He-Ne激光对小麦增强UV-B辐射损伤的修复效应及机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用He-Ne激光(5mW.mm~(-2))辐照方法,对增强UV-B(10.08kJ.m~(-2).d~(-1))辐射下,小麦幼苗在生长、发育、生理、生化等方面的损伤修复效应,从个体、细胞、DNA分子等水平上进行了全面的研究和分析。主要阐明了He-Ne激光促进DNA分子损伤修复的途径、方式和机理。结果表明:
     (1)经增强UV-B辐射后,小麦明显表现出植株矮化、叶片卷曲、颜色加深,并产生“翘根”(胚根向上弯曲)现象。再以He-Ne激光处理后,小麦株高增加,侧根增多,“翘根”减轻,具明显的促进作用。从研究结果看,He-Ne激光辐照增强了UV-B辐射后小麦在萌发初期的淀粉酶活性、蛋白质和RNA的合成,从而促进了小麦的萌发与生长。
     (2)He-Ne激光辐照后,促进了小麦种子的萌发能力。增强UV-B辐射组(B)与激光后处理组(BL)间的差异较显著(P<0.05)。激光对UV-B处理后小麦幼苗发芽势、发芽率的促进作用大于生长势,说明这种促进作用在萌发早期表现的较为明显。
     (3)对染色体及细胞分裂的研究结果表明,增强UV-B辐射能抑制小麦细胞的有丝分裂率,产生落后染色体、染色体桥、游离染色体、核变形等畸变。其中,落后染色体和游离染色体较普遍,分别占总畸变率的32.8%和26.6%。并在UV-B诱导的小麦根尖细胞中,首次发现染色体在有丝分裂的后期到末期,分成3束、4束和6束等异常分裂新类型。本研究将之称为体细胞染色体的“多束分裂”或“分束分裂”。它们大体分布在两极,但两极上染色体“束”数有可能不同。同一“束”上染色体的数量也不完全相等。“束”之间未见有细胞壁的形成,因而,导致“多束体”的产生。
     (4)采用扫描电镜对小麦叶表面结构观察的结果表明,He-Ne激光能使UV-B辐射后小麦叶表面蜡质的分布等级降低。
     (5)通过小麦幼苗丙二醛(MDA)、谷胱甘肽(GSH)、抗坏血酸(AsA)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)和紫外吸收物含量及活性变化,测定了He-Ne激光在清除增强UV-B辐射导致的自由基方面的能力。He-Ne激光辐照可使UV-B辐射后小麦幼苗MDA的含量明显减少;AsA、GSH含量明显增加;SOD、CAT、POD等酶活性增加。说明He-Ne激光可通过酶促与非酶促抗氧化系统,增加小麦幼苗在生理水平对辐射损伤的修复能力。
     (6)采用环丁烷嘧啶二聚体(Cyclobutyl Pyrimidine Dimers,CPDs)的特异性DNA内切酶——T4-Endo V(T4-核酸内切酶V)及琼脂糖凝胶电泳法,测定了He-Ne激光对由增强UV-B辐射引起的小麦细胞DNA中CPD切除的影响。与对照相比,5mW.mm~(-2)的He-Ne激光辐照,能降低由10.08kJ.m~(-2).d~(-1)增强UV-B辐射小麦细胞DNA中形成的ESS(DNA中酶敏感位点——endonuclease sensitivesites)含量,亦即CPDs的数量。T4-Endo V酶切造成SSB数量的减少,即DNA中的酶敏感位点(ESS)含量的降低,说明He-Ne激光辐照促进了小麦细胞对
    
