上海部分地区成人感染麻疹病毒的分子流行病学及致病机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界卫生组织(WHO)西太平洋区(WPR)已经将2012年确定为本区各成员国消除麻疹的期限,但是,近几年我国部分省市仍然发生着麻疹疫情的暴发流行。
     与往年相比,2005年上海市麻疹病例数明显上升。流行病学调查显示,超过70%的麻疹患者是成人,大部分成人患者临床症状比较严重,但原因不明,也不清楚其致病机制。为探讨导致成人麻疹患者临床症状严重的原因,本研究拟从麻疹病毒的分子流行病学及麻疹患者免疫功能两个侧面开展研究工作。
     本研究首先对来自上海三个不同医院的成人麻疹患者进行流行病学调查。病例调查结果显示,3.3%(2/61)及9.8%(6/61)病人分别有及无明确的麻疹疫苗免疫史,而86.9%(53/61)的病例不知道既往是否接种过麻疹疫苗。同时从三个不同医院收集成人麻疹疑似病例的咽拭子、尿液。用Vero/SLAM细胞系从咽拭子、尿液标本中分离病毒,采用免疫荧光(抗麻疹病毒H蛋白单克隆抗体)及电子显微镜观察等方法对临床分离物进行鉴定证实,用RT-PCR法扩增所分离病毒N基因C末端450核甘酸片断,并将获得的PCR产物经纯化后测定序列;Phylogenetic分析数据提示2006-2007年在上海流行并引起成人感染的21株麻疹病毒基因型别均属H1a型。
     为研究麻疹病毒感染成人对机体免疫功能的影响,收集了三个医院患者的血液标本,分离血浆及PBMC,并保存于低温冰箱及液氮。同时收集正常成人血标本,分离PBMC后用2006年本室分离的麻疹病毒攻击健康成人PBMC,收集细胞上清及细胞。用CBA的方法检测对照及患者血浆及体外刺激的PBMC培养上清液中Il-2、IL-4、IL-5、IL-10、TNFα、IFNγ及IFNα蛋白表达;用RT-PCR检测对照和患者及体外病毒攻击的PBMC中相应细胞因子的基因表达;用流式细胞仪检测对照及患者PBMC中CD14~+、CD4~+、CD4~+CD25~+及表达TLR2/4淋巴细胞等各种细胞百分比。实验结果显示,麻疹感染早期,成人患者先天性免疫功能受到广泛抑制,包括外周血中表达TLR2/4的淋巴细胞缺失、Ⅰ型干扰素缺乏等;同时患者细胞免疫功能也出现异常,表现为患者细胞因子IL-2、IFNγ及IL-10在转录、翻译水平均显著上调,CD14~+细胞、CD4~+ T细胞数目显著减少伴随着CD4~+CD25~+调节性T细胞数目明显增加。统计学分析发现,患者外周血中CD4~+CD25~+T细胞数目与其血浆中IL-10的量呈正相关关系。
     综上所述,本研究揭示了2006-2007年在上海造成成人麻疹感染的病毒基因型别;并证实病毒变异不是造成成人麻疹患者临床症状严重的主要原因。本研究还证实,在成人感染麻疹病毒的早期,其外周血中表达TLR2/4的淋巴细胞缺失、Ⅰ型干扰素缺乏等先天性免疫功能受到广泛抑制,表现出Th1/Th2免疫反应共同存在的现象,患者CD14~+细胞、CD4~+T细胞数目显著减少,而CD4~+CD25~+调节性T细胞的数目却明显上调;另外,与其他文献报道的儿童麻疹病例相比,本课题研究对象血浆IFNγ及IL-10的量上升的幅度相对很高,从而提示高水平分泌的IFNγ、IL-10及上调的CD4~+CD25~+调节性T细胞可能是造成成人麻疹患者临床症状严重的主要原因;而CD4~+CD25~+T细胞可能是成人麻疹患者体内高水平的IL-10主要细胞来源。上述研究为提出控制近年出现的麻疹疫情暴发流行的策略及措施提供了流行病学线索和实验依据。
In 2005,the Regional Committee for Western Pacific,of which China is a member state,endorsed the plan to eliminate measles by 2012.However,measles outbreak and epidemic still took place in several provinces of China.
     In 2005,there was a significant increase in measles patients in Shanghai compared with that of the previous years.The case survey data suggested that more than 70%of patients were adults,and the majority of patients displayed severe disease symptoms.To elucidate the causes of such phenomenon,we planed to identify the genetic characterization of measles virus circulated in Shanghai,as well as to study the immuno-pathogenesis of adult measles cases.
     The current research conducted an epidemiologic survey on the adult measles patients admitted into 3 different hospitals in Shanghai first.The case investigation data suggested that 3.3%(2/61)or 9.8%(6/61)patients had or had not vaccinated with measles vaccine before,the rest 86.9%(53/61) of cases did not know their previous measles vaccination history.At the same time,we collected the blood,urine,and throat swab samples from patients.Then we isolated MV from clinical samples and titrated them with Vero-SLAM cell line.Cultures were confirmed with Immuno-fluorescent Assay by using a monoclonal antibody to measles virus H protein or by viewing the electronic microscope.The sequences of the 450 nucleotides coding for the COOH-terminus of the nucleoprotein from all clinical isolates were detected.Sequences were analyzed,and phylogenetic trees were constructed.The phylogenetic analysis based on both nucleotide and amino acid homology showed that all 21 isolates formed three small clusters within Hla.
