UMTS系统的测量和检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今世界,通信在我们的生活中扮演了一个关键的角色,而且还处于持续更新之中,日复一日,新的功能和应用不断涌现出来。在详细的研究其功能和设计之前,测试是一个非常重要的环节,这也是本文的研究内容。
    这篇研究的目的是揭示3G技术测试的原理,我们选择WCDMA作为研究的对象。所有的主要测试点,从地面无线接入,服务管理质量、信号源到双向变换接收器,本文都已涵盖在内。
    遍及全球的GSM网络为人们提供诸如话音,电路域数据业务,分组域数据业务、短信、彩信等移动服务。第三代移动终端同时支持WCDMA和GSM接入技术,在目前的GSM网络基础上,可以更方便的提供无缝覆盖的全球移动服务。也正因为这一点,在任何一种能够同时工作于WCDMA和GSM系统间的机制实现之前,对UTRAN技术进行测试是非常重要的。
    在WCDMA系统中,帧时隙的定义必须要考虑到WCDMA与GSM系统间的切换。GSM兼容的多帧结构,也就是120ms倍数的超帧,允许类似的时隙用于系统间测量。并且,时隙的兼容性是非常重要的,所以工作于WCDMA模式时,一个多模终端在一个修正脉冲序列的帮助下可从与GSM载波保持同步的同步帧脉冲中捕获到切换所需的时隙信息。
    一般而言,终端用户的感受是定义UMTS系统成功与否的关键要素。因此,要考虑两个方面:一个是网络能够提供保证服务的能力,另外就是使服务如何满足终端用户,可用性,易用性,持久性和完整性用来衡量服务的质量。可以用体验质量QoE来表示,它反映了决定终端用户满意度的一个服务性能。
    UMTS是一个数字双工移动通信网络,双工模式就是两个传输方向。频分多址FDD模式,或者时分多址TDD模式都可以满足应用。对一个信号源的挑战在于用一个解决方案覆盖所有的测量应用。因此,我们提出了对信号测量的4个主要测试点,物理性能测试,光谱测试,数据层测试和响应测试。
    研究的最后一部分包含了接收器设计,它用来满足高集成度,低功耗,低价格的工业需求,同时满足所有的WCDMA射频系统性能需求。设计的界限是能够满足预期的工作电压,温度,制造过程变化。本文也描述了来自于WCDMA参数的关键系统性能需求,提供了详细的设计描述和接收器电路的可测试性能。
In today's world telecommunication plays a key role in our modern life. It is on anoutgoing upgrade, day after day new functions emerge and new tools are added to thisinfrastructure before we elaborate more on its functions and its set up I would like to takethe readers to a key element called TESTING.
     The purpose of this research is to shed light on testing 3G technology, we haveselected the UMTS, “ WCDMA”, as sample for the research. We will cover all the majortesting components starting by the terrestrial radio access (UTRA), quality of servicemanagement, signal generator, and direct conversion receivers.
     The GSM networks have a global footprint that provides access to mobile services,such as voice, circuit-switched and packet-switched data, short message service (SMS)and multimedia messaging service (MMS). A third-generation mobile terminal equippedwith both WCDMA and GSM technology would put the end-user in contact withseamless, (practically) worldwide, mobile service with more convenient functions thatexist on the GSM networks. As such the testing of the UTRAN is critical before anyinter-working mechanism between the WCDMA and GSM technologies is achieved.
     The handover between the WCDMA system and the GSM system has been one of themain design criteria taken into account in the WCDMA frame timing definition. TheGSM-compatible multi-frame structure, with the super-frame being multiple of 120 ms,allows similar timing for intersystem measurements as in the GSM system itself.Moreover, the compatibility in timing is important, so that when operating in WCDMAmode, a multimode terminal is able to catch the desired information from thesynchronization bursts in the synchronization frame on GSM carrier with the aid of afrequency correction burst. This way the relative timing between a GSM and WCDMAcarriers is maintained similar to the timing between two asynchronous GSM carriers fromhere comes the importance of the handover testing.
