BT20钛合金旋压筒形件组织织构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代旋压技术是广泛应用于航空、航天、军工等金属精密加工技术领域的一种先进塑性成形工艺。强力旋压作为旋压技术的一个重要组成部分,它在制造精度高、长径比大的薄壁筒形零件加工中,显出了独特的优越性,己成为成形小批量、多品种回转型薄壁壳体零件的重要加工方法。由于筒形件强旋影响因素众多,目前中高强度钛合金大型薄壁筒形件强旋技术还存在很多不足。为了系统地研究强力旋压的成形规律,本文采用有限元数值模拟和试验相结合的方法研究薄壁钛合金筒形件强力旋压。
     通过对强力旋压过程的分析,有效地处理了旋轮加载和边界约束等条件,对坯料和芯模、旋轮进行了模型的离散化,建立了符合实际的三维有限元模型。
     本文使用ABAQUS/Explicit对BT20钛合金强力旋压过程进行了模拟,得到了强力旋压过程中的应力场和应变场分布。结果表明,旋压不同阶段、不同部位坯料的应力应变状态和变形方式不同。旋轮作用区是典型的三向压应力状态;除旋轮作用区外,其余区域沿环向均受拉应力;在轴向上已变形区和未变形区都受到压应力作用。分析了强旋变形时金属变形流动规律,揭示了强旋的变形特点,为后面组织性能分析打下基础。
     通过对钛合金不同坯料状态进行组织观察和性能测试为强旋旋试验提供了依据。在旋压试验过程中,分析了旋压工艺对成形零件质量的影响。本文也对BT20钛合金筒形件热强旋组织进行了分析,得到了旋压组织的演变规律。观察了不同道次坯料的金相组织,发现了坯料内外层组织的差别,得出了坯料流动规律。观察了不同道次内外层坯料织构,得到了旋压织构演变规律。进行旋压筒形件的力学性能实验,得到了坯料内层和外层沿轴向和切向的拉伸强度和延伸率的差别,得到了坯料组织和织构影响坯料性能的规律。
Modem spinning technology is an advanced plastic forming process and widely used in the field of precise processing technology of aerospace and military industry. Power spinning,one important part of spinning,has unique advantage when the thin wall tube of high precision,large slenderness ratio is made. It is became an important shaping method for flexible manufacturing of small-lot rotary thin-wall parts. At present, power spinning technology of cylindrical workpiece of titanium alloys with middle and high strength has many problems because power spinning is influenced by many factors which are difficult to be quantified and controlled. The way of combining FEM numerical simulation and experiment is adopted to research spinning process of thin-walled cylindrical workpiece of titanium alloys in this thesis.
     Based on analysis of the power spinning process,the boundary condition and the determination of load type are disposed effectively. The solid and shell element is used in discretion the blank and mandrel,roller respectively. The mechanical model,which fit well with the real process of tube spinning,is established.
     In this paper, ABAQUS/Explicit is used for analyzing the process of power spinning. The stress-strain status of different areas in raw material during different step and cause of drawback occurring are analyzed. During the forming Process,atypical three-dimensional compression stress zone lies in the place contacting with rollers. The hoop tension stress lies in other zones. The normal compressive stress lies in the formed place and unformed place. The distribution of stress field and strain field is given and the law of deformation and flow of metal is studied. The feature of power spinning is described. These results may be related to organization and property.
     It provides the basis for the conventional spinning experiment through the texture observation and performance testing of the different stock conditions of the Titanium alloy. In the process of spinning experiment, it has analyzed the influence of spinning technological parameter on the end parts quality, and brought in the scheme of controlling spinning technological parameter. Microstructure of hot power spinning of BT20 titanium alloy has also been analyzed, and distributions of spinning microstructure are obtained.
