解偶联剂在活性污泥系统中的迁移转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性污泥法是目前城市污水处理厂应用最广泛的污水生物处理技术之一。但是,该工艺存在一个最大的缺点:在运行过程中产生大量的剩余污泥,由此带来污泥处理设施的基建和运行成本都非常高昂。在我国有大量的剩余污泥不经处理就直接堆放或简单填埋,对环境造成了严重的二次污染。当前的各种污泥减量技术由于成本或是一些未能解决的技术问题,尚没有一个被广泛的应用于实际中。投加化学解偶联剂法以其污泥减量效果好、运行管理方便等优点受到人们越来越多地关注,利用该技术进行污泥减量处理已成为当前研究热点。
     本文采取序批式连续曝气运行的方式,通过向活性污泥系统中投加解偶联剂的方法,从几种毒性相对较小,污泥减量效果明显的解偶联剂中筛选出了最佳解偶联剂及其作用条件,研究了其在活性污泥系统中的迁移转化途径,并考察了pH值、温度、解偶联剂浓度及活性污泥浓度等因素对活性污泥系统和污泥吸附解偶联剂的影响,在此基础上探讨了代谢解偶联剂污泥减量的作用机理。
     在解偶联剂筛选实验中,综合评价解偶联剂对污泥减量效果、系统基质去除率的影响及经济成本因素,研究确定2,6-二氯苯酚作为最佳的解偶联剂;在最佳作用条件筛选实验中,通过各因素对污泥减量效果及系统基质去除率的影响,得到最佳pH=5,最佳温度=25℃,最佳活性污泥浓度=2g/L~2.5g/L,最佳DCP作用浓度=20 mg/L,最佳DO值=5mg/L的结论。
     在DCP的迁移转化实验中,研究发现:DCP进入活性污泥系统后即与污泥发生作用,而非完全溶解后再发生;颗粒态、粉末态、溶解态DCP加入活性污泥系统后,分别在18h、8h和2h时溶解达到最大值,而且解偶联剂的溶解只与自身理化性质有关,与外界环境无关;通过比较分析粉末态DCP和液态DCP对污泥产率、系统运行效能以及DCP出水浓度等因素的影响,得到固体投加形式为最优化的投加方式;低浓度下(小于30mg/L),DCP的非生物损失率均小于6%,说明非生物损失影响可以近似忽略,且非生物损失率随着解偶联剂投加量的增加而增大;生物活性抑制实验说明,在活性污泥系统中不存在微生物的降解转化作用。综上可知,在短期时间内,活性污泥与DCP之间主要进行了生物吸附作用。超过75%的解偶联剂被活性污泥吸附,一小部分解偶联剂残留出水中,二者之和占总投加量的92%以上。
     在活性污泥吸附解偶联剂的影响因素实验中,研究发现:随着pH值的增大,解偶联剂在出水中的浓度不断升高,污泥吸附量则不断下降;温度实验证明活性污泥吸附DCP的反应是放热反应;DCP的吸附量随初始浓度的增加而增加,但增加幅度逐渐变小;DCP出水浓度与污泥吸附量均随着活性污泥浓度的增加而下降;
     活性污泥吸附解偶联剂是解偶联剂在活性污泥系统中的主要去除途径,为下一步深入研究污泥吸附解偶联剂机理提供了理论基础。
Today, the activated sludge process is one of the most far-ranging biology treatment technology in municipal wastewater treatment plant. But there will be a mass of excess sludge in the process, which is the maximal disadvantage of the activated sludge process. The construction capital and operating cost of the excess sludge treatment and disposal facilities are all very highly. The mass of excess sludge was directly piled up or simply buried without treated, which will be serious secondary pollution to the environment. Currently, due to cost or numerous of unresolved technical issues, the sludge reduction technologies were not widely used in practice. With the advantages of effectiveness and convenient operation and management, addition of chemical uncoupler has been more and more concerned, with which to reduce sludge production has become the hotspot.
     In this paper, taking sequencing batch style with continuous aeration, through inputing metabolic uncoupler to the activated sludge system, the best chemical uncoupler and operation conditions were selected. The transfer and transformation of DCP in the activated sludge were studied. Meanwhile, the effect of pH, temperature, DCP concentration and MLSS on the activated sludge system and adsorption behavior of DCP were also studied. On the basis of preliminary studies, the mechanism of metabolic uncoupler to reduce sludge production was discussed.
