基于主动轮廓模型的医学图像中目标提取研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
医学图像分割是辅助诊断、量化分析、手术规划导航等较高层次临床应用的基础。但由于疾病的多样性,造成医学图像背景分布极其复杂、医学图像中病患器官目标自身形状变化有相当的随机性、以及成像过程中各种噪声干扰和超大的数据量,均增加了传统方法对医学图像中目标分割的难度。若要在这些复杂条件下准确、自动、有效地提取特定医学目标,要着重以下两方面工作。第一,选择合适的分割模型。主动轮廓模型作为一种有效的分割模型,在医学图像中,有了很多成功的应用,这也正是本文研究的目标。第二,充分利用特定目标的先验知识。根据待提取目标的不同特征,设计最有效的分割模型。本文正是在主动轮廓框架下,针对特定的医学目标,从一般医学器官,到血管,到肝脏各组织,到心脏各组织等医学目标,设计出多种不同的主动轮廓模型,包括区域竞争主动轮廓、血管主动轮廓、多主动轮廓和基于先验形状的主动轮廓等模型,对这些医学目标进行有效提取,并在准确分割的基础上,对部分组织器官进行自动量化分析。
     本文首先对医学图像分割的研究背景进行了回顾,在基于先验知识目标分割的一般框架下,按原始图像、分割指标函数和先验知识三要素对基于先验知识图像分割的最新进展进行了综述,侧重于先验知识描述和其与分割准则函数的结合。对于本文的研究重点目标主动轮廓模型,围绕Snake模型和水平集模型以及二者本质上的统一性,结合一些利用先验知识对特定目标提取的具体实例进行详细介绍。通过对基于先验知识目标分割的有关问题进行的讨论分析,认为最优的主动轮廓模型,是充分利用目标的先验知识,由这些先验知识指导主动轮廓演化从而提取特定医学目标的模型,并对医学图像和主动轮廓的发展方向进行了展望。
     本文介绍了一种通用性的分割模型:基于区域竞争的主动轮廓模型。这一基于目标灰度统计概率和水平集的主动轮廓分割模型,把能量函数表示为在目标区域内对象素点属于目标的概率的积分,并在水平集框架下对能量函数最小化,得到分割的迭代方程。同时,通过附加的速度约束项,使得主动轮廓越过目标边缘的时候降低速度,大大提高分割的收敛性和准确度。通过大量冠状动脉和二尖瓣分割试验,表明该模型的有效性。
     针对血管树结构的复杂性,研究了血管的提取模型:血管主动轮廓模型。这一模型,充分利用一切和血管有关的信息,先验灰度分布、区域信息、多尺度血管矢量场和曲率,能量方程最小化,得到包括三个主要速度项的迭代方程:基于区域竞争和先验灰度的主动轮廓、血管矢量场、多曲率策略。该模型可以自动地对整个血管树进行提取,不需要太多的预处理和后处理,是一种快速、准确、健壮和自动的血管提取模型。
     肝脏作为人体最重要的器官之一,若对CT图像中的肝脏自动检测、分类和分割出肝脏的解剖和病理结构,包括肿瘤、肝脏和血管,得到具体病例的肝脏模型,在临床上是意义重大的。本文通过多种主动轮廓模型来对CT图像肝脏有关的组织结构进行提取,实现肝脏的模型化。其中,本文采用基于混合高斯分布的主动轮廓模型用于肝脏和肿瘤的提取。该模型的主动轮廓在灰度图像的混合高斯分布模型的驱动下,可以灵活机动地从复杂背景下提取出多重目标。对于肝脏内部的血管树状结构,本文采用增强的血管主动轮廓模型。
     最后,针对超声心动图中的瓣膜类疾病,本文采用一种把先验区域和形状知识融入到几何主动轮廓模型的目标分割方法。各个层次的先验知识表示成速度场直接指导水平集演化到理想轮廓。先验区域约束水平集的演化范围,先验形状驱使水平集向特定形状收敛。在三维超声图像的应用表明该方法大大减少了手工干预,提高了分割效率和精度。同时,在二尖瓣自动分割的基础上,对二尖瓣有关的参数进行了量化,包括瓣膜开口面积、瓣环面积、左心室容积和瓣叶张开角度。
Medical image segmentation is a precondition of aided diagnosis, quantitative analysis and surgical planning in clinical application. Due to the wide variety of shapes, the complexity of the topology, the presence of noise in a complicated background, and the diversity of imaging techniques, it is a very difficult task to extract medical object automatically and accurately. In order to overcome these difficulties, there are two topics could be done. One is to choose an optimized model. As an efficient segmentation tool in medical image, active contour model has made a great success in medical application. The other is to make full use of object’s prior knowledge and embed them into an active contour model. In this paper, several specific active contour models are proposed according to specific clinical application, which are Region Competition Based Active Contour Model, Vascular Active Contour Model, Multi Active Contour Models for liver modeling, and Region and Shape prior base Geodesic Active Contour Models. All of them are results of combination of certain prior knowledge and active contour. On the base of these segmentation models, some quantitative analysis is made on certain organs and diseases.