    CPDS的清除。
     (7)用’H-TdR同位素标记V。麦DNA,通过种胚非按期DNA合成的变化,
    研究了He-Ne激光辐照对小麦DNA修复合成的影响。结果表明,增强UV习辐
    射导致DNA受损,从而诱发了细胞中非按期DNA的合成,并能通过DNA的修
    复合成,部分修复损伤的DNA。单纯He-Ne激光辐照处理可使小麦种子的S期
    提前,但S期的峰值与对照差别不大。He-Ne激光与UV-B复合处理可使非按期
    DNA合成期提前,修复合成速率提高。
     (8)利用俱化乙锭(EB)只能插人双链 DNA中,并在激发光下显色的荧
    光光谱分析法,测定了He-Ne激光和增强UV-B不同处理后细胞中双链DNA
     (dsDNA)的含量,从而说明单链断裂的水平。在暗修复 sh时,各组 dsDNA
    含量差别达到最大。其中SL组降至最低,血**A仅为0.39 p*m卜;其次为B
    组①.423 fig·ml-l)和 BR组①.4:j pg·ml”\ R、L组与对照差别不大,其 dsDNA
    含量变化也很小。BL组dsDNA含量的降低说明,He-Ne激光辐照明显促进了
    UV-B辐射后细胞中由于对DNA损伤链修复造成大量单链DNA 的形成
     (SSDNA),而使得细胞中dSDNA的含量急剧减少。
     (9)由于He-Ne激光辐照能够促进损伤细胞中CPD的减少,DNA修复合
    成及单链断裂数的增加,同时,与对照相比红光处理没有明显效应,因此认为:
    5mW·m”‘的HC-NC激光辐照能促进损伤DNA的修复,这种修复是一种暗修复,
    主要通过碱基和核苦酸切除修复来进行。
     (l)通过与激光波长、功率相同的红光辐照对比研究,红光没有产生明
    显的效应。因此,可排除激光的光效应,且激光的热效应和压力效应也很小。那
    么,促进损伤修复的因子就是激光的磁场效应。对激光促进修复的机制分析认为:
    He.Ne激光通过其磁场效应作用于相应的多酶体系,从而表现出不同水平的损伤
    修复效应。
     激光及UV-B辐射对生物体的效应已在多种植物中得到了广泛研究。但激
    光对增强UV-B辐射导致小麦在不同水平损伤的修复效应还未曾见有报道。本课
    题的研究为激光在生物体上的应用开辟了一个全新的领域,填补了国内在激光和
    UV-B辐射研究领域中的空白,居世界领先水平。它的研究无论在理论上,还是
    在实践中都具有重要的意义?
The effects and mechanism of He-Ne laser (5 mW-mm"2) irradiation on the variation of morphs and structure, physiological metabolic activities and the DMA repair capacity in damaged wheat seedlings induced by enhanced ultraviolet-B (10.08 kJ-m"2-d~1) radiation were studied. The pathway and mechanism of the DNA repair stimulated by He-Ne laser irradiation were indicated chiefly.
    1) Under the enhanced ultraviolet-B radiation, the wheat seedlings shown the decreased height and leaf area, accumulation of screening pigments and 'root-bending'. But following He-Ne laser irradiation, the height and number of the branch root were increased, and the 'root-bending' assay was mitigated. The activity of amylase and synthesis capacity of RNA and soluble protein were enhanced by He-Ne laser irradiation. This was the reason of increasing the wheat seedlings germination.
    2) After UV-B radiation the germination ability of the wheat was enhanced by He-Ne laser irradiation. Using t-test at P^O.05, there was significant difference between group of UV-B treated only and compound treatment group (with UV-B and He-Ne laser). The stimulation of the He-Ne laser irradiation effect on the vigor was clearer than the growth potential of germination and germination capacity. It indicated that the stimulation effect was expressed in early phase clearly.
    3) The results of studying on the chromosomal mutation and mitosis of the wheat irradiated by UV-B indicated that the rate of mitosis was inhabited by UV-B radiation (10.08 kJ ?m"2 ?d"1) in wheat cells, and some types of chromosome aberration were induced. Among of them, the fragments and lagging chromosomes were more than the correct, the rate of the fragments was 26.6%, lagging chromosomes was 32.8%. Under the condition of the enhanced ultraviolet-B radiation, the phenomenon of abnormal mitosis was first discovered, such as the three-bundle> four-bundle and six-bundle division of the chromosome when the cell is in anaphase. We think that the abnormal mitosis should be called 'multi-bundle division' or 'partition-bundle division' of the somatic chromosome. These 'bundles' of the chromosomes were distributed two polar, but the number of the 'bundle' is unequal possible between the two polar. In each 'bundle', the number of the chromosome is different from another 'bundle'. There are not the cell walls be formed between in two bundles, so it will be form the 'poly-bundle bodies'.
    4) The results of epicuticular observed with the scanning electron
    
    
    
    microscope (SEM, KYKY-2800, China) shows that the wax distribution could be changed by He-Ne laser irradiation.
    5) Changes in the concentration of malondialdehyde (MDA), glutathione (GSH), ascorbic acid (AsA), and activity of superoxide dismatase (SOD), catalase (CAT), peroxidase (POD), and UV-B absorbing compounds (absorbance at 300 nm) were measured to test the capacity of He-Ne laser irradiation on clearing the free radical induced UV-B radiation.
    The damage of wheat seedlings induced by enhanced UV-B radiation in physiology can be repaired partly by He-Ne laser irradiation with enzymatic and non-enzymatic system including of decreasing the MDA concentration, increasing the contents of AsA, GSH, UV-B absorbing compound, and the activities of SOD, CAT, POD.
    6) Using agarose gel electrophoresis and T4-endodeoxyribonuclease-V, which is a kind of restriction endonuclease of cyclobutyl pyrimidine dimer (CPD), the impacts of He-Ne laser (5 mW-mm"2) irradiation on DNA excision repair capacity in damaged wheat cells induced by enhanced ultraviolet-B (10.08 kJ-m~2-d~1) radiation were studied. The results indicated that the content of endonuclease sensitive sites (ESS) was reduced by He-Ne laser irradiation, which formed in cells irradiated by enhanced ultraviolet-B. With the irradiation of He-Ne laser, the excision of CPDs and the reduction of single strand breaks (SSB) contents which were the endonuclease sensitive sites (ESS) digested by T4-endodeoxyribonuclease-V had been stimulated in the wheat cells.
    7) By
引文
1.Jan C,唐孝炎,Manfred Tevini,臭氧耗损的环境效应,人类环境杂志(AMBIO),1995,24(3):138~142
    2.郑向东,陆龙骅,周秀骥,近六年中山站春季臭氧低值的观察结果分析,极地研究,1999,11(4):265~274
    3.周秀骥,罗超,李维亮,史久恩,中国地区臭氧总量变化与青藏高原低值中心,科学通报,1995,40(15):1396~1398
    4.史久恩,周秀骥,任福民,中国地区大气臭氧变化的若干特征,见:周秀骥主编,中国地区大气臭氧变化及其对气候环境的影响(一),北京:气象出版社,1996,pp:239~245
    5. Caldwell M M, Flint S D,Implications of increased solar UV-B for terrestrial vegetation,The Role of the Stratosphere in Global Change(M.L.Chanin,ed.),Springer-Verlag,Heidelberg, 1993, pp:495~516.
    6. Ekelund N G A,Effects of UV-B radiation on growth and motility of four phytolankton species,Physiol Plant,1990,78:590
    7. Teramura A H,Murali N S,natrapecific differences in growth and yield of soybean exposed to UV-B radiation under greanhouse and field conditions,Environ and Experi Bot,1986, 26(1):89
    8. Teramura A H,Sulliran J H,Lydon J,Effects of UV-B radiation on soybean yield and sead quality:a 6-year field study,Physiol Plant,1990, 80:5
    9. Barnes P W, Flint S D, Caldwell M M,Morphological responses of crop and weed species of different growth forms to UV-B radiation,Amer J Bot,1990,77(10):1354~1360
    10. Murali N S, Teramura A H, Intraspecific differences in cucumis sativus sensityvity to UV-B radiation,Physiol Plant, 1986, 68:673
    11.郑有飞,杨志敏,颜景义,万长建,作物对太阳紫外线辐射增加的生物效应及其评估,应用生态学报,1996,7(1):107~109
    12. Biggs R H, Kossuth S V, Repport of UV-B biological and climate effects,University of Floridia Press,1978, 77
    13. Biggs R H, Sisson W B,Caldwell M M,Respone of higher terrestial plant to elevated UV-B irradiance.In Nachtwey D C,caldwell M M,Biggs R H(eds).Imppacts of climatic chang on the Biosphere.Part 1.Ultraviolet Radiation Effects,Monogr 5.Climatic Impact Assessment Program. Us Dept.Transportation Rep.No.DOT-TST-75-55. Nat Tech Info Serve.Springfield,Va.34
    14. Klein R M, Plants and near-ultraviolet radiation, Bot Rev, 1978, 44:1
    
