水稻抗褐飞虱基因遗传分析与分子功能图谱构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
褐飞虱(Nilaparvata lugens St(?)l.)是水稻主要害虫之一,应用抗褐飞虱品种是防治褐飞虱为害的有效手段。寄主植物对病虫的侵害具有两种遗传背景不同的抗性,即质量抗性和数量抗性。生产实践和众多的研究结果均表明,寄主植物的质量抗性很容易遭到害虫新的生物型的克服,缺乏稳定性和持久性;相比之下,数量抗性却要稳定和持久得多。定位与克隆水稻抗褐飞虱数量抗性基因是育种工作和遗传研究的共同目标。
     B5和B14是药用野生稻与栽培品种杂交得到的转育材料,对褐飞虱表现为高抗。通过对TN1/B5和TN1/B14的F_2群体抗性分析,观察到TN1/B14群体的抗性级别分布接近3:1,而TN1/B5群体更接近正态分布。褐飞虱生物型1对B5和B14的反应在放虫5小时内略有差别,而生物型2对他们的反应基本没有差别。
     为了近一步分析B5的抗性遗传背景,我们应用RFLP和SSR标记构建了MH63/B5重组自交系的分子遗传图谱。该图谱包括来源于Cornell大学和日本水稻基因组计划的156个RFLP标记和53个SSR标记,覆盖了水稻12条染色体的1,478cM,标记间平均距离为7.3cM。除了在第7和第8染色体分别有2个和1个断点外其余染色体上标记分布较为均匀,适合用于数量性状的遗传分析。多来源的分子标记使该图谱可以与已发表的其他水稻遗传图谱进行比较,有利于将来对其他图谱中信息的利用。
     结合MH63/B5分子标记连锁图,我们尝试了对数量性状的动态分析方法,
    
    以获得影响性状的基因在各个时间段的净遗传效应。以MH63旧5重组自交系
    群体为材料,对分粟数进行了连续考察,然后应用“条件QTL”分析法对各
    时段由遗传差异引起的分桑净增量进行了探讨。用混合线性模型进行分析,定
    位了3个影响分葵能力的座位和相应的上位效应座位。相比常规QTL分析而
    言,条件QTL更能体现遗传效应的时效性,对于发育相关的性状和其他发展
    型性状的分析更合理、更可靠。动态QTL分析同样适用于褐飞虱抗性的研究。
    应用常规QTL分析共定位了4个褐飞虱抗性遗传座位分别位于第2、3、4、9
    染色体;应用条件Q几方法在第10染色体还多定位了一个座位。结果表明第
    3、4染色体座位同黄臻定位的BPh14、BPh万位置相同,并有较大遗传效应,
    其余座位效应较小。条件QTL的结果还表明BPh14、BPh乃的表达方式有很
    大区别,即h14只在开始阶段表现出对抗性的贡献,BPh万的作用时间贯穿实
    验始终。上位效应在和飞虱抗性中的作用较小。
     王晓兰、袁红雨博士应用抑制减法杂交(SSH)cDNA文库,分离得到了
    受褐飞虱取食诱导的水稻基因表达序列标签(EST)。我们通过基因组数据库
    同源查找和RFLP定位将这些EST整合到连锁图谱上。建立一张水稻的抗褐
    飞虱分子功能图谱。比较这些EST与褐飞虱抗性基因和QTL及前人报道的其
    他抗性相关基因,观察到抗性基因和虫害诱导EST的聚集分布现象。还有17
    个EsT与褐飞虱抗性基因或QTL的位置发生重合或临近。如果经过进一步遗
    传分析能证实这些EST与褐飞虱抗性的关系,它们将成为和飞虱抗性候选基
    因。
Brown planthopper (Nilaparvata lugens Stal., abbrievated as BPH) is one of the most serious pests of rice. Quality and quantitative resistance genes have been used in rice breeding. Many reports suggested that quantitative trait loci (QTL) are responsible for the durability of BPH resistance of rice. Development of molecular markers facilitates mapping of QTL. Mapping and cloning the BPH resistance QTL will be propitious to the development of resistant rice variety and understanding of BPH-resistance mechanism in rice.
    B5 and B14 derived their resistance for BPH from wild rices. Genetic analysis suggested the distribution of BPH resistant plants to BPH susceptible plants in the TN1/B5 F2 population is about 3: 1, while it is about normal distribution in TN1/B14 F2 population. Different interaction between two biotypes of BPH and the two rice lines were observed in the first 5 hours. There was little difference between the number of biotype 1 BPHs settled on B14 and susceptible check in free choice test. But much fewer BPHs settled on B5.
    A genetic map of rice covering 1,478 cM in the Kosambi function has been constructed using 187 F7 plants from a MH63/B5 RIL population. One hundred and fifty six RFLP markers from the Cornell University and Rice Genome Research Program (JRGP) and 53 SSR markers were located on the map using Mapmaker 3.0 with a LOD threshold 3.0. Except 3 gaps on chromosome 7 and 8, the markers distributed evenly on the map, and they are in good agreement with the
    