     In the experiment of metabolic uncoupler screening, comprehensive evaluating the effect of metabolic uncoupler on sludge reduction, substrate removal efficiency and economic costs, 2,6-dichlorophenol was chosen as the best uncoupler. In the experiment of best operation condition screening, we made the conclusion that the best pH=5,temperature=25,activated sludge concentration =2g/L~2.5g/L,DCPconcentration=20mg/L,DOconcentration=5mg/L.
     By studying the transfer and transformation of DCP in the activated sludge, some conclusions were made: DCP had immediate interaction with the sluge rather than happened after completely dissolved. when joined in the activated sludge, the granule, powder and dissolved DCP reached their maximum dissolution in 18h, 8h and 2h. The dissolution of uncoupler was only concerned with their own physical and chemical properties and had nothing to do with the environment. By comparing the effect of powder and dissolved DCP on activated sludge yield, substrate removal efficiency and effluent, the most optimal dosage was powder form. In the low concentration(less than 30mg/L), the abiotic loss of DCP was below 6% and increased with DCP concentration, which means the impact of abiotic loss could be ignored. The experiment of inhibition of biological activity showed there was no biodegradation in the sludge. From above, more than 75% of DCP was biosorbed by the activated sludge, little was residued in the water, and this two parts accounted for more than 92% of the total dosage.
     The impact of various factors on the biosorption of DCP was as follows: The DCP concentration in the effluent increased with the pH while the biosorption capacity decreased. The temperature experiment proved that the biosorption reaction was exothermic. The biosorption capacity increased with DCP concentration while increased gradually. The DCP concentration in the effluent and the biosorption capacity decreased with the increase of sludge concentration.
     Biosorption of DCP was the main removal way, which provide the theoretical basis for studying the mechanism of biosorption .
引文
1王启中,宋碧玉.污水处理中的污泥减量新技术.城市环境与城市生态. 2003,16(6): 295~297
    2 E.W. Low, H.A. Chase. Reducing production of excess biomass during wastewater treatment. Wat Res.. 1999, 33(5): 1119~1132
    3梁鹏,黄霞,钱易.污泥减量化的研究进展.环境污染治理与设备. 2001,4(1): 44~45
    4曹秀芹,陈裙.污水处理厂污泥处理存在问题分析.北京建筑工程学院学报. 2002,18(1):1~4
    5 R.D. Davis, J.E. Hall. Production, treatment and disposal of wastewater sludge in Europe from a UK perspective. Eur. Water Pollut. Control. 1997,7(2):9~17
    6 F.R. Spellman. Wastewater biosolids to compost. Lancaster, PA, USA: Technomic Publishing Company: 1997:223~235
    7邹绍文,张树清,王玉军.中国城市污泥的性质和处置方式及土地利用前景.中国农学通报. 2005(1):198~282
    8韦朝海,陈传好.污泥处理、处置与利用的研究现状分析[J].城市环境与城市生态, 1998,11(4):10~13
    9李金红,何群彪.欧洲污泥处理处置概况.中国给水排水. 2005,21(1): 101~103
    10梁鹏,黄霞,钱易等.污泥减量化技术的研究进展.环境污染治理技术与设备. 2003,4(1):44~52
    11 Y. Liu, J.H. Tay. Strategy for minimization of excess sludge production from the activated sludge process. Biotechnology Advances. 2001,19(2):97~107
    12陈涛,王新,梁仁禄等.污泥草地利用的初步研究.应用生态学报, 2002, 13(4):463~466
    13白润英.两种微型动物减量污泥的初步研究.西安建筑科技大学硕士学位论文.西安.2004: 2~15
    14 C.M. Marl, V. Loosdrecht, M. Henze. Maintencance, eddogeneous respiration, lysis decay and predation. Wat. Sci. Tech.. 1999,39(1):107~117
    15 Y. Sakai, T. Fukase, H. Yasui, M. Shibata. An activated sludge process without excess sludge production. Wat. Sci. Tech.. 1997,36(1):163~170
    16 S. Saby, M. Djafer, G.H. Chen. Feasibility of using a chlorination step to reduce excess sludge in activated sludge process. Wat. Res.. 2002,36(3):656~666
    17 M. Rocher, G. Goma, B.A. Pilas, L. Louvel, J.L. Rols. Towards a reduction in excess sludge production in activated sludge process: biomass physicochemical treatment and biodegradation. Appl. Microbiol. Biotechnol.. 1999,51:883~890
    18 M. Rocher, Roux., G. Goma, B.A. Pilas, L. Louvel, J.L. Rols. Excess sludge reduction in activated sludge process by integrating biomass alkaline heat treatment. Wat. Sci. Tech.. 2001,44:434~444.