引文
1.赵宪明,吴迪,吕炎等.筒形件正强旋旋压力分布规律的有限元分析.哈尔滨工业大学学报. 2000, 32 (4): 120~122
    2. S. Stand Ford, Elizabeth Martin. Process Developments Put Metal Forming in a Spin. METALLUGIA. 1987, 10: 454~455
    3.范爱玲,田文怀,胡士廉等.电铸与旋压药型罩微观组织及织构的研究.兵器材料科学与工程. 2001, 24(5): 38~40
    4.韩志仁,陶华.筒形件强力内旋压工艺的正交试验研究.锻压技术, 2005, 2: 29-31
    5. S.Kalpakjian, Maximum Reduction in Power Spinning in of Tubes. Journal of Engineering for Industry, Transactions of the ASME, 1964, (45)1: 40-45
    6. T. Rammohan, R. Mishra. Studies on Power Spinning of Tubes. Trans. ASME. Eng. Ind. 1964, 86(2): 49~54
    7. R.P.Singhal.Estimation of Power in the Shear Spinning of Long Tube in Hard-work Material.Mater. Process. Technol. l990, 23: 29~40
    8. M. Jahazi, G.Ebrahimi. TheInfluece of Flow-forming Parameters and Microstructure on the Quality of a D6AC Steel. J.mater.Process. Technol.2000, 103: 362~366
    9. K.Kawai, L.N.Yang, H.Kudo. A flexible Shear Spinning of Truncated Conical Shells With a General-purpose Mandrel. Journal of Material Processing Technology. 2001,(113): 28~33
    10.周照耀,王真,赵宪明,薛克敏,吕炎.筒形件强力旋压的刚塑性有限元分析.塑形工程学报, 1994.3 ,1: 37-42
    11.李克智,吕炎.筒形件正旋变形机理的研究.华北工学院学报. 1997, (182): 95-98
    12. K.M. Xue, Y. Lu, X.M. Zhao. The Disposal of Key Problems in the FEM Analysis of Tube Stager Spinning. J. Mater. Process. Technol., 1997,69: 176-179
    13. Xue Kemin, Wang Zhen, Lu Yan, Li Kezhi. Elasto-plastic FEM Analysis and Experimental Study of Diameter Growth in Tube spinning. J. Mater. Process. Technol., 1997,69: 172-175
    14.李克智,李贺军,吕炎.筒形件强力旋压时金属切向变形分析.西北工业大学学报. 1998, 16(4): 26~31
    15. Li Kezhi, Hao Nanhai, Lu Yan, Xue Kemin. Research on the Distribution of the Displacement in Backward Tube Spinning.J. Mater. Process. Technol., 1998, 79: 185-188
    16.张涛,林刚.碟形容器封头冷旋压过程三维有限元数值分析.机械工程学报. 2002, 38(7): 136~139
    17.余汪洋.钛合金半球形件温旋过程三维弹塑性有限元模拟.哈尔滨工业大学硕士学位论文. 2004年6月
    18.赵宪明.错距旋压三维弹塑性有限元分析及实验研究.哈尔滨工业大学博士学位论文. 1995
    19. Liu Yingwei, Shan Debin, Lu Yan. Study of Mechanical Model during Power Spinning Simulation of Cylindrical Workpiece. Journal of Harbin Institute of Technology, 1998, 5(4): 76-79
    20.许沂,李萍,单德彬,吕炎.筒形件反旋旋压力模拟分析.热加工工艺, 1999, (3): 27-28
    21. Y. Xu, S.H. Zhang, P. Li, et al. 3D Rigid-Plastic FEM Numerical Simulation on Tube Spinning. J. Mater. Process. Technol., 2001, 113: 710-713
    22.李超玲.筒形件强力旋压过程有限元模拟.西北工业大学硕士论文. 2004.
    23.代秀芝,刘靖,韩静涛.超细晶铜带材的组织及力学性能研究.山东冶金.北京科技大学,材料科学与工程学院2006, 8(5): 40~42
    24.张颂阳,耿茂鹏,张莹,王艳春,谢水生,周新民,半固态铸轧AZ91D镁合金板带再加工组织性能.塑性工程学报. 2007, 14(1): 31~35
    25.刘惠芳,李阁平,魏涛庸,和平志,刘新林,邵军. BT8钛合金轧棒组织与性能.钛工业进展. 2006, 23(6): 33~35
    26. M. Jahazi, G. Ebrahimi. The Influence of Flow-forming Parameters and Microstructure on the Quality of a D6ac Steel[J]. J. Mater. Process. Technol.. 2000, 103: 362-366.
    27. R.M. Rajan, P.U. Deshpande, K. Narasimhan. Effects of Heat Treatment of Perform on the Mechanical Properties of Flow Formed AISI 4130 Tube[J]. J. Mater. Process. Technol., 2002, 125-126: 503-511.
    28. S.C. Chang, C.A. Huang, S.Y. Yu. Tubespinnability of AA 2024 and 7075Aluminum alloys[J]. J. Mater. Process. Technol.. 1998, 80-81: 676-682.
    29. S.C. Chang, C.C. Wang, C.A. Huang. Fabrication of 2024 Aluminum Spun Tube Using a Thermo- Mechanical Treatment Process[J]. J. Mater. Process. Technol., 2001, 108: 294-299.
    30.吴以琴,胡文英,昌文华.用Ti-451合金制造薄壁压力容器[J].稀有金属材料与工程, 1990, (1):30-34.