    
    15. Feng H Y, An L Z,Tan L L,Hou Z D, Wang X L, Effect of enhanced UV-B adiation on pollen germination and tube growth of 19 taxa in vitro,Environmental and Experimental Botang,2000,43:45~53
    16. Murphy T M,Membranes as targets of ultraviolet radiation,Physiol Plant, 1983,58:381~383
    17. Teramura A H, Effecta of UV-B radiation on the growth and yield of crop plants,Physiol Plant,1983, 58:415~427
    18. Teramura A H,Sullivan J H,Effects of UV-B radiation on photosynthesis and growth of terrestrial plants,Photosynth Res,1994,39:463~473
    19. Kramer G F et al.,Influence of UV-B radiation on Polyamines,lipids peroxidation and membrane lipids in cucumber, Phytochemistry, 1991, 30:2101~2108
    20.唐旭东,安黎哲,王勋陵,增强UV-B辐射对蚕豆叶片微粒体膜的一些性质的影响,植物生理学报,1998,24(2):171~176
    21. Ros J, Zur Wirkung von UV-Strahlung auf das Streckungswachstum von Sonnen-blumenkeimlingen(Helianthus annuus L.), Karlsruher Beitr. Entwichl.Okophysiol.Pflanz.,(Univ. Karlsruhe), 1990,8:1~157
    22. Joshi P N, Biswal B, Biswal N C, Effect of UV-A on aging of wheat leaves and role ofPhyeochrome,Envir.Experi.Bot.,1991, 31(3):267~276
    23.晏斌,戴秋杰,紫外线辐射对水稻叶组织中活性氧代谢及膜系统的影响,植物生理学报,1996,22(4):375~378
    24.王书玉,王勋陵,UV-B辐射增强对紫露草花粉母细胞的微核效应,西北植物学报,1997,17(5):12~17
    25. Van T K, Garrard L A, West S H, Effects of UV-B radiation on net photosynthesis of some crop plants,Crop Science,1976,16:715
    26. Nedunchezhan N, Kalandaivelu G, Effect of UV-B enhanced radiation on ribulose 1,5-bisphosphate-carboxy-lase in Leaves of Vigra sinensis,Photosynthetica,1991,25(3):431~435
    27. Nedunchezhan N.and Kalandaivelu G.,Increased stability of thylakoid components in Vigra sinensis grown under ultraviolet-B enhanced radiation,Photosynthetica,1993,29(3):369~375
    28. Noorudeen,A M and Kaiandaivelu G. On the possible site of inhibition of Photosynthetic electron trasnsport by ultraviolet-B radiation,Physiol.Plant.,1982,55:161~166
    29.侯扶江,偾贵英,韩发等,田间增加紫外线(UV)辐射对大豆幼苗生长和光合作用的影响,植物生态学报,1998,22(3),256~261
    30. Mirecki R M,Teramura A H, Effects of ultraviolet-B irradiance on soybean,
    
    Plant Physiol, 1984,74:475
    31. Teramura A H, Ziska L H, Ester Sytein A, Changes in growth and photosynthetic capacity rice and increased UV-B radiation, Physiol Plant, 1991, 83:373
    32. OKada M, Kitajima M, Butler W L. Inhibition of photosytem 1 and photosystem 2 in chloroplasts by UV radiation,Plant Cell Physiol, 1976, 17:35
    33. Vu C V, Allen L H, Garrard L A, Effects of supplemental UV-B radiation on primary Photosynthetic carboxylating engymes and soluble protiens in leaves of C3 and C4 crop plants, Physiol Plant, 1982, 55:11
    34. Teramura A H, Effects of ultraviolet-B radiation on the growth and yield of crop plant, Physiol Plant, 1983, 58:417
    35. Teramura A H et al., Interaction of elevated UV-B radiation and CO2 on productivity and photosynthetic Characterstics in wheat,rice and soybean, Plant Physiol, 1996, 94:470
    36. Sullivan J H, Teramura A H, The effects of UV-B radiation on loblolly pine, Physiol Plant, 1989, 77:202
    37. Beyschlag W, Barnes P W, Flint S D and Caldwell M M, Enhanced UV-B irradiation has no effect on photosynthetic Characteristics of wheat (Triticum aestivum L.) and wild oat (Avena fautua L.) under greenhouse and field conditions. Photosynthetica, 1988,22(4) :516-525
    38. Strid A, Chow W S and Anderson J M, UV-B damage and protection at the molecular level in plant, Photosynthesis Res, 1994, 39:475-489
    39. Bjorn L O, Effects of Ozone depletion and increased UV-B on terrestrial ecosystems, Intern. J. Environmental Studies, 1996, 51:217-243
    40. Brandle J R, Campbell W F, Sisson W B et al., Net photosynthesis, electron transport capacity,and ultra structure of pisum sativuml expose to ultraviolet-B radastion, Plant Physiol, 1977, 80:165
    41. Sisson W B, Caldwell M M, Photosynthesis, dark respiration, and growth of Rumex patiential Exposed to ultraviclet irradiance (288 to 315 namomenters) Simulating a reduced atmospheric Ozon column, Plant Physiol, 1976, 38:563
    42. Teramura A H, Biggs R H, Kossuth S, Effects of UV-B radiation on soybean 2. Plant Physiol, 1980,65:483
    43. EL-Mansey H I, Salisbury F B, Biohemical nesponse of xanthium leaves to ultraviolet radition, Radia Bot, 1971, 11:326
    44. Teramura A H, Tevini M, Iwanyik W, Effects of UV-B radiation on plants during mild water stress 2. Effects on diurnal stomatal resistance, Physiol Plant, 1983, 57:175
    