    19曹秀芹,陈珺.超声波技术在污泥处理中的研究及发展.环境工程.2002, 20(4): 23~25
    20 H. Salvado, M.P. Gracia and J.M. Amigo. Capability of ciliated protozoa as indicators of effluent quality in activated sludge plants. Wat. Res.. 1995,29(4): 1041~1050
    21瞿小蔚,潘涛, W. Ghyoot.利用原生动物削减剩余活性污泥产量.中国给水排水. 2002,20(1):3~6
    22叶芬霞.解偶联代谢对活性污泥工艺中剩余污泥的减量化作用.浙江大学博士学位论文.杭州. 2004: 2~78
    23 J. Chang, P. Chudoba and B. Capdeville. Determination of the maintenance requirements of activated sludge. Wat. Sci. Tech.. 1993,28(7):139~142
    24 G.M. Cook and J.B. Russell. Energy-spilling reactions of Streptococcus bovis and resistance of its membrane to proton conductance. Appl. Environ. Microbiol. 1994,(60): 1942~1948
    25叶芬霞,陈英旭,冯孝善.化学解偶联剂对活性污泥工艺中剩余污泥的减量作用.环境科学学报. 2004,24(3): 395~399
    26 P. Chudoba, J. Chudobaand, B. Capdeville. The aspect of energetic uncoupling of microbial growth in the activated sludge process-OSA system. Wat. Sci. Tech.. 1992,26(9):2477~2480
    27 G.H. Chen, S. Saby, M. Djafer and H.K. Mo. New approaches to minimize excess sludge in activated systems. Wat. Sci. Tech..2001,44(10):203~208
    28王琳,王宝贞.污泥减量技术.给水排水. 2000,26(10):28~31
    29 B. Abbassi, S. Dullstein and N. Rabiger. Minimization of excess sludge production by increase of oxygen concentration in activated sludge flocs: experimental and theoretical approach. Wat. Res.. 2000,34(1):139~146
    30 Yu Liu. Effect of chemical uncoupler on the observed growth yieid in batch culture of activatived sludge. Wat Res.. 2000, 34(7): 2025~2030
    31叶芬霞,潘利波.活性污泥工艺中剩余污泥的减量技术.中国给水排水,2003,19(1):25~28
    32 E.W. Low and H.A. Chase. The use of chemical uncouplers for reducing biomass production during biodegradation. Wat. Sci. Technol.. 1998,37(425): 399~402
    33 W.F. Loomis and F. Lipmann. Reversible inhibition of the voupling between phosphorylation and oxidation. J.Biol. Chem.. 1948,14(9):807~814
    34 S.E. Strand, G.N. Harem, H.D. Stensel. Activated sludge yield reduction using chemical uncouplers. Wat. Environ. Res.. 1999, 71(4): 454~458
    35 Y. Liu, G.H. Chen and E. Paul. Effect of the So/Xo ratio on energy uncoupling in substrate-sufficient batch culture of activated sludge. Water Res..1998,(32): 2883~2888
    36席鹏鸽,陈国伟,徐得潜.解偶联剂对活性污泥产率的影响及其机理研究.工业用水与废水. 2004,35(3):5~7
    37 J.A. Riveranevares, J.F. Wyman, D.L. Vonminden, et al. 2,6-ditert-butyl-4- nitrophenol ( DBNP ) a potentially powerful uncoupler of oxidative phosphorylation. Environ.Toxicol.Chem.. 1995 , 14(1): 251~256
    38 XueFu Yang, Min-Li Xie, Yu Liu. Metabolic uncouplers reduce excess sludge production in an activated sludge process. Process Biochemistry. 2002,(38): 1373~1377
    39 G.H. Chen, H.K. Mo, S. Saby, et al. Minimization of activated sludge production by chemically stimulated energy spilling. Wat. Sci. Technol.. 2002,42(12): 189~200
    40 G.H. Chen, H.K. Mo, Yu Liu. Utilization of a metabolic uncoupler, 3,3’,4’,5- tetrachlorosalicylanilide(TCS)to reduce sludge growth in activated sludge culture. Water research. 2002(36): 2077~2083
    41 M.L. Xie. Utilization of 8 kinds of metabolic uncouplers to reduce excesssludge production from the activated sludge process. Master Thesis. Beijing Technol. Business University, 2002
