粒细胞—巨噬细胞集落刺激因子缓释微球研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粒细胞-巨噬细胞集落刺激因子(Granulocyte-Macrophage Colony-Stimulating Factor,以下简称GM-CSF),是一种具有刺激粒系、巨噬细胞系细胞分化和成熟的糖蛋白,被临床广泛用于对骨髓移植等治疗手段或HIV感染等疾病造成的粒细胞减少的治疗。此外,它在各类疫苗中作为免疫佐剂的功效也被广泛的研究。
     然而,与一般的蛋白治疗药物相似,人的GM-CSF的体内半衰期短,同时相关疾病的治疗周期长,病人必须接受频繁而长期的注射。
     为了减少其注射频率、延长蛋白作用的时间,国际上报道了各种尝试,然而,它们各自仍然存在许多问题。总结起来,如何在尽可能保持蛋白自然状态,即既不对蛋白本身进行结构的改变,如化学修饰,也不因为制备等过程伤害蛋白结构的稳定性的情况下,制备能够抑制突释和不完全释放等问题,具有良好释放形态的缓释系统已成为大分子缓释领域一大挑战,也成为我们的研究目标。
     本研究中我们采用了新型的高分子水相-水相乳化技术,利用两种水溶性高分子通过表面活性剂的作用,在温和的、无油相存在的条件下乳化形成稳定的乳液,冻干后形成多糖玻璃体颗粒包封蛋白。由于乳化过程中无有机溶剂的存在,避免了水-油界面和界面张力的产生,保护了蛋白活性。该法制成粒径在1μm~5μm的多糖玻璃体微粒,大小均匀、表面圆滑、不粘连。第二步,我们将含有蛋白的多糖微粒通过水包油包固的方法担载于PLGA缓释微球中。由于蛋白担载于含有多糖高分子的玻璃体颗粒内,高分子玻璃体颗粒对于有机溶剂具有一定的抗性,再次避免了在传统W/O/W法中蛋白直接与水-油界面相接触造成的活性损失,在该步骤内进一步保护蛋白。该步骤制得的含颗粒微球粒径在60-120μm左右,微球外观性质良好。
     对该法制备过程的考察结果显示,对GM-CSF其具有较高的包封率,达到80%以上;对回收率的检测结果显示,第一步颗粒的制备过程中,几乎没有物理损失,而第二步微球制备中,回收率在60%-70%。同时,该法在制备过程中较好的保护了蛋白活性,颗粒和微球的活性都在85%以上。而对体外释放和活性的进一步考察表明,该方法可以通过改变微球中多糖与蛋白的比例等参数条件调节优化蛋白的释放动力学特征,改善初期严重的突释和不完全释放;并且在释放过程中较好的保护蛋白活性。
Human granulocyte-macrophage colony-stimulating factor (GM-CSF), by exerting it’s proliferate and differentiation effects on granulocytes, macrophages and eosinophilic precursors, has been in clinical trials in accelerating the recovery of neutrophil levels and also widely studied as the adjuvant in varied kinds of vaccine.
     However, as many as protein therapeutics, the plasma half-life of hGM-CSF is considerably short and frequent injection is required, causing problems of patients compliance.
     Research effort to develop long acting and sustained release systems have not yet resulted in a successful commercial product. Activity loss in formulation processes or the release period is the major technical hurdle in development of sustained release depot.
     The primary objective is to exam a new microencapsulation process using a unique Aqueous-Aqueous emulsion system. Stucture delicate GM-CSF was mixed with a Dextran solution then emulsified into a PEG solution containing sodium alginate. The proteins preferentially partitioned into the dextran depersed phase and lyophilized to solid particles, 1-5μm in diameter. The particles were then encapsulated into PLGA microspheres, 60-120μm in diameter.
     A TF-1 cell proliferation assay and a SEC-HPLC analysis after each formulation step indicated that bioactivity and interrity of rhGM-CSF was preserved during the formulation process. The dextran glassy particles also played a role in improvement of protein release kinetics by minimizing initial burst and incomplete release. For a given protein loading, increasing dextran content ensured complete release, while limiting dextran content minizing intial burst. GM-CSF released from the microsphere formulation in PBS buffer at 37℃showed preserved activity based on TF-1 cell proliferation assay.