    
    
    orders in the published maps of the Cornell University and JRGP. It is providing a cross-reference to the two sets of high-density linkage maps, and suitable for QTL analysis.
    Dynamic analysis of QTLs for tillering ability based on the MH63/B5 RIL population was performed. Sequential records of tiller numbers of the RILs were analyzed by "Conditional mapping" approach, which was developed by Dr. Zhu for QTL detection of developmental trait, and traditional mapping. Three conditional QTLs and their net genetic effect were revealed. They showed higher statistic power than the QTLs detected in traditional mapping.
    The interaction between BPH and rice is a time depended trait too. Damage scores of the parents and RILs were evaluated every five days from 12th day after infestation by the insects. Six QTLs contributing to BPH resistance were detected and mapped by using either conditional or traditional mapping. Five BPH resistant QTLs are derived from B5, and one was derived from MH63. The contributions to BPH resistance of the QTLs displayed different dynamic curves, and most of them were active in early stage of BPH infestation, but the effect of BphlS lasted to the end of the test (27 days after BPH infestation). The results are valuable to development of resistant rice variety and understanding the genetics of BPH-resistance in rice.
    Dr. Wang and Yuan isolated Expressed Sequence Tags (ESTs) differentially regulated by BPH feeding by using techniques of the suppression subtractive hybridization (SSH) by. These ESTs were assigned to chromosomes based on RFLP mapping and rice genome database search. The distribution of the ESTs shows some level of clustering. Position coincidence of the ESTs and the BPH resistance genes/QTLs were observed. The feasibility of using differentially induced ESTs for candidate approach is discussed.
引文
Aad JM, van der Arend. The possibility of Nasonovia ribisnigri resistance breaking biotype development due to plant host resistance: a literature study CGN 2003. Eucarpia Leafy Vegetables. 2003, van Hintum TJL, Lebeda A, Pink D, Schut JW (eds.), pp75-81
    Alam SN, Cohen MB. Detection and analysis of QTLs for resistance to the brown planthopper, Nilaparvata lugens, in a doubled-haploid rice population. Theor Appl Genet, 1998, 97:1370-1379
    Alborn HT, Turlings TCJ, Jones TH et al. An elicitor of plant volatiles from beet armyworm oral secretion. Science, 1997, 276:945-949
    Andaya VC, Mackill DJ. QTLs conferring cold tolerance at the booting stage of rice using recombinant inbred lines from a japonica × indica cross. Theor Appl Genet. 2003, 106:1084-1090
    Arumuganathan K, Earle ED. Nuclear DNA content of some important plant species 1991. Plant Mol Biol Rep 9:208-218
    Atchley WR, Zhu J. Developmental quantitative genetics, conditional epigenetic variability and growth in mice. Genetics, 1997, 147:765-776
    Athwal DS, Pathak MD, Bacalango EH, Pura CD. Genetics of resistance to brown planthoppers and green leafhoppers in Oryza sativa L. Crop Sci, 1971, 11:747-750
    Beavis WD, Grant D, Albertsen M, et al. Quantitative trait loci for plant height in four maize populations and their associations with quantitative genetic loci. Theor Appl Genet, 1991, 83:141-145
    Beckmann JS, Soller M. Detection of linkage between marker lociand loci affecting quantitative traits in crosses between segregating population. Theor Appl Genet, 1988, 76:228-236
    Bennetzen JL. Comparative sequence analysis of plant nuclear genomes: microlinearity and its many exceptions, Plant Cell, 2000, 12:1021-1029
    Bent AF, Kunkel BN, Dahlbeck D, et al. RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science. 1994, 265:1856-1860.
    Bittner-Eddy PD, Crute IR, Holub EB, et al. RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Deronospora parasitica. Plant Journal, 2000, 21:177-188
    Bostock RM. 1999. Signal conflicts and synergies in induced resistance to multiple attackers. Physiol Mol Plant Path 55:99-109.
    Dempsey DMA, Shah J, Klessig DE Salicylic acid and disease resistance in plants. Crit Rev Plant Sci, 1999, 18:547-575
    Bonierbale MD, Plaisted RL, Tanksley SD. RFLP maps based on a common set of clones
    
    reveal modes of chromosomal evolution in potato and tomato. Genetics, 1988, 120:1095-1103
    Bouchard E, Michaud D, Cloutier C. Molecular interactions between an insect predator and its herbivore prey on transgenic potato expressing a cysteine proteinase inhibitor from rice. Mol Ecol, 2003, 12:2429-37
    Bouchez D, Hofte H. Functional genomics in plants. Plant Physiol. 1998, 118:725-732
    Buschges R, Hollricher K, Panstruga R, et al. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell, 1997, 88:695-705
    Causse MA, Fulton TM, Cho YG, et al. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics. 1994, 138:1251-1274
    Charmet G; Cadalen T, Sourdille P, et al. An extension of the marker regression method to interactive QTL. Molecular Breeding, 1998, 4:67-72
    Chase K, Adler FR, Lark KG. Epistat: A computer program for identifying and testing interactions between pairs of quantitative trait loci. Theor Appl Genet, 1997, 94:724-730
    Chen H, Wang S, Xing Y, et al. Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to Pyricularia grisea in rice and barley. Proc Natl Acad Sci U S A. 2003, 100:2544-2549.
    Chen X, Salamini F, Gebbardt C. A potato molecular-function map for carbohydrate metabolism. Theor Appl Genet, 2001, 102:284-295
    Chu S, DeRisi J, Eisen M, et al. The transcriptional program of sporulation in budding yeast. Science, 1998, 282:699-705
    Claridge MF, den Hollander J. Virulence to rice cultivars and selection for virulence in populations of the brown planthopper Nilaparvata lugens. Entomologia Experimentalis et Applicata 1982, 32:222-226
    Cohen MB, Alam SN, Medina EB, et al. Brown planthopper, Nilaparvata lugens, resistance in rice cultivar IR64, mechanism and role in successful N. lugens management in Central Luzon, Philippines. Entomologia Experimentalis et Applicata, 1997, 85:221-229
    Collins NC, Webb CA, Seah Set al. The isolation and mapping of disease resistance analogs in maize. Mol Plant-microbe Interact, 1998, 11:968-978
    Collins N, Drake J, Ayliffe Met al. Molecular characterization of the maize Rpl-D rust resistance haplotype and its mutants. Plant Cell, 1999, 11:1365-1376
    Creelman RA, Mullet JE. Biosynthesis and action of jasmonates in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48:355-381
    Den Hollander J, Pathak PK. The genetics of the "biotypes" of the rice brown planthopper, Nilaparvata lugens. Ent Exp Appl, 1981, 29:76-86
    Devos KM, Gale MD. Comparative genetics in the grasses, Plant Mol. Biol. 1997 35:3-15
    Diatchenko L, Lau YE Campbell AP, et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl
    