     To illucidate the immuno-pathology caused by measles virus in adult measles patients,we collected blood samples from healthy adults admitted to the blood bank and adult measles patients from 3 hospitals in Shanghai,and isolated the plasma and PBMC;moreover,we using a wild type measles virus we isolated in 2006 to stimulate the normal PBMC,collected the culture supernatant and cells post infection.Then we detected the IL-2,IL-4,IL-5,IL-10,TNFα,IFNγand IFNαgene expression in patients' PBMC as well as in-vitro cultured cells by RT-PCR,as well as checked the protein level in patients' plasma and in-vitro culture supernatant by CBA technique; We also quantified the CD14~+,CD4~+,CD4~+ CD25~+ cell population and the number of cells expression TLR2/4 in PBMC.Our results showed that in acute measles phase, the innate immune system of the adult patients was marked suppressed with significant reduction of TLR2/4 expressing cells and blocked typeⅠinterferon secretion;For adaptive immune,there was a mixed Th1 and Th2 immune response with down-regulated CD 14~+,CD4~+ cell population but up-regulated CD4~+ CD25~+ percentile in adult patients.Statistic analysis showed that,in adult measles patients,CD4~+ CD25~+ cell population positively correlated to plasma IL-10 production.
     Taken together,our data identified all 21 clinical isolates gotten from 2006 to 2007 as H1a genotype viruses,which suggested that virus mutation may not be the main cause of severe disease symptoms observed in adult measles patients in Shanghai.Our data also confirmed that in acute measles infection,the innate immune system of the adult patients was marked suppressed with significant reduction of TLR2/4 expressing cells and blocked typeⅠinterferon secretion;There was a mixed Thl(characterized by the elevated IL-2/IFNγproduction) and Th2 immune response (characterized by an elevated IL-10),but the number of CD 14~+,CD4~+ T cell population were down-regulated with the up-regulated CD4~+ CD25~+ T percentile.Our results suggested that the robust IFNγand IL-10 production,and the marked elevated CD4~+ CD25~+ T cell population may related to the severe disease symptoms observed in adult measles patients in Shanghai;and CD4~+ CD25~+ T cell might be the cellular source of the robust IL-10 production in adult measles patients.The above study provides laboratory evidences and epidemiologic clue for the police makers to construct appropriate measles control strategies,which may help to better handle the measles outbreaks and epicemic in our country.
引文
1. CDC. 2000. Measles-United States. In Morbidity and Mortality Weekly., Vol. Rep. 49. Centers for Disease Control and Prevention, Atlanta, p. 557?60.
    2. Hersh, B. S., G Tambini, A. C. Nogueira, P. Carrasco, and C. A. de Quadros. 2000. Review of regional measles surveillance data in the Americas, 1996-1999. Lancet 355:1943?948.
    3. Rota, J. S., J. L. Heath, P. A. Rota, G E. King, M. L. Celma, J. Carabana, R. Fernandez-Munoz, D. Brown, L. Jin, and W. J. Bellini. 1996. Molecular epidemiology of measles virus: identification of pathways of transmission and implications for measles elimination. J Infect Dis 173:32.
    4. CDC. 2005a. Global Measles and Rubella Laboratory Network, January 2004-June 2005. MMWR Morb Mortal Wkly Rep 54:1100.
    5. WPRO/WHO. 2005. RCM Resolution WPR/RC56.R8. World Health Organization Regional Office for the Western Pacific, Manila, Philippines.
    6. WHO. 2007. Reducing global disease burden of measles and rubella: Report of the WHO Steering Committee on research related to measles and rubella vaccines and vaccination, 2005. In Vaccine, Vol. 25, p. 1.
    7. CDC. 2006. Challenges in global immunization and the Global Immunization Vision and Strategy 2006-2015. Wkly Epidemiol Rec 81:190.
    8. WHO/UNICEF. 2005. Global Immunization Vision and Strategy 2006-2015. the WHO Department of Immunization, Vaccines and Biologicals and UNICEF Programme Division, Health Section, Geneva.
    9. WHO/UNICEF. 2003. Measles Mortality Reduction and Regional Elimination Strategic Plan 2001-2005. World Health Organization; UNICEF; United Nations Children's Fund, Geneva.
    10. Wharton, M., T. L. Chorba, R. L. Vogt, D. L. Morse, and J. W. Buehler. 1990. Case definitions for public health surveillance. In MMWR Recomm Rep, Vol. 39. Centers for Disease Control, U.S., Atlanta, Georgia p. 1.