    
    45. Tevini M, Teramura A H, UV-B effects on terrestrial plants, Photochemistry and Photobiology,1989, 50:479
    46. Murali N S,Teramura A H, Effects of supplemental UV-B radiation on the growth and physiology of field grown soybean,Environ and Experi Bot,1986,26(3):233~239
    47. Ambler J E,Kriyek D T, Semeniuk R,Influence of UV-B radition early seading growth and translocation of 65 zn from cotyledons in cotton,Physiol Plant,1975,34:177
    48. Doughty C J, Hope A B, Effects of ultraviolet radiation on the plasma membranes of chara corllina,Aust J Plant Physiol,1976,3:677
    49. Wright L A,Murphy T M,Ultraviolet radiation-stimulated efflur of 86-rubidium from cultured tobacco cell,Plant Physiol,1978,61:434~436(与18重复)
    50. Yue M, Li Y, Wang X L, Effects of enhanced ultraviolet-B radiation on plant nutrients and decomposition of spring wheat under field condition,Environmental and Experimental Botang, 1998, 40:187~196
    51. Zill L P,Tolbert N E,The effect of ionizing and ultraviolet radiation on photosynthesis,Arch Biochem Biophys,1958, 76:196
    52. He J, Huang L K, Chou W S, Whitecross M I,Anderson J M, Response of rice and pea plants to harsening with low dose of ultraviolet-B radiation,Aust J Plant Physiol, 1994, 21:563~574
    53. Lois R, Accumulation of UV-absorbing flavonoids induced by UV-B radiation in Arabidopsis thaliana L.I. Mechanisms of UV-resistance in Arabidopsis,Planta,1994,194:498~503
    54. Bowler C, Van Montagn C, Inze D, Superoxide dismutase and stress tolerance,Annu Rev Plant Physiol Mol Biol,1992,43:83~116
    55. Zhang Fu-Suo, Biological Free Radical and Stress Damage to Plants. In:Zhang Fu-Suo ed.Environmental Stress and Plant Nutrition.Beijing:Beijing Agricultural University Press, 1993, 71~100
    56.黄少白,刘晓忠,戴秋杰,王志霞,紫外光B辐射对菠菜叶片脂质过氧化作用的影响,植物学报,1998,40(6):542~547
    57.陈拓,王勋陵,UV-B辐射对小麦叶片H_2O_2代谢的影响,西北植物学报,1999,19(2):284~289
    58.陈拓,任红旭,王勋陵,UV-B辐射对小麦抗氧化系统的影响,环境科学学报,1999,19(4):451~455
    59.陈拓,王勋陵,增强UV-B辐射对小麦叶CAT,POX和SOD活性的影响,武汉植物学研究,1999,17(2):101~104
    
    
    60.杨景宏,陈拓,王勋陵,增强UV-B辐射对小麦叶片内源ABA和游离脯氨酸的影响,生态学报,2000,20(1):39~42
    61.向洋,激光生物学,长沙,湖南科学技术出版社,1995,73~226
    62.许梅芬,激光对小麦的生物学效应的研究,应用激光,1995,15(3):131~134
    63. Paleg L G, Aspinall D, Field control of plant growth and development through the laser activation of phytochrome,Nature, 1970, 5275:970~973
    64.李玉滨等,He-Ne激光处理番茄种子最适剂量的研究,中国激光,1990,17(3):189~192
    65.彭绍民,He-Ne激光辐照对大豆生物学效应的研究,应用激光,1985,5(4):165~166
    66.胡能书,王保仁等,激光辐照水稻的生理生化基础研究(Ⅰ),应用激光,1981,1(3):22~24
    67.胡能书,向洋等,激光辐照水稻的生理生化基础研究(Ⅱ),应用激光,1982,2(5):37~40,49
    68. Klebanov G, Kapitanov A B,Tesslkin Y A, The antioxidant properties of lycopene,Biologicheskie Membrany Moscow,1998, 15(2):22~25
    69. Cai S W, Zhao X S, Lu F T, Jiang J Q,The influence of He-Ne laser irradiation on the active oxygen metabolism of corn seedling,Chinese J of Laser, 1994, 9:767~769 (with English abstract)
    70.武秀荣等,He-Ne激光对甘兰种子萌发的生物效应,激光生物学,1994,3(4)
    71.Masaharu N,Cytogenetic effects of argon laser irradiation On chinese hamster cells,radiat.Res.1983,93(3):598~608
    72.严国忠,激光对大豆生物效应的研究,中国激光,1984,11(11):693~697
    73.朱九明,激光辐射在细胞学遗传学领域的应用,激光杂志,1988,9(1):8~12
    74.许梅芬,激光对小麦的诱变效果及其在育种上的应用,浙江农业大学学报,1991,17(1):55~59
    75. Olson L E W, Schimmerling and Tobias C,Laser action spectrum of reduced excitability in nerve cells, Brain Res, 1981, 204(2):436~440
    76.曹恩华,激光对DNA的作用,激光生物学,1993,2:290~295
    77.蔡素雯,苑春慧,崔小慧,王永喻,He-Ne激光对玉米幼苗POD和CAT酶活性的影响应用激光,1993,13(4):181~183
    78.胡能书,吴秀山,激光油菜的生物学特性及其同工酶分析,应用激光,1985,5(3):119~121
    79.胡能书,王保仁,吴秀山,激光辐照水稻的生理生化基础研究(Ⅰ),应用激光,1981,1(3):22~24
    