    Acad Sci U S A. 1996, 93:6025-6030.
    Dicke M. Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods? Entomol Exp Appl, 1999, 91:131-142
    Dodds P N, Lawrence G L, Ellis J G. Contrasting modes of evolution acting on the complex N locus for rust resistance in flax. Plant Journal, 2001, 27:439-452
    Edwards MD, Stuber CW, Wendel JF. Molecular marker facilitated investigations of quantitative trait loci in maize. I. Numbers, genomic distribution and types of geneaction. Genetics, 1987, 116:113-125
    Eisenberg D, Marcotte EM, Xenarios I, et al. Protein funtion in the post-genomic era. Nature, 2000, 405:823-826
    E1-Din E1-Assal S, Alonso-Blanco C, Peeters AJ, et al. A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat Genet. 2001, 29:435-440.
    Elsa Rubia-Sanchez, Suzuki Y, Miyamoto K, et al. The potential for compensation of the effects of the brown planthopper Nilaparvata lugens St(?)l (Homoptera: Delphacidae) feeding on rice Crop Protection, 1999, 18:39-45
    Fidantsef AL, Stout MJ, Thaler JS, et al. Signal interactions in pathogen and insect attack: expression of lipoxygenase, proteinase inhibitor Ⅱ, and pathogenesis-related protein P4 in the tomato, Lycopersicon esculentum. Physiol Mol Plant Path, 1999, 54:97-114
    Fisher RA. The correlation between relative on the supposition of Mendelian inheritance. Transactions of the Royal society of Edinburgh, 1918, 52:339-433
    Foolad, MR, RA Jones. Mapping salt-tolerance genes in tomato (Lycopersicon esculentum) using trait-based marker analysis. Theor Appl Genet, 1993, 87:184-192
    Foote T, Roberts M, Kurata N, et al. Detailed comparative mapping of cereal chromosome regions corresponding to the Ph1 locus in wheat. Genetics. 1997, 147:801-807.
    Frary A, Nesbitt TC, Grandillo S, et al. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science. 2000, 289:85-88.
    Gallun RL, Khush GS. Genetic factors affecting expression and stability of resistance. In, Maxwell FG, Jennings PR. (eds) Breeding plants resistant to insects. John Wiley and Sons, New York, 1980, 63-85
    Goff SA, Ricke D, Lan TH, et al. Draft Sequence of the Rice Genome (Oryza sativa L. ssp. japonica) 2002, science, 296:92-100
    Grodzicker T, Williams J, Sharp P, Sambrook J. Physical mapping of temperature sensitive mutations of adenoviruses. Cold Spring Harbor Syrup Quant Biol, 1974, 39:439-446
    Harlan JR, The Living Fields: Our Agricultural Heritage. Cambridge Univ. Press, New York, 1995, 30-31
    Harushima Y, Yano M, Shomura A, et al. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics, 1998, 148:479-494.
    Heinrichs EA. Management of rice insect pests. Dep of Entomology, Univ of Nebraska. 2001,
    