     Firstly, we review the recent advances in prior-based image segmentation and analyze them according to a general framework which consists of three parts: original image features, segmentation models and prior knowledge. The presentation of prior knowledge and how to embed it in a segmentation model are emphasized. Then, as the most important segmentation model, active contour models are reviewed in detail, which include Snake and level set model. At last, some points, such as characteristic of prior knowledge, challenges of active contour and promising research directions are presented. Secondly, a probabilistic and level set model for three-dimensional medical object extraction is proposed, which is called region competition based active contour. The algorithms are derived by minimizing a region based probabilistic energy function and implemented in a level set framework. An additional speed-controlling term makes the active contour quickly convergent to the actual contour on strong edges, whereas a probabilistic model makes the active contour performing well for weak edges. Prior knowledge about the initial contour and the probabilistic distribution contributes to more efficient extraction. The developed model has been applied to a variety of medical images, from CTA and MRA of the coronary to rotationally scanned and real-time three-dimensional echocardiography images of the mitral valve. As the results show, the algorithm is fast, convergent, adapted to a broad range of medical objects and produces satisfactory results.
     Thirdly, a novel active contour model is proposed for vessel tree segmentation which makes full use of all available vascular information. Firstly, we introduce a region competition based active contour exploiting prior intensity distribution information to segment thick vessels robustly and accurately. Secondly, we define a vector field, resulting from the eigen analysis of the Hessian matrix of image intensity and used by the active contour to evolve into the thin vessels. The vector field is also specified in a multi-scale framework. Finally, a vascular smoothened term takes a strategy combined with minimal principal curvature and mean curvature, which make it smoothes surface without changing the shape of the vessel tree. The developed model has been applied to liver vessel tree, coronary artery and lung vessel extraction. Some comparisons are made between Geodesic Active Contour, CURVES, C-V and our model. The experiments show that the model is fast, accurate, robust and suited for an automatic procedure in vessel tree extraction.
     Fourthly, in order to extract the liver, its tumors and vessels, we developed an active contour model with an embedded classifier, based on a Gaussian mixture model fitted to the intensity distribution of the medical image. The difference between the maximum membership of the intensities belonging to the classes of the object and those of the background, is included as an extra speed propagation term in the active contour model. An additional speed controlling term slows down the evolution of the active contour when it approaches an edge, making it quickly convergent to the ideal object. The developed model has been applied to liver segmentation. Some comparisons are made between Geodesic Active Contour, C-V and our model. As the experiments show, our model is accurate, flexible and suited to extract objects surrounded by a complicated background.
     At last, we present an automated 3D echocardiography image protocol for quantitative analysis of mitral valve. A region and shape prior of the cardiac valve is presented in form of speed field and incorporate it into image segmentation within level set framework. Region prior constrains the zero level set evolving in certain region and shape prior pulls the curve to the ideal contour. On the base of automatic mitral detection method, we quantitate some important geometrical parameters of mitral valve in an automatic way, which include metal valve orifice area, annular area, LV volume, and leaflet opening angle. Some comparisons with Snake method and manual parameterization results show the validity of our methods.
引文
1.马颂德,张正友.计算机视觉,计算理论与算法基础.北京:科学出版社, 1998.
    2.郑南宁.计算机视觉与模式识别.北京:国防工业出版社, 1998.
    3. J.F. Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6):679-698.
    4.章毓晋.图像分割.北京:科学出版社, 2001.