    
    80.彭绍民,激光辐照水稻育种的研究,应用激光,1984,4(4):179~181
    81.齐智,He-Ne激光处理玉米幼苗可溶性蛋白合成的影响(硕士学位论文),1998,6
    82.欧琳,陈荣,陈艳娇等,不同波长激光辐照花生种子的生物学效应,激光生物学报,1998,7(3):198~202
    83.冯文新,张素梅,He-Ne激光对菘蓝幼苗SOD、CAT活性的影响,山西农业大学学报,1997,17(1):21~23
    84. K.C.Smith,Programme of The First Meeting of the International Laser Therapy Association,1990(Oct),130~141
    85.梁宏,陆仲康,张雪琴等,氮分子激光对雄性小家鼠生殖细胞染色体畸变率的影响,遗传,1980,2(2):27~28
    86. Johnson-Thompson M,Halpern J, B and Jackson W M et al.,Vacuum UV laser induced scis-sion of simian virus 40 DNA,Photochem,Photobiol,1984,39(1):17~24
    87.郭建旺,沈允钢,高等植物光合机构避免强光破坏的保护机制,植物生理学通讯,1996,32(1):1~8
    88.许大全,张玉忠等,植物光合作用的光抑制,植物生理学通讯,1992,28(4):237~243
    89. Krause G H, Cornic G, In: Photoinhibition, Kyle D J et al.(eds), Elsevier Amsterdam,New York,Oxford,1987,pp:169~175
    90. Anderson J M,Osmond C B, In: Photoinhibition, Kyle D J et al.(eds), Elsevier Amsterdam,New York,Oxford,1987,pp: 1~5
    91. Oquist G,In: Light in Biology and Medicine(Vol 1), Dougls R H et al(eds), Plenum Press,New York,1988, pp:433~442
    92. Kyle D J,Ohad I.In Staehelin L A,Arntzen CJ (eds), Encyclopedia of Plant Physiol (Ns Vol 19).Spring Verlag,Berlin Heidelberg,New York,Tokyo,1986,p.468
    93. Ball R,Wild A,History of photoinhibition research. J Photochem Photobid B:Bid,1993, 20:79
    94. DEmming-Adams B,Adams W W, Ⅲ.Photoprotection and other responses of plant to high light stress, Annu Rev Plant Physiol Plant Mol Bid,1992,43:599
    95. Krause G H,Photoinhibition of photosynthesis.An evolution of damaging and protective mecha-nisms,Physiol Plant,1988,74:566
    96. Long S P, Humphries S,Folkowski P G,PHotoinhibition of photosynthesis in nature,Annu Rev Plant Physiol Plant Mol Biol, 1994, 45:633
    97. Kyle D J,In Kyle D J et al(eds), Photoinbition. Elsevier Amsterdam, New York,
    
    Oxford, 1987, p, 197
    98. Anderson J M, Osmond C B, In Kyle DJ et al(eds), Photoinhibition. Elsevier Amsterdam, New York, Oxford, 1987, p.1
    99. Aro E M, Virgin I, Andersson B, Photoinhibition of photosystem II, Inactivation, protein damage and turnover, Biochim Biophys Acta, 1993,1143:113-115
    100. Barber J, Andersson B, Too much of a good thing: Light can be bad for photosynthesis, Trend Biochim Sci, 1992, 17:61-66
    101. Noctor G, Rees D, Young A et al., The relationship between zeaxanthin, energy-dependent quenching of chlorophyll fluorescence, and trans-thylakoid pH gradient in isolated chloroplasts, Biochim Biophys Acta, 1991, 1057:320-324
    102. Rintamaki E, Salo R, Aro E M, Rapid turnover of the D1 reaction-center protein of photosystem II as a protection mechanism against photoinhibition in a moss, Ceratodon purpureus Brid,Planta, 1994, 193:520-526
    103. Timmerhaus M, Weis E, Regulation of photosynthesis: a to β-conversion of photosystem II and thylakoid protein phosphorylation. In: Baltscheffsky M(ed). Current Research in Photosynthesis, Dordrecht: Kluwer, 1990, 2:771-786
    104. Wu J, Neimanis S, Heber U, Photorespiration is more effective than the Mehler reaction in protecting the photosynthetic apparatus against photoinhibition, Bot Acta, 1991, 10:283-287
    105. Giardi M T et al., In Baltscheffsky M(ed),Current Research in Photosynthesis(Vol II). Kluwer Academic Publishers, Dordrecht Boston ,London, 1990, p.419-436
    106. Virgin I et al., In Barber J, Malkin R(eds), Techniqus and New Developments Research. Plenum Press, New York, London, 1989, p.535
    107. Osmond C B, Photorespiration and photoinhibition,some implications for the energetics of photosynthesis, Biochim Biophys Acta, 1981, 639:77
    108. Powles S B, Photoinhibition of photosynthesis induced by visible light, Annu Rev Plant Physiol, 1984,35:15
    109. Quist G, Chow W S, Andersson J M, Photoinhibition of photosynthesis represent a mechanism for the Long-term regulation of photosystem II, Planta, 1992, 186:450
    110. Robinson S A, Osmond C B, Internal Gradients of chlorophyll and carotenoid pigments in relation to photoprotection in thick leaves of plants with carssulacean acid metabolism, Aust J Plant Physiol, 1994, 21:497-503
    111. Oquist G, In Douglas R H et al(eds), light in Biology and Medicine (Vol 1) . Plenum press, New York, London, 1988, p.433
    