    http://www.ipmworld.umu.edu/chapters/heinrich.htm, 14p
    Hellqvist S. Biotypes of Dasineura tetensi, differing in ability to gall and develop on black currant genotypes. Entomol Exp Appl, 2001, 98:85-94
    Hirabayashi H, Angeles E R, Kaji R, et al. Identification of the brown planthopper resistance gene derived from O. officinalis using molecular markers in rice. Breed Sci, 1998, 48 (Suppl 1):82
    Hirabayashi H, Ogawa T. RFLP mapping of Bph-1 (the brown planthopper resistance gene) in rice. Jpn J Breed, 1995, 45:369-371
    Hirabayashi H, Kaji R, Angeles ER, et al. RFLP analysis of a new gene for resistance to brown planthopper derived from O. officinalis on rice chromosome 4. Breed Sci, 1999, 49 (Suppl 1):48
    Hittalmani S, Huang N, Courtois B, et al. Identification of QTL for growth-and grain yield-related traits in rice across nine locations of Asia. Theor Appl Genet. 2003, 107:679-690
    Hu ZL, Zhang XF, Xie C. A correlation method for detecting and estimation linkage between a marker lous and QTL using inbred lines. Theor Appl Genet, 1995, 90:1074-1078
    Huang Z, He GC, Shu LH, et al. Identification and mapping of two brown planthopper resistance genes in rice. Theor Appl Genet, 2001, 102:929-934
    Hyne V. Kearsey MJ. QTL analysis: further uses of 'marker regression'. Theor Appl Genet, 1995, 91:471-476
    Ikeda R, Kaneda C. Trisomic analysis of the gene Bph-1 for resistance to the brown planthopper, Nilaparvata lugens St(?)l, in rice. Jpn J Breed, 1983, 33:40-44
    Ikeda R. Studies on the inheritance of resistance to the rice brown planthopper (Nilaparvata lugens St(?)l) and the breeding of resistant rice cultivars. Bull Nat Agric Res Cent, 1985, 3:51-54
    Ishii T, Brar DS, Multani DS, et al. Molecular tagging of genes for brown planthopper resistance and earliness introgressed from Oryza australiensis into cultivated rice, O. sativa. Genome, 1994, 37:217-221
    Ishimaru K, Yano M, Aoki N, et al. Toward the mapping of physiological and agronomic characters on a rice function map, QTL analysis and comparison between QTLs and expressed sequence tags. Theor Appl Genet, 2001, 102:793-800
    Iwata N, Omura T, Studies on the trisomics in rice plants (Oryza sativa L). Ⅵ. An accomplishment of a trisomic series in japonica rice plants. Jpn J Genetics, 1984, 59:199-204
    Jansen RC. A general mixture model for mapping quantitative trait loci by using molecular markers. Theor Appl Genet, 1992, 85:252-260
    Jena KK, Khush GS, Kochert G. RELP analysis of rice (Oryza sativa L.) introgression lines. TheorAppl Genet, 1992, 84:608-616
    
    
    Jensen J. Estimation of recombination parameters between a quantitative tait locus (QTL) and two marker gene loci. Theor. Appl. Genet 1989, 78:613-618
    Jiang C, Zeng ZB. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 1995, 140:1111-1127
    Jitla DS, Rogers GS, Seneweera SE et al. Accelerated Early Growth of Rice at Elevated CO2 (Is It Related to Developmental Changes in the Shoot Apex?). Plant Physiol. 1997, 115:15-22.
    Johal GS, Briggs SE Reductase activity encoded by the HM1 disease resistance gene in maize. Science, 1992, 258(5084):985-987.
    Jones DA, Thomas CM, Hammond-Kosack KE, et al. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science, 1994, 266:789-793
    Jones AT, McGavin WJ, Birch ANE. Effectiveness of resistance genes to the large raspberry aphid, Amphorophora idaei Bamer, in different raspberry (Rubus idaeus L.) genotypes and under different environmental conditions. Annals of Applied Biology, 2000, 136:107-113
    Kabir MA, Khush GS. Genetic analysis of resistance to brown planthopper in rice (Oryza sativa L.). Plant Breeding, 1988, 100:54-58
    Kao CH, Zeng ZB, Teasdale RD. Multiple interval mapping for quantitative trait loci. Genetics, 1999, 152:1203-1216
    Kao CH, Zeng ZB. General formulas for obtaining the MLEs and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm. Biometrics. 1997, 53:359-371
    Katiyar SK, Chandel G, Tan Y, et al. Biodiversity of Asian rice gall midge (Orseolia oryzae) from five countries examined by AFLP analysis. Genome, 2000, 43:322-332
    Kawaguchi M, Murata K, Ishii T, et al. Assignment of a brown planthopper (Nilaparvata lugens St(?)l) resistance gene bph4 to the rice chromosome 6. Breed Sci, 2001, 51:13-18
    Kearsey MJ, Hyne V. QTL analysis: a simple'marker regression' approach. Theor Appl Genet, 1994, 89:698-702
    Kessler A, Baldwin I T. Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol, 2002, 53:299 - 328
    Khush GS, Rezaul KA, Angeles ER. Genetics of resistance of rice cultivar ARC 10550 to Bangladesh brown planthopper biotype. J Genet, 1985, 64:121-125
    Khush GS, Brar DS. Genetics of resistance to insects in crop plants. Adv Agron, 1991, 45:223-274
    Kikuchi S, Satoh K, Nagata T, et al. Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science. 2003, 301:376-379
    Kilian A, Chen J, Han E et al. Towards map-based cloning of the barley stem rest resistance genes Rpg1 and rpg4 using rice as an intergenomic cloning vehicle. Plant Mol Biol. 1997, 35:187-195
    
