.
    31. Kou B, Vatish M, Singer DR. Effects of angiotensin Ⅱ on human endothelial cells survival signalling pathways and its angiogenic response. Vascul Pharmacol.2007 Oct;47(4):199-208.
    32. Landmesser U, Spiekermann S, Preuss C, Sorrentino S, Fischer D, Manes C, Mueller M, Drexler H. Angiotensin II induces endothelial xanthine oxidase activation:role for endothelial dysfunction in patients with coronary disease. Arterioscler Thromb Vasc Biol. 2007,27(4):943-948.
    33. Wei Y, Whaley-Connell AT, Chen K, Habibi J, Uptergrove GM. Clark SE, Stump CS, Ferrario CM, Sowers JR. NADPH oxidase contributes to vascular inflammation, insulin resistance, and remodeling in the transgenic (mRen2) rat. Hypertension.2007 Aug;50(2):384-391.
    34. Xu X, Ha CH, Wong C, Wang W, Hausser A, Pfizenmaier K, Olson EN, McKinsey TA, Jin ZG. Angiotensin Ⅱ Stimulates Protein Kinase D-Dependent Histone Deacetylase 5 Phosphorylation and Nuclear Export Leading to Vascular Smooth Muscle Cell Hypertrophy. Arterioscler Thromb Vasc Biol.2007;27:2355-2362.
    35. Higuchi S, Ohtsu H, Suzuki H, Shirai H, Frank GD, Eguchi S. Angiotensin II signal transduction through the AT1 receptor:novel insights into mechanisms and pathophysiology. Clin. Sci. (Lond).2007,112:417-428.
    36. Braun-Dullaeus RC, Mann MJ, Ziegler A, von der Leyen HE, Dzau VJ. A novel role for the cyclin-dependent kinase inhibitor p27(Kipl) in angiotensin Ⅱ-stimulated vascular smooth muscle cell hypertrophy. J. Clin. Invest.1999,104:815-823.
    37. Ohtsu H, Higuchi S, Shirai H, Eguchi K, Suzuki H, Hinoki A, Brailoiu E, Eckhart AD, Frank GD, Eguchi S. Central role of Gq in the hypertrophic signal transduction of angiotensin II in vascular smooth muscle cells. Endocrinology.2008,149(7):3569-3575
    38. Ohtsu H, Suzuki H, Nakashima H, Dhobale S, Frank GD, Motley ED, Eguchi S Angiotensin II signal transduction through small GTP-binding proteins:mechanism and significance in vascular smooth muscle cells. Hypertension 2006,48:534-540.
    39. Salamanca DA, Khalil RA. Protein kinase C isoforms as specific targets for modulation of vascular smooth muscle function in hypertension. Biochem. Pharmacol.2005, 70:1537-1547
    40. Sirous ZN, Fleming JB, Khalil RA Endothelin-1 enhances eicosanoids-induced coronary smooth muscle contraction by activating specific protein kinase C isoforms. Hypertension.2001,37(2 Part 2):497-504.
    41. Liou YM, Morgan KG. Redistribution of protein kinase C isoforms in association with vascular hypertrophy of rat aorta. Am J Physiol.1994,267:980-989
    42. McNair LL, Salamanca DA, Khalil RA.Endothelin-1 promotes Ca2+ antagonist-insensitive coronary smooth muscle contraction via activation of epsilon-protein kinase C. Hypertension.2004,43(4):897-904.
    43. Ginnan R, Singer HA. PKC-delta-dependent pathways contribute to PDGF-stimulated ERK1/2 activation in vascular smooth muscle. Am J Physiol Cell Physiol.2005, 288(6):C1193-201.
    44. Ginnan R, Pfleiderer PJ, Pumiglia K, Singer HA. PKC-delta and CaMKⅡ-delta 2 mediate ATP-dependent activation of ERK1/2 in vascular smooth muscle. Am J Physiol Cell Physiol.2004,286(6):C1281-9.
    45. Rozengurt E. Protein kinase d signaling:multiple biological functions in health and disease. Physiology (Bethesda).2011,26(1):23-33.
    46. Brandlin I, Hubner S, Eiseler T, Martinez-Moya M, Horschinek A, Hausser A, Link G, Rupp S, Storz P, Pfizenmaier K, Johannes FJ. Protein kinase C (PKC)eta-mediated PKC mu activation modulates ERK and JNK signal pathways. J Biol Chem.2002;277:6490-6496.
    47. Brandlin I, Eiseler T, Salowsky R, Johannes FJ. Protein kinase C(mu) regulation of the JNK pathway is triggered via phosphoinositidedependent kinase 1 and protein kinase C(ε). J Biol Chem.2002;277:45451-45457.
    48. Storz P, Doppler H, Toker A. Protein kinase Cδ selectively regulates protein kinase D-dependent activation of NF-kappaB in oxidative stress signaling. Mol Cell Biol. 2004;24:2614-2626.