    42 E.W. Low, H.A. Chase, M.G. Milner, et al. Uncoupling of metabolism to reduce biomass production in the activated sludge process. Wat. Res.. 2000,34(12):3204~3212
    43 Yu Liu. Chemically reduced excess sludge production in activated sludge process. Chemophere. 2003, 50(1): 1~7
    44 M. Mayhew, T. Stephenson. Biomass yield reduction:Is biochemical manipulation possible without affecting activated sludge process efficiency. Water Sci. Technol.. 1998,38(8~9):137~144
    45 J.W. Patterson. Wastewater Treatment Technology, Ann Arbor Science, USA, 1977
    46 G. Bulbul and Z. Aksu. Investigation of wastewater treatment containing phenol using free and Ca-alginate gel immobilized P. putida in a batch stirred reactor. Turkish J. Engng. Environ. Sci.. 1997,21: 175~181
    47 S. Chitra and G.. Chandrakasan. Response of phenol degrading Pseudomonos pictorum to changing loads of phenolic compounds. J. Environ. Sci. Health. 1996,A31(3): 599~619
    48 Z. Aksu, T. Kutsal. Investigation of biosorption of Cu(Ⅱ), Ni(Ⅱ), Cr(Ⅲ)ions to activated sludge bacteria. Environ. Technol.. 1991,12: 915~921
    49 M. Tsezos and J.P. Bell. Comparison of the biosorption and desorption of hazardous organic pollutants by live and dead biomass. Water Research. 1989,23: 563~568
    50 S. Brandt, A. Zeng and W. Deckwer. Adsorption and desorption of penta- chlorophenol on cells of M. chlorophenolicum PCP-1. Biotechnol. Bioengng.. 1997,55: 480~491
    51 R.Y. Gao, J.L. Wang. Effects of pH and temperature on isotherm parameters of chlorophenols biosorption to anaerobic granular sludge. Journal of Hazardous Materials. 2007,145: 398~403
    52 J.K. Kevin, T.P. Thi. Effect of anaerobic sludge source and condition on biosorption of PCP. Wat. Res.. 1995,29(10):2360~2366
    53 J.L. Wang, Y. Qian. Bioadsorption of pentachlorophenol ( PCP ) fromaqueous solution by activated sludge biomass. Bioresource Technol.. 2000,75: 157~161
    54 C. Manfred, S. Birgit. Adsorption of bisphenol-A, 17β-estradiole and 17α- ethinyl estradiole to sewage sludge. Chemosphere. 2004,56: 843~851
    55 J. Peuravuorio, N. Paaso, K. Pihlaja. Sorption behavior of some chlorophenols in lake aquatic humic matter. Talanta. 2002,56: 523~538
    56 Z. Aksu, D. Akpinar. Competitive biosorption of phenol and chromium(VI) from binary mixtures onto dried anaerobic activated sludge.Biochem. Eng. J. 2001,7: 183~193
    57 Z. Aksu, J. Yener. A comparative adsorption/biosorption study of monochlorinate phenols onto various sorbents. Water Manage.. 2001,21: 695~702
    58 J.P. Bell, M. Tsezos. Removal of hazardous organic pollutants by adsorption on microbial biomass. Wat. Sci. Technol.. 1987,19:409
    59 K.J. Kennedy, J. Lu and W. Mohn. Biosorption of chlorophenols to anaerobic granular sludge. Water Research.. 1992,26: 1085~1092
    60 W.E. Balch, G.E. Fox, L.J. Magrum, C.R. Woese, R.S. Wolfe. Methanogens: reevaluation of a unique biological group. Microbiol. Rev.. 1979,43: 260