     This thesis study demonstrated a promising microencapsulation process for formulating structurally delicated protein theraputics.
引文
1. Burgess A W, Camakaris J, and Metcalf D, Purification and properties of colony-stimulating factor from mouse lung-conditioned medium. J Biol Chem, 1977. 252(6): p. 1998-2003.
    2. Gasson J C, Weisbart R H, Kaufman S E, et al., Purified human granulocyte-macrophage colony-stimulating factor: direct action on neutrophils. Science, 1984. 226(4680): p. 1339-1342.
    3. Clark S C and Kamen R, The human hematopoietic colony-stimulating factors. Science, 1987. 236(4806): p. 1229-1237.
    4. Tomonaga M, Golde D W, and Gasson J C, Biosynthetic (recombinant) human granulocyte-macrophage colony-stimulating factor: effect on normal bone marrow and leukemia cell lines. Blood, 1986. 67(1): p. 31-36.
    5. Burgess A W, Begley C G, Johnson G R, et al., Purification and properties of bacterially synthesized human granulocyte-macrophage colony stimulating factor. Blood, 1987. 69(1): p. 43-51.
    6. Cantrell M A, Anderson D, Cerretti D P, et al., Cloning, sequence, and expression of a human granulocyte/macrophage colony-stimulating factor. Proc Natl Acad Sci U S A, 1985. 82(18): p. 6250-6254.
    7. Wong G G, Witek J S, Temple P A, et al., Human GM-CSF: molecular cloning of the complementary DNA and purification of the natural and recombinant proteins. Science, 1985. 228(4701): p. 810-815.
    8. Cebon J, Nicola N, Ward M, et al., Granulocyte-macrophage colony stimulating factor from human lymphocytes. The effect of glycosylation on receptor binding and biological activity. J Biol Chem, 1990. 265(8): p. 4483-4491.
    9. Metcalf D, The granulocyte-macrophage colony stimulating factors. Cell, 1985. 43(1): p. 5-6.
    10. Brandt S J, Peters W P, Atwater S K, et al., Effect of recombinant human granulocyte-macrophage colony-stimulating factor on hematopoietic reconstitution after high-dose chemotherapy and autologous bone marrow transplantation. N Engl J Med, 1988. 318(14): p. 869-876.
    11. Groopman J E, Mitsuyasu R T, DeLeo M J, et al., Effect of recombinant humangranulocyte-macrophage colony-stimulating factor on myelopoiesis in the acquired immunodeficiency syndrome. N Engl J Med, 1987. 317(10): p. 593-598.
    12. Antman K S, Griffin J D, Elias A, et al., Effect of recombinant human granulocyte-macrophage colony-stimulating factor on chemotherapy-induced myelosuppression. N Engl J Med, 1988. 319(10): p. 593-598.
    13. Talmadge J E, Tribble H, Pennington R, et al., Protective, restorative, and therapeutic properties of recombinant colony-stimulating factors. Blood, 1989. 73(8): p. 2093-2103.
    14. Chang D Z, Lomazow W, Joy Somberg C, et al., Granulocyte-macrophage colony stimulating factor: an adjuvant for cancer vaccines. Hematology, 2004. 9(3): p. 207-215.
    15. Disis M L, Bernhard H, Shiota F M, et al., Granulocyte-macrophage colony-stimulating factor: an effective adjuvant for protein and peptide-based vaccines. Blood, 1996. 88(1): p. 202-210.
    16. Dranoff G, Jaffee E, Lazenby A, et al., Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A, 1993. 90(8): p. 3539-3543.
    17. Hovgaard D, Mortensen B T, Schifter S, et al., Clinical pharmacokinetic studies of a human haemopoietic growth factor, GM-CSF. Eur J Clin Invest, 1992. 22(1): p. 45-49.
    18. Malik F, Delgado C, Knusli C, et al., Polyethylene glycol (PEG)-modified granulocyte-macrophage colony-stimulating factor (GM-CSF) with conserved biological activity. Exp Hematol, 1992. 20(8): p. 1028-1035.
    19. Knusli C, Delgado C, Malik F, et al., Polyethylene glycol (PEG) modification of granulocyte-macrophage colony stimulating factor (GM-CSF) enhances neutrophil priming activity but not colony stimulating activity. Br J Haematol, 1992. 82(4): p. 654-663.