    5. D. Mumford, J. Shah. Optimal approximation by piece-wise smooth functions and associated variational problems. Communication on Pure and Applied Mathematics, 1989, 42(5): 577-685.
    6.杨新.图像偏微分方程的原理和应用.上海:上海交通大学出版社, 2003.
    7. F. T. Chan, L. Vese. Active contours without edges. IEEE Transactions on Image Processing, 2001, 10(2): 266-277.
    8. M. Kass, A. Witkin, and D. Terzopoulos. Snakes: active contour models. International Journal of Computer Vision, 1987, 1(4): 259-268.
    9. D. Terzopoulous and K. Fleischer. Deformable models. The Visual Computer, 1988,79(1): 12-49.
    10. P. Li, T. Zhang. Review on active contour model (Snake Model). Journal of Software, 2000, 11(6): 751-757.
    11. S. Osher and J. Sethian. Fronts propagating with curvature-dependent speed: algorithms based on Hamiltons-Jacobi formulations. Journal of Computer and Physics,1988,79(1):
    12-49.
    12. J. A. Sethian. An analysis of flame propagation. PhD. dissertation, Dept. Math., Univ. California, Berkeley, CA, 1982.
    13. J. Li, X. Yang, P. Shi. A fast level set approach to image segmentation based on Mumford-Shah model. Journal of Computer, 2002, 25(11): 1175-1183.
    14. T. Coots, C. Taylor, D. Cooper, and J. Graham. Active shape models—their training and application. Computer Vision and Image Understanding, 1995, 61(1): 38-59.
    15. D. Cremers, F. Tischhauser, J. Weickert and C. Schnorr. Diffusion snakes: introducing statistical shape knowledge into the Mumford-Shah function. International Journal of Computer Vision, 2002, 50(3): 295-313.
    16. D. Cremers, T. Kohlberer and C. Schnorr. Shape statistics in kernel space for variational image segmentation. Pattern Recognition, 2003, 36(9): 1929-1943.
    17. M. E. Leventon, W. Eric, L. Grimson and O. Faugeras. Statistical shape influence in geodesic active contours. Computer Vision and Image Understanding, 2000, 1(6): 316-323.
    18. N. Ayache. Epidaure: A research project in medical iamge analysis, Simulatiion, and Robotics at INRIA. IEEE Transaction on Medical Imaging, 2003, 22(10): 1185-1201.
    19. M. P. Stephen. Image processing and analysis at IPAG. IEEE Transaction on Medical Imaging, 2003, 22(12): 1505-1518.
    20. X. M. Pardo, P. Radeva and D. Cabello, Discriminant snakes for 3D reconstruction of anatomical organs. Medical Image Analysis, 2003, 7: 293-310.
    21. D. Marr. Vision: a computational investigation into the human representation and processing of visual information. Freeman, San Francisco, 1982.
    22. L. Gong and C. A. Kulikowski. Composition of image analysis processes through object-centered hierarchical planning. IEEE Transactions on Pattern Analysis and Machine intelligence, 1995, 17(10): 997-1009.
    23. H. Wang and D. Suter. A model-based range image segmentation algorithm using a novel robust estimator. Proceeding of the 3rd International Workshop on Statistical and Computational Theories of Vision, Nice, France, October 2003: 1-21.
    24. N. Paragios. A variational approach for the segmentation of the left ventricle in cardiac image analysis. International Journal of Computer Vision, 2002, 50(3): 345-362.
    25. C. Kervrann and F. Heitz. Statistical deformable model-based segmentation of image motion. IEEE Transaction of Image Processing, 1999, 8(4): 583-588.
    26. D. Cremers and C. Schnorr. Statistical shape knowledge in variational motion segmentation. Image and Vision Computing, 2003, 21(1): 77-86.
    27. T. Caelli and H. Bunke. Hidden Markov model: applications in computer vision. Singapore, River Edge, NJ, 2001.
    28. A. Del Bimbo and P. Pala. Visual image retrieval by elastic matching of user sketches. IEEE Transaction Pattern Analysis and Machine Intelligence, 1997, 19(2): 121-132.
    29. K. Hartelius and J. M. Carstensen. Bayesian grid matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(2): 162-173.