     The perception of the end users is a key element to define the success of the UMTSsystem in general. As such, two aspects need to be considered;the ability of a network toprovide an assured service level, and how satisfied the end user is with the service, interms of usability, accessibility, retain-ability and integrity of the service. This fact
    enhances a major topic, denoted by Quality of Experience (QoE), reflects the collectiveeffect of service performances that determines the degree of satisfaction of the end user.UMTS is a digital, fully-duplex-capable mobile communication system. As a duplexmode for the separation of the two Transmission directions, either the FrequencyDivision Duplex mode (FDD) or the Time Division Duplex mode (TDD) can be applied.The main challenge for a signal source is to cover all measurement applications with onesolution. As such we have covered the signal measurement into four main tests, physicalperformance test, spectral measurements test, data level measurements test, and responsetest.The last part of the research covers the receiver design which is intended to meet theindustry requirements for high integration, low power, and low cost, while also meetingall WCDMA RF system performance requirements. A design margin was provided toaccommodate expected operating voltage, temperature, and fabrication process variations.It describes the key system performance requirements derived from the WCDMAspecification and provides detailed descriptions of the design and measured performanceof the receiver circuits.
引文
[1] 3GPP, UTRAN Overall Description, 3G TS 24.401 V3.2.0
    [2] 3GPP, 3G Security: Security Architecture, 3G TS 33.102 V3.4.0
    [3] X. Lagrange, P. Godlewski, S. Tabbane, Réseaux GSM-DCS, Hermes 1995
    [4] 3GPP, Radio Interface Protocol Architecture, 3G TS 25.301 V3.4.0
    [5] 3GPP, Physical channels and mapping of transport channels onto physical channels (FDD), 3G TS 25.211 V3.2.0
    [6] H. Holma, A. Toskala, WCDMA for UMTS, Wiley 2000
    [7] A. Gaertner, UTRA (UMTS Terrestrial Radio Access), Alcatel document 3DF 009955 0004 UAZZA
    [8] ETSI, Digital cellular telecommunications system (Phase 2+);Mobile radio interface layer 3 specification, GSM 04.08
    [9] ETSI, The ETSI UMTS Terrestrial Radio Access (UTRA) ITU-R RTT Candidate Submission, ETSI document SMG2 260/98
    [10] E. Dahlman, P. Beming, J. Knutsson, F. Ovesjo, M. Persson and C. Roobol, “WCDMA-the radio interface for future mobile multimedia communications”, IEEE Transactions on Vehicular Technology, Vol. 47, No. 4, pp. 1105-1118, November1998.
    [11] 3rd Generation Partnership Project, “Spreading and modulation (FDD)”, TS 25.213, Version 4.3.0, Release 4, Available at www.3gpp.org, June 2002.
    [12] T. E. Kolding, K. I. Pedersen, J. Wigard, F. Frederiksen, and P. E. Mogensen, “High Speed Downlink Packet Access: WCDMA Evolution”, IEEE Veh. Technol. Society News, Vol. 50, No. 1, pp. 4-10, February 2003.
    [13] W.C.Y. Lee, “Power control in CDMA”, IEEE Vehicular Technology Conference, pp. 77-80, St Louis (Missouri), May 1991.
    [14] T.S. Rappaport, “Wireless communications: principles and practice”, Prentice Hall PTR, Upper Saddle River (New Jersey), 1996.
    [15] G. Fock, J. Baltersee, P. Schulz-Rittich, and H. Meyr, “Channel tracking for RAKE receivers in closely spaced multipath environments”, IEEE Journal on Selected Areas in Communications, Vol. 19, Issue 12, pp. 2420-2431, December 2001.
    [16] Chaudry, P., M. Mohr, and S. Onoe, “The 3GPP Proposal for IMT-2000,” IEEE Communications Magazine, Vol. 39, No. 12, December 1999, pp. 72 81.