    20. Sainathan S K, Tu L, Bishnupuri K S, et al., PEGylated murine Granulocyte-macrophage colony-stimulating factor: production, purification, and characterization. Protein Expr Purif, 2005. 44(2): p. 94-103.
    21. Doherty D H, Rosendahl M S, Smith D J, et al., Site-specific PEGylation of engineered cysteine analogues of recombinant human granulocyte-macrophage colony-stimulating factor. Bioconjug Chem, 2005. 16(5): p. 1291-1298.
    22. DeFrees S, Wang Z G, Xing R, et al., GlycoPEGylation of recombinant therapeutic proteins produced in Escherichia coli. Glycobiology, 2006. 16(9): p. 833-843.
    23. Anderson P M, Hanson D C, Hasz D E, et al., Cytokines in liposomes: preliminary studies with IL-1, IL-2, IL-6, GM-CSF and interferon-gamma. Cytokine, 1994. 6(1): p. 92-101.
    24. Kedar E, Palgi O, Golod G, et al., Delivery of cytokines by liposomes. III. Liposome-encapsulated GM-CSF and TNF-alpha show improved pharmacokinetics and biological activity and reduced toxicity in mice. J Immunother, 1997. 20(3): p. 180-193.
    25. Babai I, Samira S, Barenholz Y, et al., A novel influenza subunit vaccine composed of liposome-encapsulated haemagglutinin/neuraminidase and IL-2 or GM-CSF. I. Vaccine characterization and efficacy studies in mice. Vaccine, 1999. 17(9-10): p. 1223-1238.
    26. Babai I, Barenholz Y, Zakay-Rones Z, et al., A novel liposomal influenza vaccine (INFLUSOME-VAC) containing hemagglutinin-neuraminidase and IL-2 or GM-CSF induces protective anti-neuraminidase antibodies cross-reacting with a wide spectrum of influenza A viral strains. Vaccine, 2001. 20(3-4): p. 505-515.
    27. Golumbek P T, Azhari R, Jaffee E M, et al., Controlled release, biodegradable cytokine depots: a new approach in cancer vaccine design. Cancer Res, 1993. 53(24): p. 5841-5844.
    28. Egilmez N K, Jong Y S, Sabel M S, et al., In situ tumor vaccination with interleukin-12-encapsulated biodegradable microspheres: induction of tumor regression and potent antitumor immunity. Cancer Res, 2000. 60(14): p. 3832-3837.
    29. Hill H C, Conway T F, Jr., Sabel M S, et al., Cancer immunotherapy with interleukin 12 and granulocyte-macrophage colony-stimulating factor-encapsulated microspheres: coinduction of innate and adaptive antitumor immunity and cure of disseminated disease. Cancer Res, 2002. 62(24): p. 7254-7263.
    30. Sharma A, Harper C M, Hammer L, et al., Characterization of cytokine-encapsulated controlled-release microsphere adjuvants. Cancer Biother Radiopharm, 2004. 19(6): p. 764-769.
    31. Pettit D K, Bonnert T P, Eisenman J, et al., Structure-function studies of interleukin 15 using site-specific mutagenesis, polyethylene glycol conjugation, and homology modeling. J Biol Chem, 1997. 272(4): p. 2312-2318.
    32. Brown C D, Kreilgaard L, Nakakura M, et al., Release of PEGylated granulocyte-macrophage colony-stimulating factor from chitosan/glycerol films. J Control Release, 2001. 72(1-3): p. 35-46.
    33. Cole D J, Gattoni-Celli S, McClay E F, et al., Characterization of a sustained-releasedelivery system for combined cytokine/peptide vaccination using a poly-N-acetyl glucosamine-based polymer matrix. Clin Cancer Res, 1997. 3(6): p. 867-873.
    34. Nguyen C L, Bui J T, Demcheva M, et al., Sustained Release of Granulocyte-Macrophage Colony-Stimulating Factor From a Modular Peptide-Based Cancer Vaccine Alters Vaccine Microenvironment and Enhances the Antigen-Specific T-Cell Response. J Immunother, 2001. 24(5): p. 420-429.