    30. D. H. Ballard. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition, 1981, 13(2): 111-122.
    31. V. F. Leavers. Survey: which Hough transform? CVGIP: Image Understanding, Sep.1993, Vol. 58, No. 2: 250-264.
    32. K.J. Anil, Z. Yu and L. Sridhar. Object matching using deformable templates. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1996, 18(3): 267-278.
    33. J. Gomes and O. Faugeras. Level sets and distance functions. Proceeding 6th European Conference Computer Vision, 2002:588-602.
    34. S. Chandran and A.K. Potty. Energy minimization of contours using boundary conditions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(5): 546-549.
    35. T. Zhang and D. Freedman. Tracking objects using density matching and shape priors. Proceeding of the IEEE International Conference on Computer Vision, 2003, v2: 1056-1062.
    36. D. Zhang and G. Lu. Review of shape representation and description techniques. Pattern Recognition, 2004,37(1): 1-19.
    37. L. Sven. A survey of shape analysis techniques. Pattern Recognition,1998, 31(8): 983-1001.
    38. J. Montagnat, H. Delingette, and N. Ayache. A review of deformable surfaces: topology, geometry and deformation. Image and Vision Computing, Dec 1,2001, 19(14): 1023-1040.
    39. G. Szekely, A. Kelemen, C. Brechbuler, and G. Gerig, Segmentation of 2D and 3D object from MRI volume data using constrained elastic deformations of flexible Fourier surface models. Medical Image Analysis, 1996, 1(7): 19-34.
    40. C. Davatzikos, X. Tao, and D. Shen. Hierachical active shape models, using the Wavelettransform. IEEE Transaction on Medical Imaging, 2003, 22(3): 414-423.
    41. S. Ghebreab and A. W. M. Smeulders. Strings: variational deformable models of multivariate continuous boundary features. IEEE Transactions on Pattern Analysis and Machine intelligence, 2003, 25(11): 1399-1410.
    42. B. Olstad and A. H. Torp. Encoding of a priori information in active contour models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(9): 863-872
    43. J. Wang and X. Li. Guiding ziplock snake with a priori information. IEEE Trans. on Image Processing, 2003, 12(2): 176-185.
    44. W. M. Neuenschwander, P. Fun, L. Iverson, G. Szekely, and O. Kubler. Ziplock snakes. International Journal of Computer Vision, 1997, 25(3): 191-201.
    45. Y. Chen, S. Thiruenkadam, H. Tagare, F. Huang, D. Wilson, and E. Geiser. On the incorporation of shape prior into geometric active contours. In Proceeding of IEEE Workshop Variational and Level Set Methods. 2001:145-152.
    46. Y. Wang and L. Staib. Boundary finding with correspondence using statistical shape models. In IEEE Conference of Computer Vision and Pattern Recognition, 1998: 338-345
    47. M. Rousson and N. Paraglos. Prior Knowledge, Level Set Representations & Visual Grouping. International Journal of Computer Vision, 2008, 76: 231-243.
    48. F. Destrempes and M. Mignotte. A statistical model for contours in images. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2004, 26(5): 626-638.
    49. R. Larsen and K.B. Hilger. Statistical Shape Analysis Using Non-Euclidean Metrics. Medical Image Analysis,2003, 7(4): 417-423.
    50. H. Chui, A. Rangarajon, J. Zhang, and C.M Leonard. Unsupervised learning of an Atlas from unlabeled point-Sets. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2004, 26(2): 160-172.
    51. G. Christopher.The Statistical Theory of Shape. N.Y. Springer, 1996.
    52. D. Chetverikov and Y. Khenokh. Matching for shape defect detection. Lecture Notes in Computer Science, Vol. 1689, Springer, Berlin, 1999: 367-374.
    53. W. J. Rucklidge. Efficient locating object using Hausdorff distance. International Journal of Computer Vision, 1997, 24(3): 251-270.
    54. B. Serge, M. Jitendra and P. Jan. Shape matching and object recognition using shape contexts. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2002, 24(4): 509-522.
    55. X. Yang, B. Truyen, I. Partikakis, Jan Cornelis. Hierarchical contour matching in medical images. Image and Vision Computing, 1996, 14(6): 417-433.
    56. A. Cahakraborty, L. H. Staib, and J. S. Duncan. Deformable boundary finding in medical images by integrating gradient and region information. IEEE Transaction on Medical Imaging, 1996, 15(12): 859-870.