    [17] 3GPP, Radio Ressource Control (RRC) Protocol Specification, 3G TS 25.331 V3.4.1
    [18] 3GPP, Base station conformance testing(FDD), 3G TS 25.141 V3.2.0
    [19] 3GPP, R5, TS 23.107, “QoS concept and architecture.”
    [20] 3GPP, R5, Technical Specification 32.101, “3G Telecom Management: Principles and high-level requirements.”
    [21] Tele Management Forum, “SLA Management Handbook,” v.1.5, June 2001.
    [22] K. Valkealahti, D. Soldani, “QoS sensitivity to selected packet scheduling parameters in UTRAN,” IEEE VTC Spring, June, 2005, Stockholm, Sweden.
    [23] R. R. Johnson and P. J. Kuby, Elementary Statistics, Duxbury Press, 9th edition, 2003.
    [24] J. Laiho and D. Soldani, “A policy-based quality of service management system for UMTS radio access networks,” WPMC, October 2003, Yokosuka, Japan, pp. 298-302, vol. 2.
    [25] Steiner, B.: Neue Technologie UMTS -das Mobilfunksystem der n?chsten Generation. FGF Newsletter, 8, 16-22, 1/2000. (New technology UMTS -the mobile radio system of the next generation)
    [26] 3G TS 25.211: Universal Mobile Telecommunication System (UMTS);Physical channels and mapping of transport channels onto physical channels (FDD), Version 3.3.0, June 2000.
    [27] 3G TS 25.101: 3rd Generation Partnership Project;Technical Specification Group Radio Access Networks;UE Radio transmission and Reception (FDD), Version 3.2.2, April 2000.
    [28] 3G TS 25. 104: 3rd Generation Partnership Project (3GPP): Technical Specification Group Radio Access Networks UTRA (BS) FDD;Radio transmission and reception, Version 3.2.0, March 2000.
    [28]. Third-Generation Partnership Project (3GPP), “UE Radio Transmission and Reception (FDD),” Technical Specification 25.101, Vol. 3.0.1, April 2000.
    [29]. S. K. Reynolds, B. A. Floyd, T. J. Beukema, T. Zwick, U. R. Pfeiffer, and H. A. Ainspan, “A Direct-Conversio Receiver IC for WCDMA Mobile Systems,” Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), 2002, pp. 61– 64.Senior, C. Saint, J. Blonski, N. Swanberg, P. Pawlowski, D. Gonya, X. Yuan, and H. Zamat, “A Direct-Conversion W-CDMA Front-End SiGe Receiver Chip,” Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium, 2002, pp. 31–34.
    [30]. D. Y. C. Lie, J. Kennedy, D. Livezey, B. Yang, T. Robinson, N. Sornin, T. Beukema, L. E. Larson, A.
    [31] O. K. Jensen, T. E. Kolding, C. R. Iversen, S. Laursen, R. V. Reynisson, J. H. Mikkelsen, E. Pedersen, M. B. Jenner, and T. Larsen, “RF Receiver Requirements for 3G W-CDMA Mobile Equipment,” Microwave J. 43, No. 2, 22– 46 (February 2000).
    [32]. H. Fukui, “The Performance of Microwave Transistors,” IEEE Trans. Electron Devices ED-13, 329 –341 (March 1966).
    [33]. S. P. Voinigescu, M. C. Maliepaard, J. L. Showell, G. E. Babcock, D. Marchesan, M. Schroter, P. Schvan, and D. L. Harame, “A Scalable High-Frequency Noise Model for Bipolar Transistors with Application to Optimal Transistor Sizing for Low-Noise Amplifier Design,” IEEE J. Solid-State Circuits 32, No. 9, 1430 –1438 (September 1997).
    [34]. K. L. Fong and R. G. Meyer, “High-Frequency Nonlinearity Analysis of Common-Emitter and Differential-Pair Transconductance Stages,” IEEE J. Solid-State Circuits 33, 548 –555 (April 1998).
    [35]. B. Gilbert, “The Multi-Tanh Principle: A Tutorial Overview,” IEEE J. Solid-State Circuits 33, No. 1, 2–17 (January 1998).