    35. Shalaby W S, Yeh H, Woo E, et al., Absorbable microparticulate cation exchanger for immunotherapeutic delivery. J Biomed Mater Res B Appl Biomater, 2004. 69(2): p. 173-182.
    36. van de Weert M, van 't Hof R, van der Weerd J, et al., Lysozyme distribution and conformation in a biodegradable polymer matrix as determined by FTIR techniques. J Control Release, 2000. 68(1): p. 31-40.
    37. Schwendeman S P, Tobio M, Joworowicz M, et al., New strategies for the microencapsulation of tetanus vaccine. J Microencapsul, 1998. 15(3): p. 299-318.
    38. van de Weert M, Hennink W E, and Jiskoot W, Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm Res, 2000. 17(10): p. 1159-1167.
    39. Fu K, Klibanov A M, and Langer R, Protein stability in controlled-release systems. Nat Biotechnol, 2000. 18(1): p. 24-25.
    40. Perez C, Castellanos I J, Costantino H R, et al., Recent trends in stabilizing protein structure upon encapsulation and release from bioerodible polymers. J Pharm Pharmacol, 2002. 54(3): p. 301-313.
    41. Johnson O L, Jaworowicz W, Cleland J L, et al., The stabilization and encapsulation of human growth hormone into biodegradable microspheres. Pharm Res, 1997. 14(6): p. 730-735.
    42. Cleland J L and Jones A J, Stable formulations of recombinant human growth hormone and interferon-gamma for microencapsulation in biodegradable microspheres. Pharm Res, 1996. 13(10): p. 1464-1475.
    43. Schwendeman S P, Recent advances in the stabilization of proteins encapsulated in injectable PLGA delivery systems. Crit Rev Ther Drug Carrier Syst, 2002. 19(1): p. 73-98.
    44. Morita T, Horikiri Y, Suzuki T, et al., Preparation of gelatin microparticles by co-lyophilization with poly(ethylene glycol): characterization and application to entrapment into biodegradable microspheres. Int J Pharm, 2001. 219(1-2): p. 127-137.
    45. Sanchez A, Villamayor B, Guo Y, et al., Formulation strategies for the stabilization of tetanus toxoid in poly(lactide-co-glycolide) microspheres. Int J Pharm, 1999. 185(2): p. 255-266.
    46. Maa Y F, Nguyen P A, and Hsu S W, Spray-drying of air-liquid interface sensitive recombinant human growth hormone. J Pharm Sci, 1998. 87(2): p. 152-159.
    47. Costantino H R, Carrasquillo K G, Cordero R A, et al., Effect of excipients on the stability and structure of lyophilized recombinant human growth hormone. J Pharm Sci, 1998. 87(11): p. 1412-1420.
    48. Zale S E, Burke, P. A., Berstein, H., Brickner, A., Composition for sustained release of non-aggregated erythropoietin.
    49. Zhu G, Mallery S R, and Schwendeman S P, Stabilization of proteins encapsulated in injectable poly (lactide- co-glycolide). Nat Biotechnol, 2000. 18(1): p. 52-57.
    50. Jiang W and Schwendeman S P, Stabilization and controlled release of bovine serum albumin encapsulated in poly(D, L-lactide) and poly(ethylene glycol) microsphere blends. Pharm Res, 2001. 18(6): p. 878-885.
    51. Jin Tuo L C, Zhu Hua, Stable polymer aqueous/aqueous emulsion system and uses thereof: US. US2002/0055461A1. 09 May, 2002
    52. Jin Tuo Z H, Zhu Jiahao., Hazard- free microencapsulation for structurally delicate agents ,an application of stable aqueous-aqueous emulsion: US. WO03/101600 A2. 11 Dec, 2003
    53. Kitamura T, Tange T, Terasawa T, et al., Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin. J Cell Physiol, 1989. 140(2): p. 323-334.
    54. Pekarek K J, Jacob J S, and Mathiowitz E, Double-walled polymer microspheres for controlled drug release. Nature, 1994. 367(6460): p. 258-260.
    55. Zambaux M F, Bonneaux F, Gref R, et al., Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. J Control Release, 1998. 50(1-3): p. 31-40.
    56. Cohen S, Yoshioka T, Lucarelli M, et al., Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres. Pharm Res, 1991. 8(6): p. 713-720.