    57. S. Z. Li and J. Lu. Modeling bayesian estimation for deformable contours. Proceeding of IEEE International Conference on Computer Vision, 1999, v2: 991-996.
    58. S. Sclaroff and L. Liu. Deformable shape detection and description via model-based region grouping. IEEE Transactions on Pattern Analysis and Machine intelligence, 2001, 23(5): 475-489.
    59. L. Liu and S. Sclaroff. Region segmentation via deformable model-guided split and merge. Boston University Computer Science Technical Report No. 2000-24, Dec. 2000.
    60. H. Robert. Model-Based Image Segmentation Using Local Self-Adapting Separation Criteria, Proc. DAGM, LNCS 2191, Springer-Verlag, Sep. 2001.
    61. M. Yang, D. J. Kriegman and N. Ahuja. Detecting faces in images: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(1): 34-58.
    62. A. L. Yuille. Feature extraction from faces using deformable templates. International Journal of Computer Vision, 1992, 8(2): 99-111.
    63. T. F. Coot and Taylor. Mixture model for representing shape variation. Image and Vision Computing, 1999, 17(8): 567-574.
    64. Y. Wang and L. H. Staib. Boundary finding with prior shape and smoothness models. IEEE Transactions on Pattern Analysis and Machine intelligence, 2000, 22(7): 738-743
    65. L. Staib and Duncon. Boundary finding with parametrically deformable contour methods. IEEE transactions on Pattern Analysis and Machine Intelligence, 1992, 14(11): 1061-1075.
    66. S. D. Fenster and J. R. Kender. Sectored snakes: evaluating learned-energy segmentations. IEEE Transactions on Pattern Analysis and Machine intelligence, 2001, 23(9): 1028-1034.
    67. J. H. Elder, A. Krupnik, and L. A. Johnston. Contour grouping with prior models. IEEE Transactions on Pattern Analysis and Machine intelligence, 2003, 25(6): 661-674.
    68. S. Zhu and A. Yuille, Region competition: unifying snakes, region grouping, and Bayes/MDL for multiband image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(9): 884-900.
    69. R. Ronfard. Region-based strategies for active contour models. International Journal of Computer Vision, 1994, 13(2): 229-251.
    70. M. Bdrtalmio, G. Sapiro, and G. Randall. Region tracking on Level-Sets methods. IEEE Transactions on Medical Imaging, 1999, 18(5): 448-451.
    71. J. S. Suri, K. Liu, S. Singh, etc. Shape recovery algorithms using Level Sets in 2-D/3-D medical imagery: a state-of -the-art review, IEEE Trans. on Information in Biomedicine, 2002, 6(1): 8-28.
    72. T. McInerney and D. Terzopoulos. Deformable models in medical image analysis: a survey. Medical Image Analysis, 1996, 1(2): 91-108.
    73. M. Rousson and N. Paragios. Shape priors for level set representation. In European Conference of Computer Vision, Denmark, 2002: 78-93.
    74. Y. Chen, H. D. Tagare, S. Thiruvenkadam etc. Using prior shapes in geometric active contours in a variational framework. International Journal of Computer Vision, 2002, 50(3): 315-328.
    75. N. Paragios. A level set approach for shape-driven segmentation and tracking of the left Ventricle. IEEE Transactions on Medical Imaging, 2003, 22(6): 773-776.
    76. A. Tsai, A. Yezzi, W. Wells, etc. A shape-based approach to the segmentation of medical imagery using Level Sets. IEEE Transactions on Medical Imaging, 2003, 22(2): 137-152
    77. M. Bertalmio, G. Sapiro, and G. Randall. Morphing active contours. IEEE Transactions on Pattern Analysis and Machine intelligence, 2000, 22(7): 733-737.
    78. K. A. Ganser, H. Dickhaus, R. Metzner and C. R. Wirtz. A deformable digital brain atlas system according to Talairach and Tournoux. Medical Image Analysis, 2004, 8(1): 3-22.
    79. A. Chakraborty and J. S. Duncan. Game theoretic integration for image segmentation.IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(1): 12-30.
    80. H. D. Tagare. Deformable 2-D template matching using orthogonal curves. IEEE Trans. on Medical Imaging, 1997, 16(2): 108-117.