    
    112. Krause G H, Weis E, Chlorophyll fluorescence and photosynthesis: the basics, Annu Rev Plant Physiol Plant Mol Biol, 1991, 42:313
    113. Horton P, Ruban A ,Walters R G, Regulation of light harvesting in green plant:indication by nonphotochemnical quenching of chlorophyll fluorescence, Plant Physiol, 1994, 106:415
    114. Ruban A V, Young A J, Pascal A A et al., The effect of illumination on the xanthophyll compo-sition of the photosystem II light harvesting complexes of spinach thylakoid membrane, Plant Physiol, 1994, 104:227
    115. 许大全,徐宝基,李德耀,C3植物光合效率的日变化,植物生理学报,1990, 16: 1
    116. Bjorkman O, Bichemical processes in leaves under stress. Carnegie Inst Washington Yearb, 1993, 92:61
    117. Bjorkman O, Demmig-adams B.Regulation of photosynthetic light energy capture, conversion and dissipation in leaves of high plant.In Schulze E-D,Caldwell MM(eds). Ecophysiology of Photosynthesis. Berlin: Springer-Verlag, 1993, 17
    118. Allen J F, Protein phosphorylation in regulation of photosynthesis.Biochim Biophyis Acta, 1992, 1098:275
    119. Krieger A, Moya I, Weise E, Energy-dependent quenching chlorophyll a fluorescence:effect of pH on stationary fluorescence and picosecond relaxiation kinetics in thylakoid membranes and photosystem II preparations .Biochim Biophys Acta, 1992, 1102:167
    120. Owens T G, Shreve A P, Albrecht A C, Dynamics and mechanism of singlet energy transfer be-tween carotenoids and chlorophylls:light harvesting and nonphotochemical fluorescence qoenching .In Murata N (ed).Research in Photosynthesis.Dordrecht: Kluwer Academic, 1992, Vol 5,179
    121. Guenther J and Melis A, The physiological significance of Photosystem II heterogeneity in chloroplasts.Photosymth Res ,1990, 23:105
    122. Tezaghi W B, Cashmore A R, Light-regulated transcription.Annu Rev Plant Physiol, 1995,46:445-474
    123. 孙大业,植物细胞的光受体与光信号转导,北京,科学出版社,1998
    124. Greenberg B M, The effects of ultraviolet-B radiation on higher plants, in Plants for Environmental Studies(Wang W, Gorsuch J, Hughes J S,eds) CRC Press, 1997,pp:1-35
    125. Cline M G and Salisbury F B, Effects of ultraviolet alone and simulated solar ultraviolet radia-tion on the leaves of higher plant, Nature, 1996, 211:484-486
    126. Gausman H W et al., Ultraviolet radiation reflectance by plant leaf epidermises,
    
    Agron. J., 1975, 67:719~724
    127. Van T K et al., Effects of 298-nm radiation on photosynthetic reactions of leaf discs and chloro-plast preparations of crop species, Environ. Exp.Bot.,1977,17:107~116
    128. Caldwell M M, Plant response to solar ultraviolet radiation, A.L. Lange et al.(eds).Physiological Plant Ecology,Encyclopedia of Plant Physiology (New Serries),Vol.12A,Springer Verlay,Berlin, 1981, 169~197
    129.王小箐,潘瑞炽,UV-B对高等植物生长和产量及某些生理代谢过程的影响,植物生理学通讯,1995,31(5):385~389
    130. Robberecht R and M M Caldwell,Leaf epidermal transmittance of ultraviolet radiation and its implications for plant sensitivity to ultraviolet-radiation induced injury,Oecologia,1987, 32:277~287
    131.黄少白,戴秋杰,刘晓忠等,水稻对UV-B辐射增强的生化适应机制,作物学报,1998,24(4):464~470
    132. Arcnana A et al.,Photoxicity of citrus jiambhiri to lugi under enchanced UV-B radiation:Role of furanocoumarins,J. Chem.Ecol.,1993, 19(12):2813~2830
    133. Jordan B R et al.,Change in mRNA leaves and polyprtide subunits of ribulose-1,5-bisphosphate carboxylase in response to supplementary ultraviolet-B radiation, Plant Cell and Environment,1992,15(1):91~98
    134. Jordan B R et al.,The effect of ultraviolet-B radiation on gene expression and pigment composition in etiolateed and green pea leaf tissue:UV-B induced changes are gene-specific and dependent upon the developmental stage,Plant Cell and Environment,1994,17(1):45~54
    135. Aro Eva-Mari,Photoinhibition and D1 protein degrdation in pess acclimated to different growth irradiance,Plant Physiol., 1993, 103:815~842
    136. Krizek D T et al.,Growth analysis of UV-B irradiated cucumber seed as influenced by photo-synthetic photon flux source,Physiol.Plant.,1993,90(3):593~599
    137. Nedunchezhian N and G Kwlandaivelu,Effect of UV-B radiation on ribulose-1,5-carboxylase in leaves of vigra sinensis L,Photosynthetica.1991,25(3):431~435
    138. Willekens H et al.,Ozone,Sulfur Dioxide and ultraviolet-B have similar effects on mRNA accumulation of antioxidant gences in Nicolians plumbaginifolia L,Plant Physiol,1994, 106:1007~1014
    139. Beggs C J, Schneider-Ziebert U, Wellman E, In: Worrest R C and M M Caldwell(eds.), Stratospheric Ozone Reduction,Solar Ultraviolet Radiation and Plant Life.
    