    
    Kindler SD, Harvey TL, Wilde GE, et al. Occurrence of greenbug biotype K in the field. Journal of Agricultural and Urban Entomology, 2001, 18:23-34
    Kirkpatrick M, Hill WG, Thompson R. Estimating the covariance structure of traits during growth and aging, illustrated with lactation in dairy-cattle. Genet. Res. 1994, 64:57-69
    Knapp SJ, Bridges WC, Birkes D. Mapping quantitativetrait loci using molecularmarker linkage maps. Theor Appl Genet, 1990, 79:583-592
    Korth KL, Dixon RA. Evidence for Chewing Insect-Specific Molecular Events Distinct from a General Wound Response in Leaves. Plant Physiol. 1997, 115:1299-1305.
    Lakshminarayana A, Khush GS. New genes for resistance to brown planthopper in rice. Crop Sci, 1977, 17:96-100
    Lamb C, Dixon RA. The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48:251-275
    Lander E, Botstein D. 1989 Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 121:185-199
    Lawrence GJ, Finnegan EJ, Ayliffe MA, et al. The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell. 1995, 7:1195-1206.
    Lee EA, Byrne PF, McMullen MD, et al. Genetic mechanisms underlying aplmaysin and maysin synthesis and corn earworm antibiosis in maize (Zea mays L.). Genetics, 1998, 149:1997-2006
    Lee I, Aukerman MJ, Gore SL, et al. Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis. Plant Cell. 1994, 6:75-83.
    Lee SI, Lee SH, Koo JC, et al. Soybean Kunitz trypsin inhibitor (SKTI) confers resistance to the brown planthopper (Nilaparvata lugens St(?)l) in transgenic rice. Molecular Breeding, 1999, 5:1-9
    Leister D, Kurth J, Laurie DA, et al. RFLP- and physical mapping of resistance gene homologues in rice (O. sativa) and barley (H. vulgare). Theor Appl Genet, 1999, 98:509-520
    Leister D, Kurth J, Laurie DA et aI. Rapid reorganization of resistance gene homologues in cereal genomes. Proc Natl Acad Sci USA, 1998, 95:370-375
    Leister RT, Ausubel FM, Katagiri E Molecular recognition of pathogen attack occurs inside of plant cells in plant disease resistance specified by the Arabidopsis genes RPS2 and RPM1. Proc Natl Acad Sci U S A. 1996, 93:15497-15502.
    Li X, Qian Q, Fu Z, et al. Control of tillering in rice. Nature. 2003, 422:618-621.
    Li ZK, Luo LJ, Mei HW, et al. Overdominant epistatic loci are the primary penetic basis of inbreeding depression and heterosis in rice Ⅰ biomass and yield. Genetics, 2001, 158:1737-1753
    Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of the
    
    polymerase chain reaction. Science. 1992, 257:967-971.
    Lin SY, Sasaki T, Yano M. Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines. Theor Appl Genet, 1998, 96:997-1003
    Lincoln S, Daly M, Lander ES. Construction genetic maps with MAPMAKER/EXP 3.0. Whitehead Institute Technical Report, 2rid edn., Whitehead Institute, Cambridge, Massachusetts, USA, 1992
    Lockart DJ, Winzeler EA. Genomics, gene expression and DNA arrays. Nature, 2000, 405:827-835
    Loudet O, Chaillou S, Camilleri C, et al. Bay-O x Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis. Theor Appl Genet, 2002, 104:1173- 1184.
    Lu C, Shen L, Tan Z, et al. Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled-haploid population. Theor Appl Genet, 1997, 94:145-150
    Luo LJ, Li ZK, Mei HW, et al. Overdominant Epistatic Loci Are the Primary Genetic Basis of Inbreeding Depression and Heterosis in Rice. Ⅱ. Grain Yield Components. Genetics, 2001, 158:1755-1771
    Maekawa M, Takamure I, Kinoshita T, Gene mapping of some morphological traits and chlorophyll deficiency in rice. In: Khush G S (eds). Rice Genetics, Ⅱ. Manila, Philippines, IRRI, 1991, 111-120
    Martin GB, Brommonschenkel SH, Chunwongse J, et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science. 1993, 262:1432-1436
    Martin B, Nienhuis J, King G; et al. Restriction fragment length polymorphisms associated with water use efficiency in tomato. Science, 1989, 243:1725-1728
    Martinez O, Curnow RN, Estimating the locations and the sizes of the effects of quantitative trait loci using flanking markers. Theor Appl Genet, 1992, 85:480-488
    McCouch SR. Toward a plant genomics initiative: thoughts on the value of cross-species and cross-genera comparisons in the grasses. Proc Natl Acad Sci U S A. 1998, 95:1983-1985.
    McCouch SR, Chen X, Panaud O. Microsatellite mapping and applications of SSLP' s in rice genetics and breeding. Plant Mol Biol, 1997,35:89 - 99
    McCouch SR, Kochert G, Yu ZH, et al. Molecular mapping of rice chromosomes. Theor Appl Genet, 1988, 76:815-29
    McCouch SR, Teytelman L, Xu YB, et al. Development and Mapping of 2240 New SSR Markers for Rice (Oryza sativa L.). DNA Research 2002, 9:199 - 207
    McDowell JM, Dangl JL. Signal transduction in the plant immune response. Trends Biochem Sci, 2000, 25:79-82
    Menendez CM, Ritter E, Schafer-Pregl R, et al. Cold sweetening in diploid potato: mapping quantitative trait loci and candidate genes. Genetics, 2002, 162:1423-1434.
    