    81. X. Zeng, L. H. Staib, R. T. Schultz, and J. S. Duncan. Volumetric layer segmentation using coupled surfaces propagation. Proceeding of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1998 : 708-715.
    82. X. Zeng, L. H. Staib, R. T. Schultz, and J. S. Duncan. Segmentation and measurement of the cortex from 3-D MR images using coupled surfaces propagation. IEEE Transaction on Medical Imaging, 1999, 18(10): 927-937.
    83. J. Montagnat and H. Delingette. Volumetric medical image segmentation using shape constrained deformable models. In Joint Conference on Computer Vision, Virtual Reality and Robotics in Medicine (CVRMedMRCAS’97),Vol. 1205 of LNCS,Springer-Verlag, March 1997: 13-22.
    84. H. Lamecker, T. Lange and M. Seeba. A Statistical Shape Model for the Liver. MICCAI 2002, : 422-42.
    85. H. Lamecker, M. Seeba. A 3d statistical shape model of the pelvic bone for segmentation. SPIE Medical Imaging 2004.
    86. G. Aubert, P. Kornprobst. Mathematical problems in image processing: partial differential equations and the calculus of variations, Springer-Verlag, Berlin,2001.
    87. http://mathworld.wolfram.com/PartialDifferentialEquation.html.
    88. P. J. Yim, P. L. Choyke, and R. M. Summers. Gray-scale skeletonization of small vessels in magnetic resonance angiography. IEEE Transaction on Medical Imaging, 2000, 19: 568-576.
    89. V. Caselles, R. Kimmel and G. Shapiro. Geodesic active contours. International Journal of Computer Vision, 1997, 22: 61-79
    90. R. Malladi, J. A. Sethian, and B. C. Vemuri. Shape modeling with front propagation. IEEE Transaction of Pattern Analysis and Machine Intelligence, 1995, 17(2): 158-175.
    91. L. Cohen. On active contour models and balloons. Computer vision, Graphics, and Image Processing: Image Understanding 1991, 53(2): 211-218.
    92. L. Cohen and I. Cohen. Finite-element methods for active contour models and balloons for 2-d and 3-d images. IEEE Transaction Pattern Analysis and Machine Intelligence, 1993, 15(11): 1146-1131.
    93. P. Frederic, B. Michel, B. Thierry, etc. Robust real-time segmentation of images and videos using a smooth-spline snake-based algorithm. IEEE Transaction of Image Processing, 2005, 14(7): 910-924.
    94. D. P. Mukherjee, N. Ray and S.T. Acton. Level set analysis for leukocyte detection and tracking. IEEE Transaction of Image Processing, 2004, 13(4): 562-572.
    95. D. Freedman and T. Zhang. Active contours for tracking distributions. IEEE Transaction of Image Processing, 2004, 13(4): 518-526.
    96. L. Lorigo, O. Faugeras, W. E. L. Grimson, etc. Curves: curve evolution for vessel segmentation. Medical Image Analysis, 2001, 5:195-206.
    97. Y. Shang, X. Yang, M. Zhu, etc. Prior based cardiac valve segmentation in echocardiographic sequences: geodesic active contour guided by region and shape prior. IbPRIA 2005. Proceedings, Part II (LNCS Vol.3523): 447-54.
    98. J. A. Sethian. Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge, U.K. Cambridge University Press, 1999.
    99. G. Arfken. Mathematical methods for physicists, 3rd ed. Orlando, FL: Academic Press, 1985.
    100.P. Pietro and M. Jalhandra. Scale-space and edge detection using anisotropic diffusion. IEEE Transaction of Pattern Analysis and Machine Intelligence, 1990, 12: 629-639.
    101.R. Whitaker and X. Xue. Variable-conductance, level-set curvature for image denoising. ICIP 2001, Thessaloniki, Greece: 142-145.
    102.A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever. Multiscale vessel enhancement filtering. Proc. MICCAI, 1998, no. 22, pp. 130-7.
    103.Y. Sato, S. Nakajima, N. Shiraga, and H. Atsumi. Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Medical Image Analysis, 1998, 2: 143-168.
    104.R. Manniesing, M. A. Viergever, and W. J. Niessen. Vessel enhancing diffusion - A scale space representation of vessel structures. Medical Image Analysis, 2006, 10: 815-825.