    Springer-Verlag, New York, NY. 1986, 8, 235-250
    140. Taylor R M, Tobin A K, Bray C M, DNA damage and repair in plant, In: Plant and UV-B, responses to environmental change, Peter L(eds), Cambridge University Press, United Kingdom, 1997, pp:53-76
    141. Taylor R M, Nikaido R M, Jordan B R, et al., Ultraviolt-B-induced DNA lesions and their removal in wheat (Triticum aestivum L.) leaves, Plant Cell Environ, 1996,19(2) :171-181
    142 Pang Q, Hays J B, UV-B inducible and temperature sensitive photoreactivation of cyclobutane pyrimidine dimmers in Arabidopsis thaliana, plant Physiology, 1991, 95:536-543
    143 Sancar A, Structure and function of DNA photolyase, Biochemistry, 1994, 33:2-9
    144 Ahmad M, Cashmore A R, HY4 gene of A thaliana encodes a protein with characteristics of a blue-light photoreceptor, Nature, 1993, 366:162-166
    145 Batschauer A, A plant gene for photolyase; an enzyme catalyzing the repair of UV-B light induced DNA damage, Plant Journal, 1993,4:705-709
    146. Malhotra K, Kim S T, Batschauer A et al., Putative blue light photoreceptors from Arabidopsis thaliana and Sinapis alba with a high degree of sequence homology to DNA photolyase cofactors but lack DNA repair activity, Biochemistry, 1995, 34:6892-6899
    147. Soyfer V N, Cieminis K K, Dokl. USSR Acad.Sci, 1974, 215:1261
    148. Taylor R M, Tobin A K, Bray C M, Nucleotide sequence of an Arabidopsis cDNA At-phrII encoding a protein with high homology to the class II CPD photolyases present in higher eukaryotes, Plant Physiology, 1996b, 112,862
    149. Jackson J F, DNA repair in pollen, Mutation Research, 1987,181:17-29
    150. Landry D W, Boyle F A, Keys A J et al., An Arabidopsis photolyase mutant is hypersensitive to UV-B radiation, Proc Natl Acad Sci USA, 1997, 94:328-332
    151. Pang Q, Hays J B, Rajagopal I, Schaefer T S, Selection of Arabidopsis thaliana cDNA that partially correct phenotypes of E.coli DNA damage sensitive mutants and analysis of two plant cDNAs that appear to express UV specific dark repair activities, Plant Mol Biol, 1993,22:411-426
    152. Friedberg E C, DNA Repair, New York, W.H. Freeman & Co., 1985, 175-184
    153. Lehmann A R, Nucleotide excision repair and the link with transcription, Trends in Biochemical Science, 1995, 20:402-405
    154. Lindahl T, New class of enzymes acting on damaged DNA, Nature, 1976, 259:64-66
    
    
    155. Seeberg E, Eide L, Bjoras M, The base excision repair pathway, Trends in Biochemical Science,1995, 20:391~397
    156. Lloyd R S, Linn S, In Nucleases (Lin, S., Lloyd R S & Roberts R J, eds), Cold Spring Harbor Laboratory Press,1993, pp:263~316
    157. Yajima H,Takao M,Yasuhira S et al., A eukaryotic gene encoding an endonuclease that specifically repairs DNA damaged by ultraviolet light,EMBO Journal,1995,14:2393~2399
    158.顾瑞琦,植物DNA的损伤修复,植物分子生物学与生物工程,北京,科学出版社,1991,180~196
    159.解生勇,分子细胞遗传学,中国农业科技出版社,1998,54~72
    160. Sancar A, Sancar G, DNA repair enzymes, Annual Reviews of Biochemistry,1988, 57:29~76
    161.周平坤,DNA切除修复与转录偶联,生物化学与生物物理进展,1996,23(2):141~145
    162. Bowler C, Chua N H, Emerging themes of plant signal transduction,Plant Cell,1994,6:1529~1541
    163. Short T W,Briggs W R,The transduction of blue light signals in higher plants,Annu Rev Plant Physiol Plant Mol. Biol.,1994,45:143~171
    164. Simon A B, Phytochromes signal-transduction: characterization of pathways and isolation of mutants,Phil Trans R Soc Lond B,1995,350:67~74
    165. Quail P H, Photosensory perception and signal transduction in plants,Curr Opin Genet Dev,1994, 4:652~661
    166. Yan W,Jennifer K,Eric M et al.,Abscisic acid signaling through cyclic ADP-ribose in plants, Science,1997, 278(19): 2126~2130
    167.韩榕,王勋陵,岳明,He-Ne激光对小麦RNA及可溶性蛋白合成的影响,山西师范大学学报,2000,15(3):56~59
    168.韩榕,王勋陵,岳明,齐智,He-Ne激光对小麦幼苗增强UV-B辐射损伤修复的影响,光子学报,2001,30(10):1182~1187
    169.李正理,植物组织制片学,北京,北京大学出版社,1996,98~107
    170.戴大临,生物医学电镜样品制备方法,天津,天津大学出版社,1993,220~246
    171.洪涛,生物医学超微结构与电子显微镜技术,北京,科学出版社,1980,119~190
    172.高德禄,张和民,苏秀珍,一种制备植物扫描电镜样品的新干燥法——叔丁醇冻结干燥法,植物学报,1989,31(10):770~774
    173. Qi Z, Yue M, Han R, Wang X L, The damage repair role of He-Ne laser in plant exposed to different intensities of ultraviolet-B irradiation,Photochem and Photobiol, 2001, 75(5) (in press)
    
    
    174. Raeri A, Lencioni L,Schenone G et al., Glutathione-ascorbic acid cycle in pumplein plants grown under polluted air in open-up chambers, J Plant Physiol,1993, 142(3): 286~290
    175. Giannoplitis C N, Ries S K., Superoxide dismutase I: purification and quantitative relationship with water-soluble protein in seedlings, Plant Physiol,1977,59(2):315~318.
    176. Ellman G L., Tissue sulfhydryl groups, Arch Biochem Biophys, 1959, 82:70~77
    177. Mishra N P,Mishra R K,Singhal G S.,Changes in the activities of antioxidant enzymes during exposure of intact wheat leves to strong visible light at different temperature in the pesence of protein synthesis inhibitors,Plant Physiol,1993,102:903~910
    178.吴少伯,植物组织中蛋白质及同工酶聚丙烯酰胺凝胶盘状电泳,植物生理学通讯,1979,(1):30
    179.齐智,激光对增强的UV-B辐射蚕豆幼苗损伤的防护及修复作用,西北大学博士论文,2001,5
    180.李合生,孙群,赵世杰等,植物生理生化实验原理和技术,北京,高等教育出版社,2000,164~261
    181. Lowry O H, Rosebrough N T, Farr A L, Randall R J, Protein measurement with the folin phenol reagent,J Biol Chem,1951,193:265~275.
    182.鸥阳光察,植物生理学实验手册,上海植物生理学会主编,上海,上海科学技术出版社,1985,191~192
    183.Clork M S,植物分子生物学——实验手册,北京,高等教育出版社;柏林,施普林格出版社,1998,122~124
    184.F.奥斯伯, R.布伦特,R.E.金斯顿等,精编分子生物学实验指南,北京,科学出版社,1999,30~54
    185. Marmur J A, Procedure for the isolation of desoxyribonucleic acids from microorganisms,J.Mol. Biol., 1961, 3(1): 208~218
    186. Quaite F E,Takayanagi S, Ruffini J, et al., DNA damage levels determine cyclobutyl pyrimidine dimer repair mechanisms in alfalfa seedlings, Plant Cell,1994, 6:1635~1641
    187. Quaite F E, Sutherland J C, Sutherland B M, Isolation of high-molecular-weight plant DNA for DNA damage quantitation: relative effects of solar 297 nm UV-B and 365 nm readiation, Plant Mol Biol, 1994, 24:475~83
    188.韩榕,杨汉民,高清祥等,重离子注入与Υ射线辐照下小麦种胚非按期DNA合成的比较,核农学报,1994,8(3:)135~140
    