    57. Freiberg S and Zhu X X, Polymer microspheres for controlled drug release. Int J Pharm, 2004. 282(1-2): p. 1-18.
    58. Morita T, Sakamura Y, Horikiri Y, et al., Protein encapsulation into biodegradablemicrospheres by a novel S/O/W emulsion method using poly(ethylene glycol) as a protein micronization adjuvant. J Control Release, 2000. 69(3): p. 435-444.
    59. Cleland J L, Solvent evaporation processes for the production of controlled release biodegradable microsphere formulations for therapeutics and vaccines. Biotechnol Prog, 1998. 14(1): p. 102-107.
    [1] METCALF D. The granulocyte-macrophage colony stimulating factors[J]. Cell, 1985, 43(1): 5-6.
    [2] CLARK S C and KAMEN R. The human hematopoietic colony-stimulating factors[J]. Science, 1987, 236(4806): 1229-1237.
    [3] BRANDT S J, PETERS W P, ATWATER S K, et al. Effect of recombinant human granulocyte-macrophage colony-stimulating factor on hematopoietic reconstitution after high-dose chemotherapy and autologous bone marrow transplantation[J]. N Engl J Med, 1988, 318(14): 869-876.
    [4] GROOPMAN J E, MITSUYASU R T, DELEO M J, et al. Effect of recombinant human granulocyte-macrophage colony-stimulating factor on myelopoiesis in the acquired immunodeficiency syndrome[J]. N Engl J Med, 1987, 317(10): 593-598.
    [5] CHANG D Z, LOMAZOW W, JOY SOMBERG C, et al. Granulocyte-macrophage colony stimulating factor: an adjuvant for cancer vaccines[J]. Hematology, 2004, 9(3): 207-215.
    [6] DISIS M L, BERNHARD H, SHIOTA F M, et al. Granulocyte-macrophage colony-stimulating factor: an effective adjuvant for protein and peptide-based vaccines[J]. Blood, 1996, 88(1): 202-210.
    [7] HOVGAARD D, MORTENSEN B T, SCHIFTER S, et al. Clinical pharmacokinetic studies of a human haemopoietic growth factor, GM-CSF[J]. Eur J Clin Invest, 1992, 22(1): 45-49.
    [8] DELGADO C, FRANCIS G E and FISHER D. The uses and properties of PEG-linked proteins[J]. Crit Rev Ther Drug Carrier Syst, 1992, 9(3-4): 249-304.
    [9] WERLE M and BERNKOP-SCHNURCH A. Strategies to improve plasma half life time of peptide and protein drugs[J]. Amino Acids, 2006, 30(4): 351-367.
    [10] MALIK F, DELGADO C, KNUSLI C, et al. Polyethylene glycol (PEG)-modified granulocyte-macrophage colony-stimulating factor (GM-CSF) with conserved biological activity[J]. Exp Hematol, 1992, 20(8): 1028-1035.
    [11] KNUSLI C, DELGADO C, MALIK F, et al. Polyethylene glycol (PEG) modification of granulocyte-macrophage colony stimulating factor (GM-CSF) enhances neutrophil priming activity but not colony stimulating activity[J]. Br J Haematol, 1992, 82(4): 654-663.
    [12] SAINATHAN S K, TU L, BISHNUPURI K S, et al. PEGylated murine Granulocyte-macrophage colony-stimulating factor: production, purification, and characterization[J]. Protein Expr Purif, 2005, 44(2): 94-103.
    [13] DOHERTY D H, ROSENDAHL M S, SMITH D J, et al. Site-specific PEGylation of engineered cysteine analogues of recombinant human granulocyte-macrophage colony-stimulating factor[J]. Bioconjug Chem, 2005, 16(5): 1291-1298.
    [14] DEFREES S, WANG Z G, XING R, et al. GlycoPEGylation of recombinant therapeutic proteins produced in Escherichia coli[J]. Glycobiology, 2006, 16(9): 833-843.
    [15] ULRICH A S. Biophysical aspects of using liposomes as delivery vehicles[J]. Biosci Rep, 2002, 22(2): 129-150.