    105.S. R. Aylward and E. Bullitt. Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Transaction on Medical Imaging, 2002, 21: 61-75.
    106.P. J. Yim, P. L. Choyke, and R. M. Summers. Gray-scale skeletonization of small vessels in magnetic resonance angiography. IEEE Transaction on Medical Imaging, 2000, 19:
    568-576.
    107.P. Yan and A. A. Kassim. Segmentation of volumetric MRA images by using capillary active contour. Medical Image Analysis, 2006, 10: 317-329.
    108.C. M. van Bemmel, L. J. Spreeuwers, M. A. Viergever, and W. J. Niessen. Level-set-based artery-vein separation in blood pool agent CE-MR angiograms. IEEE Transaction on Medical Imaging, 2003, 22: 1224-1234.
    109.R. Manniesing, B. K. Velthuis, M. S. van Leeuwen, etc. Level set based cerebral vasculature segmentation and diameter quantification in CT angiography. Medical Image Analysis, 2006, 10: 200-214.
    110.J. S. Suri, K. C. Liu, L. Reden, and S. Laxminarayan. A review on MR vascular image processing algorithms: Acquisition and prefiltering: part I. IEEE Trans. Inf. Tech. Biomed., 2002, 6: 324-337.
    111.C. Kirbas and F. Quek. A review of vessel extraction techniques and algorithms. Acm Computer Surveys, 2004, 36: 81-121.
    112.Y. Shang, X. Yang, L. Zhu, etc. Region competition based active contour for medical object extraction. Computerized Medical Imaging and Graphics, 2008, 32: 109-17.
    113.L. Ambrosio and H. M. Soner. Level set approach to mean curvature in arbitary codimension. J. Diff. Geom., 1996, 43: 693-737.
    114.T. Linderberg. Edge detection and ridge detection with automatic scale selection. International Journal of Computer Vision, 1998, 30: 117-154.
    115.T. M. Koller, G. Gerig, G. Szekely, etc. Multi-scale detection of curvilinear structures in 2-D and 3-D image data," IEEE Proc. Computer Vision 1995, Boston, MA, pp. 846-869.
    116.G. M. Turkiyyah, D. W. Storti, H. Chen, etc. An accelerated triangulation method forcomputing the skeletons of free-form solid modles. Computer-Aided Design,1997, 29(1): 5-19.
    117.G. Kindlmann, R. Whitaker, T. Tasdizen, etc. Curvature-Based Transfer Functions for Direct Volume Rendering: Methods and Applications. Proc. 14th IEEE Visualization 2003: 513-20.
    118.L. Soler, H. Delingette, G. Malandain, etc. Fully Automatic Anatomical, Pathological, and Functional Segmentation from CT Scans for Hepatic Surgery. Comp. Aid. Surg. 2001, 6(3): 131-142
    119.A. Markova, R. Deklerck, E. Nyssen, etc. Comparison of the trust-region and the expectation-maximization algorithm for the application of automatic liver segmentation. IEEE Benelux EMBS Symposium, Brussels, Belgium, 2006
    120.A. P. Dempster, N. M. Laird, D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. 1997, Series B, 39(1): 1-38.
    121.T. Heimann, B. Ginneken, M. A. Styner, etc. Comparison and evaluation of methods for liver segmenation from CT datasets. IEEE Transaction on Medical Imaging, 2009, 28(8):1251-65.
    122.W. J. Niessen, C. J. Bouma, K. L. Vincken, etc. Performance characterization in computer vision. Kluwer Academic, 2000, ch. Errormetrics for quantitative evaluation of medical image segmentation: 275-284.
    123.G. Gerig, M. Jomier, and M. Chakos, Valmet. A new validation tool for assessing and improving 3D object segmentation, in Proc. MICCAI, ser. LNCS, vol. 2208. Springer, 2001: 516-523.
    124.Y. J. Zhang. A survey on evaluation methods for image segmentation. Pattern Recognition, 1996, 29(8): 1335-1346.
    125.S. Chen, X. Yang, L. Yao, etc. Segmentation in echocardiographic sequences using shape-based snake model combined with generalized Hough transformation. The International Journal of Cardiovascular Imaging, 2005, 23: 33-45.