    
    Miura K, Lin Y, Yano M, et al. Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.). Theor Appl Genet, 2002, 104:981-986
    Moore Ca Devos KM, Wang Z, Gale MD, Cereal genome evolution. Grasses, line up and form a circle. Curr Biol, 1995, 5:737-739
    Murai H, Hashimoto Z, Sharma PN, et al. Construction of a high-resolution linkage map of a rice brown planthopper (Nilaparvata lugens St(?)l) resistance gene bph2. Theor Appl Genet, 2001, 103:526-532
    Murata K, Fujiwara M, Kaneda C, et al. RFLP mapping of a brown planthopper (Nilaparvata legens St(?)l) resistance gene bph2 of indica rice introgressed into a japonica breeding line 'Norin-PL4.'. Genes Genet Syst, 1998, 73:359-364
    Murata K, Fujiwara M, Murai H, et al. A dominant brown planthopper resistance gene, Bph9, locates on the long arm of rice chromosome 12. Rice Genet Newslett, 2000, 17:84-86
    Murata K, Nakamura C, Fujiwara M, et al. Tagging and mapping of brown planthopper resistance genes in rice. In: Su J-C (ed) Proe 5th Int Symp on Rice Molecular Biology. Yi-Hsien Pub, Taipei, Taiwan, 1997, 217-231
    Mutlu A, Pfeil J E, Gal S. A probarley lectin processing enzyme purified from Aravidopsis Thalianaseeds. Phytochemistry, 1998, 47:1453-1459
    Naber N, Boushssini E, Labhilili M, et al. Genetic variation among populations of Hessian fly Mayetiola destructor (Diptera: Cecidomyiidae) in Morocco and Syria. Bulletin of Entomological Research, 2000, 90:245-252
    Nemoto H, Ikeda R, Kaneda C. New genes for resistance to brown planthopper, Nilaparvata lugens St(?)l, in rice. Japan J Breed, 1989, 39:23-28
    Nilsson-Ehle H. Investigations on crosses of oats and wheat, Lunds Univ. Arsskrift NS. ser. 2, 1909, vol. 5, no.2
    Nombela G, Beitia F, Muniz M. A differential interaction study of Bemisia tabaci Q-biotype on commercial tomato varieties with or without the Mi resistance gene, and comparative host responses with the B-biotype. Entomo Exp Appl, 2001, 98:339-3440
    Omer AD, Granett J, Kocsis L, et al. Preference and performance responses of California grape phylloxera to different Vitis rootstocks. Journal of Applied Entomology 1999, 123:341-346
    Osborn TC, Alexander DC, Fobes JF. Identification of restriction fragment length polymorphisms linked to genes controlling soluble solids content in tomato fruit. Theor Appl Genet, 1987, 73:350-356
    Ottaviano E, Sari-Gorla M, Pé E, et al. Molecular markers (RFLPs and HSPs) for the genetic dissection of thermotolerance in maize. Theor Appl Genet, 1991, 81:713-719
    Parejaream A, Lapis DB, Hibino H. Reaction of rice varieties to rice ragged stunt virus (RSV) infection by three brown planthopper (BPH) biotypes. Int Rice Res Newsl, 1984, 9:7-8
    Palm C J, Costa MA, An G, et al. Wound-inducible nuclear protein binds DNA fragments that regulate a proteinase inhibitor Ⅱ gene from potato. Proc Natl Acad Sci U S A. 1990,
    
    87:603-607.
    Panda N, Khush GS. Host plant resistance to insects. CAB International. UK. 1995
    Paterson AH, Lander ES, Hewitt JD, et al. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 1988, 335:721-726.
    Pathak PK, Heinrichs EA. Selection of biotype populations 2 and 3 of Nilaparvata lugens by exposure to resistant rice varieties. Environ Entomol, 1982, 11:85-89
    Phililips SW, Bale JS, Tatchell GM. Escaping an ecological dead-end: asexual overwintering and morph determination in the lettuce root aphid Pemphigus bursarius L. Ecological Entomology, 1999, 24:336-344
    Pieterse CMJ, van Loon LC. Salicylic acid-independent plant defence pathways. Trends Plant Sci, 1999, 4:52-58
    Pletcher SD, Geyer CJ. The genetic analysis of agedependent traits: modeling the character process. Genetics, 1999, 153:825-835
    Qu LJ, Chen J, Liu M, et al. Molecular Cloning and Functional Analysis of a Novel Type of Bowman-Birk Inhibitor Gene Family in Rice. Plant Physiol, 2003, Aug 28
    Ramalingam C, Vera Cruz M, Kukreja K, et al. Candidate Defense Genes from Rice, Barley, and Maize and Their Association with Qualitative and Quantitative Resistance in Rice J. Molecular Plant-Microbe Interactions 2003, 16:14-24
    Rath-Morris E, Crowther S, Guessoum M. Resistance-breaking biotypes of rosy apple aphid Dysaphis plantaginea on the resistant cultivar Florina, Handout IOBC meeting Dundee. 1998
    Ray Ming, Sin-Chieh Liu, Paul H. et al. QTL Analysis in a Complex Autopolyploid: Genetic Control of Sugar Content in Sugarcane. Genome Research, 2001, 11:2075 - 2084
    Redona, ED, Mackill DJ. 1998. Quantitative trait analysis for rice panicle and grain characteristics. Theor Appl Genet, 96:957-963
    Reinink K, Dieleman FL, Jansen J, et al. 1989. Interactions between plant and aphid genotypes in resistance of lettuce to Myzus persicae and Macrosiphum euphorbiae. Euphytica 43:215-222
    Reiter RS, Coors JG, Sussman MR et al. Genetics analysis of tolerance to low-phosphorus stress in maize using RFLR Theor Appl Genet, 1991, 82:561-568
    Rodolpe F, Lefort M. A multi-marker model for detecting chromosomal segments displaying QTL activity. Genetics, 1993, 134:1277-1288
    Ronald PC, Atbano B, Tabien R, et al. Genetic and physical analysis of the rice bacterial blight disease resistance locus, Xa21. Mol Gen Genet, 1992, 236:113-120
    Salvi S, Tuberosa R, Chiapparino E, et al. Toward positional cloning of Vgtl, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Mol Biol. 2002, 48:601-613.
    