    [16] COPLAND M J, BAIRD M A, RADES T, et al. Liposomal delivery of antigen to human dendritic cells[J]. Vaccine, 2003, 21(9-10): 883-890.
    [17] AWASTHI V D, GARCIA D, KLIPPER R, et al. Neutral and anionic liposome-encapsulated hemoglobin: effect of postinserted poly(ethylene glycol)-distearoylphosphatidylethanolamine on distribution and circulation kinetics[J]. J Pharmacol Exp Ther, 2004, 309(1): 241-248.
    [18] ANDERSON P M, HANSON D C, HASZ D E, et al. Cytokines in liposomes: preliminary studies with IL-1, IL-2, IL-6, GM-CSF and interferon-gamma[J]. Cytokine, 1994, 6(1): 92-101.
    [19] KEDAR E, PALGI O, GOLOD G, et al. Delivery of cytokines by liposomes. III. Liposome-encapsulated GM-CSF and TNF-alpha show improved pharmacokinetics and biological activity and reduced toxicity in mice[J]. J Immunother, 1997, 20(3): 180-193.
    [20] BABAI I, SAMIRA S, BARENHOLZ Y, et al. A novel influenza subunit vaccine composed of liposome-encapsulated haemagglutinin/neuraminidase and IL-2 or GM-CSF. I. Vaccine characterization and efficacy studies in mice[J]. Vaccine, 1999, 17(9-10): 1223-1238.
    [21] BABAI I, BARENHOLZ Y, ZAKAY-RONES Z, et al. A novel liposomal influenza vaccine (INFLUSOME-VAC) containing hemagglutinin-neuraminidase and IL-2 or GM-CSF induces protective anti-neuraminidase antibodies cross-reacting with a wide spectrum of influenza A viral strains[J]. Vaccine, 2001, 20(3-4): 505-515.
    [22] GOLUMBEK P T, AZHARI R, JAFFEE E M, et al. Controlled release, biodegradable cytokine depots: a new approach in cancer vaccine design[J]. Cancer Res, 1993, 53(24): 5841-5844.
    [23] EGILMEZ N K, JONG Y S, SABEL M S, et al. In situ tumor vaccination with interleukin-12-encapsulated biodegradable microspheres: induction of tumor regression and potent antitumor immunity[J]. Cancer Res, 2000, 60(14): 3832-3837.
    [24] HILL H C, CONWAY T F, JR., SABEL M S, et al. Cancer immunotherapy with interleukin 12 and granulocyte-macrophage colony-stimulating factor-encapsulated microspheres: coinduction of innate and adaptive antitumor immunity and cure of disseminated disease[J]. Cancer Res, 2002, 62(24): 7254-7263.
    [25] SHARMA A, HARPER C M, HAMMER L, et al. Characterization of cytokine-encapsulated controlled-release microsphere adjuvants[J]. Cancer Biother Radiopharm, 2004, 19(6): 764-769.
    [26] PETTIT D K, BONNERT T P, EISENMAN J, et al. Structure-function studies of interleukin 15 using site-specific mutagenesis, polyethylene glycol conjugation, and homology modeling[J]. J Biol Chem, 1997, 272(4): 2312-2318.
    [27] COLE D J, GATTONI-CELLI S, MCCLAY E F, et al. Characterization of a sustained-release delivery system for combined cytokine/peptide vaccination using a poly-N-acetyl glucosamine-based polymer matrix[J]. Clin Cancer Res, 1997, 3(6): 867-873.
    [28] BROWN C D, KREILGAARD L, NAKAKURA M, et al. Release of PEGylated granulocyte-macrophage colony-stimulating factor from chitosan/glycerol films[J]. J Control Release, 2001, 72(1-3): 35-46.
    [29] NGUYEN C L, BUI J T, DEMCHEVA M, et al. Sustained Release of Granulocyte-Macrophage Colony-Stimulating Factor From a Modular Peptide-Based Cancer Vaccine Alters Vaccine Microenvironment and Enhances the Antigen-Specific T-Cell Response[J]. J Immunother, 2001, 24(5): 420-429.
    [30] SHALABY W S, YEH H, WOO E, et al. Absorbable microparticulate cation exchanger for immunotherapeutic delivery[J]. J Biomed Mater Res B Appl Biomater, 2004, 69(2): 173-182.