    49. Tan M, Xu X, Ohba M, Ogawa W, Cui MZ. Thrombin rapidly induces protein kinase D phosphorylation, and protein kinase Cδ mediates the activation. J Biol Chem. 2003;278:2824-2828
    50. Tan M, Xu X, Ohba M, Cui MZ. Angiotensin Ⅱ-induced protein kinase D activation is regulated by protein kinase Cdelta and mediated via the angiotensin Ⅱ type 1 receptor in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol.2004,24(12):2271-2276.
    51. Sinnett-Smith J. Jacamo R. Kui R. Wang YM, Young SH, Rey O, Waldron RT, Rozengurt E. Protein kinase D mediates mitogenic signaling by Gq-coupled receptors through PKC-independent regulation of activation loop Ser744 and Ser748 phosphorylation. J BiolChem.2009,284(20):13434-13445.
    52. Qiming J. Wang. PKD at the crossroads of DAG and PKC signaling. Trends Pharmacol Sci. 2006,27(6):317-323.
    53. Chiu TT, Leung WY, Moyer MP, Strieter RM, Rozengurt E. Protein kinase D2 mediates lysophosphatidic acid-induced interleukin 8 production in nontransformed human colonic epithelial cells through NF-kappaB. Am J Physiol Cell Physiol.2007, 292(2):C767-77.
    54. Matthews SA, Liu P, Spitaler M, Olson EN, McKinsey TA, Cantrell DA, Scharenberg AM. Essential role for protein kinase D family kinases in the regulation of class II histone deacetylases in B lymphocytes. Mol Cell Biol.2006,26(4):1569-1577.
    55. Sinnett-Smith J, Zhukova E, Rey O, Rozengurt E. Protein kinase D2 potentiates MEK/ERK/RSK signaling, c-Fos accumulation and DNA synthesis induced by bombesin in Swiss 3T3 cells. J Cell Physiol.2007,211 (3):781-790.
    56. Avkiran M, Rowland AJ, Cuello F, Haworth RS. Protein kinase d in the cardiovascular system:emerging roles in health and disease, Circ. Res,2008,102:157-163.
    57. Kubo T, Ibusuki T, Chiba S, Kambe T, Fukumori R. Mitogen-activated protein kinase activity regulation role of angiotensin and endothelin systems in vascular smooth muscle cells. Eur J Pharm 2001,411(1-2):27-34.
    58. Touyz RM, He G, El Mabrouk M, Diep Q, Mardigyan V, Schiffrin EL. Differential activation of ERK1/2 and p38MAPK by angiotensin Ⅱ type I receptor in vascular smooth muscle cells from WKY and SHR. JHypertens 2001,19 (3 Pt 2):553-559.
    59. Garcia-Hoz C, Herranz M, Diaz-Meco MT, Moscat J, Ribas C, Mayor F. PKC zeta-mediated GalphaQ stimulation of the ERK5 pathway plays a key role in cardiac hypertrophy. J Mol Cell Cardiol 2007,42(6):S37-S54.
    60. Fujii Y, Matsuda S, Takayama G, Koyasu S. ERK5 is involved in TCR-induced apoptosis through the modification of Nur77. Genes Cells 2008,13:411-419.
    61. Sharma G, Goalstone ML. Dominant negative Ftase (DNFTalpha) inhibits ERK5, MEF2C and CREB activation in adipogenesis. Mol Cell Endocrinol 2005,245(1-2):93-104.
    62. Rovida E, Navari N, Caligiuri A, Dello Sbarba P, Marra F. ERK5 differentially regulates PDGF-induced proliferation and migration of hepatic stellate cells. J Hepatol 2008, 48(1):107-115.
    63. Di Benedetto B, Hitz C, Holter SM, Kuhn R, Vogt Weisenhorn DM, Wurst W. Differential mRNA distribution of components of the ERK/MAPK signalling cascade in the adult mouse brain. J Comp Neurol 2007,500(3):542-556.
    64. Hayashi M, Kim SW, Imanaka-Yoshida K, Yoshida T, Abel ED, Eliceiri B, Yang Y, Ulevitch RJ, Lee JD. Targeted deletion of BMK1/ERK5 in adult mice perturbs vascular integrity and leads to endothelial failure. J Clin Invest 2004,113(8):1138-1148.
    65. von der Thusen JH, Kuiper J, van Berkel TJ, Biessen EA. Interleukins in atherosclerosis: molecular pathways and therapeutic potential. Pharmacol. Rev 2003,55(1):133-166.
    66. Sharma G, Goalstone ML. Regulation of ERK5 by insulin and angiotensin-II in vascular smooth muscle cells. Biochem Biophys Res Commun.2007,354(4):1078-1083.
    67. Ramsay AK, McCracken SR, Soofi M, Fleming J, Yu AX, Ahmad I, Morland R, Machesky L, Nixon C, Edwards DR, Nuttall RK, Seywright M, Marquez R, Keller E, Leung HY. ERK5 signalling in prostate cancer promotes an invasive phenotype. Br J Cancer.2011, 104(4):664-672.
    68. Akaike M, Che W, Marmarosh NL, Ohta S, Osawa M, Ding B, Berk BC, Yan C, Abe J. The hinge-helix 1 region of peroxisome proliferator-activated receptor gamma 1 (PPARgamma 1) mediates interaction with extracellular signal-regulated kinase 5 and PPARgamma 1 transcriptional activation:involvement in flow-induced PPARgamma activation in endothelial cells. Mol Cell Biol 2004,24(19):8691-8704.