    
    189.Sasha M,Richard L,McKenzie et al.,地表紫外辐射的变化,人类环境杂志(AMBIO),1995,24(3):143~152
    190.严涛,孙丽亚,魏康等,T4-Endo-V的分离和纯化,生物化学杂志,1990,8:382~384
    191.刘晓,赵玉芳,凌备备,电子束与γ射线辐照对大麦种胚非按期 DNA合成的诱导,核农学报,2000,14(2):65~71
    192. Britt A B, Chen J J, Wykoff D, Mitchell D, A UV-sensitive mutant of Arabidopsis defective in the repair of pyrimidine-pyrimidinone(6-4)dimmers,Science,1993,261:1571~1574
    193. Marcel A K, Jansen,Victor Gaba,Bruce M Greenberg,Higher plants and UV-B radiation: balancing damage,repair and acclimation,Trends in Plant Science,1998, 3(4):131~135
    194. Li Y, Zu Y Q,Chen J J et al.,Intraspecific differences in physiological response of 20 wheat cultivars to enhanced ultraviolet-B radiation under field conditions,Environ Exp Bot, 2000, 44(2): 95~103
    195.于光华,春小麦辐射育种的研究,遗传学报,1976,3(1):8~17
    196.Delaunay LN,X-ray mutations in wheat,Zts.Angew.Bot.,1930,1:5~14
    197.陈一华,张丽华,耿玉轩等,拟南芥体细胞胚胎发生体系中的体细胞类减数分裂研究,遗传学报,2000,27(1):888~895
    198.幸亨泰,梁万福,生漆对洋葱根尖分生组织细胞有丝分裂影响的研究,遗传学报,1997,24(1):50~53
    199.王书玉,紫外线辐射增强对植物细胞的微核效应
    200. Barnes J D, Cardoso-Vilhena J, Interactions between electromagnetic radiation and the plant cuticle.In:Kerstiens, G.(Ed.), Plant Cuticles and Integrated Functional Approach. BIOS Scientific Publishers,Environmental Plant Biology,Oxford, 1996,157~174
    201. Gordon D C,Percy K,Riding R T,Effects of enhanced UV-B radiation on adaxial leaf surface micromorphology and epicuticular wax biosynthesis of sugar maple,Chemosphere, 1998b, 36:853~858
    202. Kinnunen H,Manninen S,Peura R,et al.,SEM-EDS image analysis as a tool for scoring the epicuticular wax tube distribution on Pinus sylvestris needles—evaluation using a UV-B field experiment,Environmental and Experimental Botany, 1999, 42:173~180
    203.曾韶西,王以柔,低温胁迫对黄瓜子叶抗坏血酸过氧化物酶活性和谷胱甘肽含量的影响,植物生理学报,1990,16(1):37~42
    
    
    204.陈少裕,植物谷胱甘肽的生理作用及其意义,植物生理学通讯,1993,29(3):210~214
    205. Qi Z, Yue M, Wang X L, Laser pretreatment protects cells of broad bean from UV-B radiation damage,J Photochem Photobio B: Biology,2000, 59:33~37
    206.严涛,孙丽亚,崔立斌,魏康,用Endo V和碱电泳法检测哺乳动物细胞嘧啶二聚体的切除修复,细胞生物学杂志,1993,15(4):182~186
    207.严涛等,碱性凝胶电泳定量测定非标记DNA单链断裂,生物化学与生物物理进展,1991,18(6):466~467
    208. Steven E F, Anthony D B, Denise C M, et al., Quantitation of radiation-,chemical-, or enzyme-induce single strand breaks in nonradioactive DNA by alkaline gel electrophoresis:application to pyrimidine dimmers,Analytical Biochemistry,1986,158,119~129
    209.朱应葆,韩云,真核细胞的DNA修复,生命科学,1999,11(增刊):44~47
    210.魏康,DNA辐射损伤的修复,放射生物学,北京,科学出版社,1999,808~823
    211. Friedberg E C, Walker G C, Siede W, DNA Repair and Mutagenesis, Washington D C: ASM Press,1995,191~406
    212. Hidema J,Kumagai T,Sutherland B M,UV radiation-sensitive Norinl rice contains defective cyclobutane pyrimidine dimmer photolyase,Plant Cell,2000,12:1569~1578
    213. Quaite F E, Sutherland B M,Sutherland J C,Action spectrum for DNA damage in alfalfa lowers predicted impact of ozone depletion, Nature,1992,358:576~578
    214. Britt A B,DNA damage and repair in plants, Ann Rev plant physiol Mol Biol,1996,47:75~100
    215.蔡素雯,齐智,马小来等,He-Ne激光对玉米幼苗可溶性蛋白合成的影响,中国激光,2000,27(3):284~288
    216.王勋陵,增强紫外B辐射对植物及生态系统影响研究的发展趋势,西北植物学报,2002,22(3)(印刷中)