    
    Sarma RN, Gill BS, Sasaki T, et al. 1998. Comparative mapping of the wheat chromosome 5A Vrn-A1 region with rice and its relationship to QTL for flowering time. Theor Appl Genet 97:103-109
    Sax K. the association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics, 1923, 8:552-560
    Saxena RC, Barrion AA. Biotypes of the brown planthopper Nilaparvata lugens (St(?)l) and strategies in deployment of host plant resistance. Insect Sci Appl, 1985, 6:171-189
    Schneider K, Schneider-Preg R, Borchardt DC, et al. Mapping QTLs for sucrose content, yield and quality in a sugar beet population fingerprinted by EST-related markers. Theor Appl Genet, 2002, 104:1107-1113
    Simpson SP. Detection of linkage between quantitative trait loci and restriction fragment length polymorphisms using inbred lines. Theor Appl Genet, 1989, 77:815-819
    Sogawa K. Hybridization experiments on three biotypes of the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae) at the IRRI in the Philippines. Appl Ent Zool, 1981, 16(3): 193-199
    Song WY, Wang GL, Chert LL, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995, 270:1804-1806.
    Sturtevant AH.The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. J Exper Zool, 1913, 14:43-59
    Taillon-Miller P, Gu Z, Li Q, et al. Overlapping genomic sequences: A treasure trove of single-nucleotide polymorphisms. Genome Res, 1998, 8:748-754
    Tanksley SD, Nelson JC. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet, 1996, 92:191-203
    Tanksley SD. Mapping polygenes. Annu Rev Genet 1993, 27:205-233
    Tanksley SD, Ganal MW, Prince JP, et al. High density molecular linkage maps of the tomato and potato genomes. Genetics, 1992, 132:1141-1160.
    Tarchini R, Biddle P, Wineland R, et al. The complete sequence of 340 kb of DNA around the rice Adh1-Adh2 regions reveals interrupted collinearity with maize chromosome 4. Plant Cell, 2000, 12:381-391
    Temnykh S, DeClerck G, Lukashova A, et al. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome research, 2001, 11:1141-1451
    Temnykh S, Park WD, Ayres NM, et al. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet, 2000, 100:697-712
    Thaler JS, Stout MJ, Karban R, Duffey SS. Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J Chem Ecol, 1996, 22:1767-1781
    
    
    Thoday JM. Location of polygenes. Nature, 1960, 191:368-370
    Toojinda T, Siangliw M, Tragoonrung S, et al. Molecular genetics of submergence tolerance in rice: QTL analysis of key traits. Ann Bot, 2003, 91:243-253.
    Van der Arend A., Ester A, Van Schijndel JT. Developing an aphid resistant butterhead lettuce Dynamite'. Proceedings of Eucarpia Leafy Vegetables, 1999, 1999:149-157
    van Wees SCM, Luijendijk M, Smoorenburg I, et al. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene AtVsp upon challenge. Plant Mol Biol, 1999, 41:537-549
    Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acid Research, 1995, 23:4407-4414
    Walker GP, Perfing TM. Feeding and oviposition behavior of whiteflies (Homoptera: Aleyrodidae) interpreted from AC electronic feeding monitor waveforms. Ann Entom Soc Am, 1994, 87:363-374
    Wang DL, Zhu J, Li ZK, et al. Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor Appl Genet, 1999, 99:1256-1264
    Wang GL, Mackill DJ, Bonman JM, et al. RFLP Mapping of Genes Conferring Complete and Partial Resistance to Blast in a Durably Resistant Rice Cultivar Genetics, 1994, 136:1421-1434
    Wang ZX, Yano M, Yamanouchi U, et aI. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J, 1999, 19:55-64
    Whitham S, Dinesh-Kumar SP, Choi D, et al. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell, 1994 , 78:1101-1115. Erratum in: Cell, 1995, 81:466,
    Williams JGK, Kubelik AR, Livak KJ, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res, 1990, 18:6531-6535
    Wu J, Maehara T, Shimokawa T, et al. A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell, 2002, 14:525-535
    Wu KS, Tanksley SD. PFGE analysis of the rice genome: estimation of fragment sizes, organization of repetitive sequences and relationships between genetic and physical distances. Plant Mol Biol. 1993, 23:243-254.
    Wu R, Ma CX, Zhu J, et al. Mapping epigenetic quantitative trait loci (QTL) altering a developmental trajectory. Genome, 2002, 45:28-33
    Wu WR, Li WM, Tang DZ et al. Time-related mapping of quantitative trait loci underlying tiller number in rice, Genetics, 1999, 151:297-303
    Wu WR, Li WM. 1994. A new approach for mapping quantitative trait loci using complete genetic marker linkage maps. Theor. Appl. Genet. 89:535- 539
    