    31.郭可信.金相学史话(5): X射线金相学.材料科学与工程. 2001, 19(4): 3~8
    32.毛卫民,张新明.晶体材料织构定量分析.冶金工业出版社. 1993: 195~212
    33. Y.Kaneno, I.Nakaaki, T.Takasugi.Texture Evolution during Cold Rolling and Recrystallization of L12–Type Ordered Ni3(Si, Ti) Alloy.Intermetallics.2002: 693~700
    34. N. Wang, J. C. Huang. Textureanalysis in hexagonal materials. Materials Chemistry and Physics. 2003: 11~26
    35. H. R.Wenk, I.Lonardelli, D. Williams. Texture changes in the hcp→bcc→hcp transformation of zirconium studied in situ by neutron diffraction.Acta Materializ. 2004, 52: 1899~1907
    36. Shi-Hoon Choi, Jae-Hyung Cho, Kyu Hwan Oh, Kwansoo Chung, Frédéric Barlat. Texture evolution of FCC sheet metals during deep drawing process. International Journal of Mechanical Sciences. 2000, 42: 1572~1592
    37.叶山益次郎.旋压加工原理及工艺讲义.有色金属总院译. 1987
    38.张新明,李赛毅.金属材料织构的研究及其发展.中国科学基金.1995: 26~30
    39. F.Wagner, N.Bozzolo, O.VanLanduyt, T.Grosdidie.Evolution of recrystallization texture and microstructure in lowalloyed titanium sheet. Acta Materialia. 2002: 1245~1259
    40. Roger D.Doherty.Recrystallization and texture.Progress in Materials Science. 1997, 42: 39~58
    41.林一坚. IC-218合金的再结晶织构及其形成机制.上海金属. 2004, 26(6): 1~5
    42.毛卫民,张新明.晶体材料织构定量分析.北京:冶金工业出版社, 1993: 97.
    43. Hirsch J. Walztexturentwicklung in Kubisch-Flachen-Zentrierten Metallen, RWTH Aachen, Germany, 1984: Teil
    44. Gottstein G. RekristalGsation Metallischer Werkstoffe, DGM-Informations Gesells Chaft Oberursel 1 , 1984; 141.
    45. Bunge H -J. Texture Analysis in Materials Science, Butterworths, 1982; 302.
    46. Lequeu PH, Jonas J J. Modeling of the Plastic Anisotoropy of Texturned Sheet. Metall. Trans.,1988, 19A: 105.
    47. Bunge H -J. Mathematische Methoden der Texturanalyse, Akademie-Verlag, Berlin, 1969.
    48.刘建华,杨合,李玉强.旋压技术基本原理的研究现状与发展趋势.重型机械. 2002年第3期
    49.刘毓舒,赵波,宓小川. F深冲钢织构及其对塑性各向异性的影响.上海交通大学学报. 2004, 38(7): 1143~1147
    50. Gregory J K, Brokmeier H G. the Influence of Texture and Microstructure on Corrosion-Fatigue in Ti-6Al-4V. Materials Science Forum, 1994, 157~162 : 1972~1978
    51. Fager D N, Spurr W F, Some Characteristics of Aqueous Sress-Corrosion in Titanium Alloys. Trans. NF Soc. 1995, 5(2): 66~77
    52. Humbert M, Wegria J, Esling C. Prediction of the Thermal Expansion of Texture Zinc Alloys. Textures and Microstructures, 1991, 14~18: 471~476
    53.毛柏平,汪发春,赵云豪,沈健.钛合金旋压性能的试验研究.稀有金属. 2004, 28(1): 271~273
    54. Cardonne S M, Kumar P, Michaluk C A, Schwartz H D.Tantalum and Its Alloys. Adv. Mat. Proc. 1992, 9: 16~20
    55. Raabe D, ulders B, Gottstein D, Lucke K. Textures of Cold Rolled and Annealing Tantalum. Materials Science Forum, 1994, 157~162: 841~846
    56. Styczynski, Ch. Hartig, J.Bohlen, D.Letzig. Cold Rolling Textures in AZ31 Wrought Magnesium Alloy. Scripat Materialia. 2004. 50: 943~947
    57.曾质彬,陈宇,康达昌. BT20钛合金筒形件的UOE热成形.金属成形艺. 2003, 21(6): 49~50
    58. Qiang Tong. Experiment Investigation of Deep-Drawing Sheet Texture Evolution. Journal of Materials Processing Technology. 2003: 509~513
    59. R.Knockaer, Y.Chastel, E.Massoni. Experimental and numerical determination of texture evolution during deep drawing tests. Journal of Materials Processing Technology. 2001: 300~311
    60.梁志德,徐家祯,王福.织构材料的三维取向分析-ODF分析东北工学院出版社, 1986: 45.
    61. N.Gey, M.Humbert, M.J.Philippe, Y.Combres.Investigation of theα- andβ- Texture Evolution of Hot Rolled Ti-64 Products. Materials Science and Engineering. 1996: 80~88
    62.尤世武.热轧Ti-6Al-4V的织构分析.稀有金属快报. 2002, 6: 24~25