    126.M. Ivana, K. Slawomir and D. T. James. Segmentation and Tracking in Echocardiographic sequences: active contour guided by optical flow estimates. IEEE Transaction on medical imaging, 1998, 17: 274.
    127.R. Whitaker and X. Xue. Variable-conductance, Level-Set curvature for image processing, ICIP, 2001: 142.
    128.N. Sutaria, D. Northridge, N. Masani, etc. Three dimensional echocardiography for the assessment of mitral valve disease. Heart, 2000; 84 (11): 7-10.
    129.K. Otto and V. Gabriel. Three-dimensional echocardiography in mitral valve disease. Business briefing: European cardiology 2005: 1-9.
    130.G. Coppini, R. Poli, G. Valli. Recovery of the 3-D shape of the left ventricle from echocardiographic images. IEEE Trans Med Imaging, 1995,14: 301-317.
    131.M.E. Legget, D.F. Leotta, E.L. Bolson, etc. System for quantitative three dimensional echocardiography of the left ventricle based on magneticeld position and orientation sensing system. IEEE Trans Biomed Eng, 1998, 45: 494-504.
    132.G.D. Stetten and S.M. Pizer. Medial-node models to identify and measure objects in real-time 3-D echocardiography. IEEE Trans on Medical Imaging, 1999, 18: 1025-1034.
    133.Gerardo I. R., Gabriel J. T. Wright, etc. Automated 3-D echocardiography analysiscompared with manual delineations and SPECT MUGA. IEEE Transaction on Medical Imaging 2002; 21: 1069-1076.
    134.A. Fenster, D. B. Downey and H. N. Cardinal. Topical Review: Three-dimensional ultrasound imaging. Physica in Medicine and Biology, 2001, 46: 67-99.
    135.Keiko Aikawa, Florence H. Sheehan, Catherine M. Otto, etc. The severity of functional mitral regurgitation depends on the shape of the mitral apparatus: a three-dimensional echo analysis. The Journal of Heart Valve Disease, 2002, 11: 627-636.
    136.Starr R. Kaplan, Gerard Bashein, Florence H. Sheehan,etc. Three-dimensional echocardiographic assessment of annular shape changes in the normal and regurgitant mitral valve. American Heart Journal, 2000, 139: 378-387.
    137.R. Sarah, E. L. Bolson, F. H. Sheehan etc. Performance of a fourier-based program for three-dimensional reconstruction of the mitral annulus on application to sparse, noisy data. International Journal of Cardiac Imaging, 1999, 15: 301-307.
    138.G. Bashein, M. E. Legget and P. R. Detmer. Pointwise assessment of three-dimensional computer reconstruction of mitral leaflet surfaces from rotationally scanned echocardiograms in Vitro. Journal of the American Society of Echocardiography, 2004, 17: 239-246.
    139.H. S. Florence, L. B. Edward, W. M. Roy, etc. Quantitate three dimensional echocardiography: methodology, validation, and clinical applications. MICCAI’1998, LNCS 1496: 102-109.
    140.Q. Chen, Y. M. Nosir, W. B. Vletter, etcl. Accurate assessment of mitral valve area in patients with mitral stenosis by three-dimensional echocardiography. Journal of the American Society of Echocardiography, 1997, 10: 133-140.
    141.G. I. Sanchez-Ortiz, J. A. Noble, G. J. T. Wright, etc. Automated LV motion analysis from 3D echocardiography. Presented at the MIUA, Oxford, U.K., July 19–20, 1999.
    142.G. I. Sanchez-Ortiz, J. Declerck, J. A. Noble, etc. Automating 3D echocardiographic image analysis,”in Proc. MICCAI, Lecture Notes in Computer Science, Pittsburgh, PA, Oct. 2000: 687–696.
    143.C. Genc, M. Uzun, O. Baysan, etc. A different method for measuring mitral valve area with special emphasis on concomitant aortic regurgitation: A new application of proximal isovelocity surface area method. J Am Soc Echocardiogr, 2004, 17(12):1053-1058.
    144.F. A. Flachskampf, S. Chandra, A. Gaddipatti, etc. Analysis of Shape and Motion of the Mitral Annulus in Subjects With and Without Cardiomyopathy by Echocardiographic 3-Dimensional Reconstruction. The American Society of Echocardiography, Journal of the American Society of Echocardiography, 2000, 13(4): 277-287.