    
    Xiao J, Li J, Yuan L, Tanksley SD. Dominance Is the Major Genetic Basis of Heterosis in Rice as Revealed by QTLAnalysis Using Molecular Markers Genetics, 1995, 140:745-754
    Xiong M, Wang SP, Zhang QE Coincidence in map positions between pathogen-induced defense responsive genes and quantitative resistance loci in rice. Science in China Series C, 2002, 45:518-526
    Xu SZ. Further investigation in the regression method of mapping quantitative traithloci. Heredity, 1998, 80:364-373
    Xu S, A comment on the simple regression method for interval mapping. Genetics 1995, 141:1657-1659
    Xu XF, Mei HW, Luo LJ, et al. RFLP-facilitated investigation of the quantitative resistance of rice to brown planthopper ( Nilaparvata lugens). Theor Appl Genet, 2002, 104:248-253
    Yadav R, Courtois B, Huang N, et al. Mapping genes controlling root morphology and root distribution in a doubled-haploid population of rice. Theor Appl Genet, 1997, 94:619-632
    Yan JQ, Zhu J, He CX, et al. Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.). Theor Appl Genet, 1998, 97:267-274
    Yan JQ, Zhu J, He CX, et al. Molecular dissection of developmental behavior of plant height in rice (Oryza sativa L.). Genetics, 1998, 150:1257-1265
    Yang HY, Ren X, Weng QM, et al. Molecular mapping and genetic analysis of a rice brown planthopper (Nilaparvata lugens St(?)l) resistance gene. Hereditas, 2002, 136:39-43
    Yah L, Loukoianov A, Tranquilli G, et al., Positional cloning of the wheat vernalization gene VRN1. PNAS, 2003, I00:6263-6268
    Yano M, Harushima Y, Nagamura Y, et al. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor Appl Genet, 1997, 95:1025-1032
    Yano M, Katayose Y, Ashikari M, et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12:2473-2484
    Yoshimura S, Yamanouchi U, Katayose Y, et al. Expression of Xal, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci U S A, 1998, 95:1663-1668.
    Young E, Rock GC, Zeiger DC. Infestation of some Malus cultivars by the North Carolina woolly apple aphid biotype. HortSience, 1982, 17:787-788
    Yu J, Hu SN, Wang J, etal. A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. indica). Science, 2002, 296:79-92
    Yu YG, Buss GR, Maroof MAS. Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc Natl Acad Sci USA, 1996, 93:11751-11756
    Zarrabi AA, Beberet RC, Caddel JL. New biotype of Acyrthosiphon kondoi (Homoptera: Aphididae) on alfalfa in Oklahoma. Journal of Economic Entomology, 1995, 88:1461-1465
    
    
    Zeng ZB. Theoretical basis for separation of multiple linked gene effects in mapping of quantitative trait loci. Proc. Natl. Acad. Sci. USA 1993, 90:10972-10976
    Zeng ZB. Precision mapping of quantitative trait loci. Genetics, 1994, 136:1457-1468
    Zhang XF, Mosjidis JA, Hu ZL. Methods for detection and estimation of linkage between a marker locus and quantitative traitl oci. Plant Breeding, 1992, 109:35-39
    Zhu J, Weir BS. Mixed model approaches for genetic analysis of quantitative traits. In: ChenLS, Ruan SG, Zhu J (eds) advanced Topics in Biomathematics: proceedings of intemational conference on Mathematical Biology. Singapore: World Scientific Publishing Co., 1998, 321-330
    Zhu J. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics, 1995, 141:1633-1639
    Zsuzsa B, Hopper KR, Jordaan J, et al. 2001. Biotypic differences in Russian wheat aphid (Diuraphis noxia) between south African and Hungarian agro-ecosystems. Agriculture, Ecosystems & Environment, 83:121-128
    Thomoson MJ, Septiningsih EM, Trijatmiko KR, et al. Targeting functional nucleotide polymorphisms (FNPs) undefing QTL introgressed fromO.rufipogon. International Rice Congress, Beijing, China. 2002, 71-71
    邓望喜,周小尼,李绍勤,等.我国褐飞虱不同地理种群的生物学比较.植物保护学报,2000,27(2):131-135
    傅强,陈伟,张志涛.分蘗筛选技术在稻工程苗抗褐飞虱特性评价中的应用.中国水稻科学.1994,8:247-249
    胡中立.对QTL复合区间作图法的一点改进.武汉大学学报,2000,46(6):766-768
    黄骥,张红生,曹雅君,等,水稻功能基因的电子克隆策略,中国水稻科学,2002,16:295-298
    李平,周开达,陈英,等.利用分子标记定位水稻野败型核质互作雄性不育恢复基因.遗传学报,1996,23(5):357-362
    刘光杰,寒川一成,沈丽丽.褐飞虱成虫翅型分化研究.昆虫知识,2000,37(3):186-190
    刘国庆,颜辉煌,傅强,等.栽培稻的紧穗野生稻抗褐飞虱主效基因的遗传定位.科学通报.2001.46:738-742
    舒理慧,廖兰杰,万焕桥.野生稻抗白叶枯病遗传分析及转育效应研究.武汉大学学报(自然科学版),1994,3:95-100
    苏昌潮,程遐年,翟虎渠,等.利用回交重组自交群体检测水稻抗褐飞虱数量性状基因座遗传学报,29(4):332~338,2002
    谭震波,沈利爽,袁祚廉,等.水稻再生能力和头季稻产量性状的QTL定位及其遗传效应分析.作物学报,1997,23(3):289-295
    吴为人,李维民.基于性状-标记回归的QTL区间测验方法.遗传,2001,23(2):143-146
    吴为人,李维明,卢浩然.数量性状基因座的动态定位策略.生物数学学报,1997,12(5):490-495
    
    
    徐吉臣,陆朝福,陈洪,等.用双单倍体群体构建水稻的分子连锁图.遗传学报,1994,21(3):205-214
    许晓风,程遐年,朱军.复杂数量性状基因定位的混合线性模型方法.王连铮,戴景瑞(主编):全国作物育种学术讨论会论文集.北京:中国农业科技出版社,1998,11-20