    69. Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 2006,7(8):589-600.
    70. Kondoh K, Terasawa K, Morimoto H, Nishida E. Regulation of c-Fos and Fra-1 by the MEK5-ERK5 pathway. Mol. Cell. Biol.2006,26:1679-1690.
    71. Buschbeck M, Ullrich A. The unique C-terminal tail of the mitogen-activated protein kinase ERK5 regulates its activation and nuclear shuttling. J Biol Chem.2005, 280(4):2659-67.
    72. Raviv Z, Kalie E, Seger R. MEK5 and ERK5 are localized in the nuclei of resting as well as stimulated cells, while MEKK2 translocates from the cytosol to the nucleus upon stimulation. J. Cell.Sci.2004,117:1773-1784.
    73. Yan C, Luo H, Lee JD, Abe J, Berk BC. Activation of a C-terminal Transcriptional Activation Domain of ERK5 by Autophosphorylation. J. Biol. Chem.2001, 276:10870-10878.
    74. Wong C, Jin ZG. Protein Kinase C-dependent Protein Kinase D Activation Modulates ERK Signal Pathway and Endothelial Cell Proliferation by Vascular Endothelial Growth Factor.J.Biol. Chem.2005,280:33262-33269.
    75. Hurd C, Waldron RT, Rozengurt E. Protein kinase D complexes with C-Jun N-terminal kinase via activation loop phosphorylation and phosphorylates the C-Jun N-terminus. Oncogene 2002,21 (14):2154-2160.
    76. Sinnett-Smith J, Zhukova E, Hsieh N, Jiang X, Rozengurt E. Requirement of protein kinase D tyrosine phosphorylation for VEGF-A165-induced angiogenesis through its interaction and regulation of phospholipase C phosphorylation. J Biol Chem 2004, 279(16):16883-16893.
    77. Bachinski LL, Sirito M, Bohme M, Baggerly KA, Udd B, Krahe R. Altered MEF2 isoforms in myotonic dystrophy and other neuromuscular disorders. Muscle Nerve.2010, 42(6):856-63.
    78. Xu J, Gong NL, Bodi 1, Aronow BJ, Backx PH, Molkentin JD. Myocyte enhancer factors 2A and 2C induce dilated cardiomyopathy in transgenic mice. J Biol Chem.2006, 281(14):9152-9162.
    79. Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM. An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator lalpha expression in muscle. Proc Natl Acad Sci U S A.2003,100(12):7111-7116.
    80. Passier R, Zeng H, Frey N, Naya FJ, Nicol RL, McKinsey TA, Overbeek P, Richardson JA, Grant SR, Olson EN. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. Clin Invest.2000,105(10):1395-1406.
    81. Cox DM, Du M, Marback M, Yang EC, Chan J, Siu KW, McDermott JC. Phosphorylation motifs regulating the stability and function of myocyte enhancer factor 2A. J Biol Chem. 2003,278(17):15297-15303.
    82. Sohn SJ, Li D, Lee LK, Winoto A. Transcriptional regulation of tissue-specific genes by the ERK5 mitogen-activated protein kinase. Mol Cell Biol.2005,25(19):8553-8566.
    83. McGee SL. Exercise and MEF2-HDAC interactions. Appl Physiol Nutr Metab.2007, 32(5):852-856.
    84. Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell.2002, 110(4):479-488.
    85. Kato Y, Zhao M, Morikawa A, Sugiyama T, Chakravortty D, Koide N, Yoshida T, Tapping RI, Yang Y, Yokochi T, Lee JD. Big mitogen-activated kinase regulates multiple members of the MEF2 protein family. J Biol Chem.2000,275(24):18534-18540.
    86. Gregoire S, Tremblay AM, Xiao L, Yang Q, Ma K, Nie J, Mao Z, Wu Z, Giguere V, Yang XJ.Control of MEF2 transcriptional activity by coordinated phosphorylation and sumoy\at\on. J Biol Chem.2006,281(7):4423-4433.
    87. Kasler HG, Victoria J, Duramad O, Winoto A. ERK5 is a novel type of mitogen-activated protein kinase containing a transcriptional activation domain. Mol Cell Biol.2000, 20(22):8382-8389.
    88. Liu L, Cavanaugh JE, Wang Y, Sakagami H, Mao Z, Xia Z ERK5 activation of MEF2-mediated gene expression plays a critical role in BDNF-promoted survival of developing but not mature cortical neurons. Proc Nail Acad Sci U S A.2003, 100(14):8532-8537.
    89. Shalizi A, Lehtinen M, Gaudilliere B, Donovan N, Han J, Konishi Y, Bonni A. Characterization of a neurotrophin signaling mechanism that mediates neuron survival in a temporally specific pattern. JNeurosci.2003,23(19):7326-7336.
    90. Wang X, Tournier C. Regulation of cellular functions by the ERK5 signalling pathway. Cell Signal 2006,18(6):753-760.