    61 Z. Aksu, A.L. Tatli. A comparative adsorption/biosorption study of Acid Blue 161: effect of temperature on equilibrium and kinetic parameters. Chemical Engineering Journal. 2007:1~39
    62蒋小龙,叶芬霞.化学解偶联剂对污泥产率的比较研究.环境科学研究. 2006, 19(4):115~118
    63 Guowei Chen, Pengge Xi, Deqian Xu. Comparison between inhibitor and uncoupler for minimizing excess sludge production of an activated sludge process. Front. Environ. Sci. Engin. China, 2007,1(1): 63~66
    64叶芬霞,陈英旭,冯孝善.化学解偶联剂对活性污泥工艺中污泥产率的影响.环境科学. 2003,24(6):112~115
    65田禹,马宗凯.解偶联剂在重金属废水处理中的污泥削减作用.哈尔滨工业大学学报. 2007,39(2):274~277
    66 Z. Ning, L. Fernandes and K.J. Kennedy. Chlorophenol sorption to anaerobic granules under dynamic conditions. Wat. Res.. 1999,33(1):180~188
    67 J. Wu, H.Q. Yu. Biosorption of 2,4-dichlorophenol from aqueous solutions byimmobilized phanerochaete chrysosporium biomass in a fixed-bed column. Chemical Engineering Journal. 2007:1~8
    68 Z. Aksu, J. Yener. Investigation of the biosorption of phenol and mono- chlorinated phenols on the dried activated sludge. Process Biochemistry. 1998,33(6):649~655
    69孟冠华,李爱民等.新型树脂对氯酚类物质的吸附研究.环境污染与防治. 2007,29(5):347~351
    70 S. Erkan, B.D. Filiz. Effect of feeding time on the performance of a sequencing batch reactor treating a mixture of 4-CP and 2,4-DCP. Journal of Environ. Manage.. 2007,83: 427~436
    71 Roberto, C. Raffaele. Evaluation of biodegradation kinetic constants for aromatic compounds by means of aerobic batch experiments. Chemosphere. 2006,62:1431~1436
    72 S.M. Esa, T.J. Kimmo and A.P. Jaakko. Effects of temperature on chlorophenol biodegradation kinetics in fluidized-bed reactors with different biomass carriers. Wat. Res.. 1998,32(1): 81~90
    73 S.G. Wang, X.W. Liu, H.Y. Zhang. Aerobic granulation for 2,4-dichloro- phenol biodegradation in a sequencing batch reactor. Chemosphere. 2007,69:769~775
    74 T.S. William, A.C. Lisa. Evaluating the relationship between the sorption of PAHs to bacterial biomass and biodegradation.Wat.Res..1999,33(11):2535~2544
    75国家环保总局.水与废水监测分析方法(第四版).北京:中国环境科学出版社,2002
    76陈志英,王磊,周琪.高效代谢解偶联剂的筛选及对SBR系统综合运行效能的影响.环境污染与防治. 2006,28(8):575~579
    77 K. Langford, J.N. Lester. Fate and behavior of endocrine disrupters in wastewater treatment processes.In: Birkett, J.W., Lester, J.N. ( Eds ) , Endocrine disrupters in wastewater and sludge treatment process. Lewis Publishers and IWA Publishing, London, UK, 2003:103~144
    78叶芬霞,陈英旭.能量解偶联代谢对剩余污泥的减量化研究.环境科学与技术. 2005,28(4):4~6
    79李颖,叶芬霞.化学解偶联剂对活性污泥产率的控制作用.环境科学研究.2006,19(3):88~90
    80 Xiangchun Quan, Hanchang Shi, et al. Biodegradation of 2,4-dichlorophenol in an air-lift honeycomb-like ceramic reactor. Process Biochemistry. 2003,38: 1545~1551
    81贺延龄,陈爱侠.环境微生物学.北京:中国轻工业出版社,2001
    82 J.C. Senez. Some considerations on the energetics of bacterial growth. Bacteriol Rev. 1962,(26):95~107
    83 Stouthammer, C. Bettenhaussen. Utilisation of energy of growth maintenance in continuous and bath cultures. Biochim.Biophy.Acta. 1973,(30): 53~70
    84 P. Mitchell, J. Moyle. Stoichiometry of proton translocation through the respiration chain and adenosine triphosphatase system of rat liver mitochondria. Nature. 1965,208:147