    11. WHO. 2005b. Global measles and rubella laboratory network - update. Weekly epidemiological record 80:377.
    12. Morita, Y., T. Suzuki, M. Shiono, M. Shiobara, M. Saitoh, H. Tsukagoshi, M. Yoshizumi, T. Ishioka, M. Kato, K. Kozawa, K. Ttanaka-Taya, Y. Yasui, M. Noda, N. Okabe, and H. Kimura. 2007. Sequence and phylogenetic analysis of the nucleoprotein (N) gene in measles viruses prevalent in gunma, Japan, in 2007. Jpn J Infect Dis 60:402.
    13. Vaidya, S. R., N. S. Wairagkar, D. Raja, D. D. Khedekar, P. Gunasekaran, S. Shankar, A. Mahadevan, and N. Ramamurty. 2007. First detection of measles genotype D7 from India. Virus Genes.
    14. Chironna, M., R. Prato, A. Sallustio, D. Martinelli, C. Germinario, P. Lopalco, and M. Quarto. 2007. Genetic characterization of measles virus strains isolated during an epidemic cluster in Puglia, Italy 2006-2007. Virol J 4:90.
    15. Okafuji, T., T. Okafuji, M. Fujino, and T. Nakayama. 2006. Current status of measles in Japan: molecular and seroepidemiological studies. J Infect Chemother 12:343.
    16. Gioula, G, A. Papa, M. Exindari, A. Melidou, D. Chatzidimitriou, D. Karabaxoglou, A. Antoniadis, and V. Kyriazopoulou. 2007. Greek measles epidemic strain, 2005-2006. Epidemiol Infect 135:570.
    17. Riddell, M. A., P. Lynch, L. Jin, and D. Chibo. 2006. Measles case imported from Europe to Victoria, Australia, March 2006. Euro Surveill 11.E060518 2.
    18. Muwonge, A., M. Nanyunja, P. A. Rota, J. Bwogi, L. Lowe, S. L. Liffick, W. J. Bellini, and S. Sylvester. 2005. New measles genotype, Uganda. Emerg Infect Dis 11:1522.
    19. Djebbi, A., O. Bahri, T. Mokhtariazad, M. Alkhatib, A. Ben Yahia, D. Rezig, E. Mohsni, and H. Triki. 2005. Identification of measles virus genotypes from recent outbreaks in countries from the Eastern Mediterranean Region. J Clin Virol 34:1.
    20. Korukluoglu, G., S. Liffick, D. Guris, F. Kobune, P. A. Rota, W. J. Bellini, A. Ceylan, and M. Ertem. 2005. Genetic characterization of measles viruses isolated in Turkey during 2000 and 2001. Virol J 2:58.
    21. Atrasheuskaya, A. V., E. M. Blatun, A. A. Neverov, S. N. Kameneva, N. L. Maksimov, I. A. Karpov, and G. M. Ignatyev. 2005. Measles in Minsk, Belarus, 2001-2003: clinical, virological and serological parameters. J Clin Virol 34:179.
    22. Tipples, G. A., M. Gray, M. Garbutt, and P. A. Rota. 2004. Genotyping of measles virus in Canada: 1979-2002. J Infect Dis 189 Suppl 1:S171.
    23. Papania, M. J., J. F. Seward, S. B. Redd, F. Lievano, R. Harpaz, and M. E. Wharton.2004.Epidemiology of measles in the United States,1997-2001.J Infect Dis 189 Suppl 1:S61.
    24.WHO.2005d.Global Measles and Rubella Laboratory Network,January 2004-June 2005.MMWR Morb Mortal Wkly Rep 54:1100.
    25.Rota,E A.,and W.J.Bellini.2003.Update on the global distribution of genotypes of wild type measles viruses.Jlnfect Dis 187 Suppl 1:S270.
    26.Xu,W.B.,Z.Zhu,Z.Y.Zhang,T.Z.Wang,X.H.Jiang,C.Y.Wang,W.K.He,J.G.Wang,C.Y.Li,L.Zheng,H.Ling,P.Li,G.Liu,H.J.Tian,S.J.Zhou,J.Tian,and B.Wang.2003b.An Analysis of W ild-type Measles Viruses of H 1Genotype Circulated in China.Chinese Journal of Vaccine Immunization 9:1.
    27.Liffick,S.L.,N.Thi Thoung,W.Xu,Y.Li,H.Phoung Lien,W.J.Bellini,and P.A.Rota.2001.Genetic characterization of contemporary wild-type measles viruses from Vietnam and the People's Republic of China:identification of two genotypes within clade H.Virus Res 77:81.
    28.Smit,S.B.,D.Hardie,and C.T.Tiemessen.2005.Measles virus genotype B2is not inactive:evidence of continued circulation in Africa.J Med Virol 77:550.
    29.Zhang,Y.,Z.Zhu,P.A.Rota,X.Jiang,J.Hu,J.Wang,W.Tang,Z.Zhang,C.Li,C.Wang,T.Wang,L.Zheng,H.Tian,H.Ling,C.Zhao,Y.Ma,C.Lin,J.He,J.Tian,Y.Ma,P.Li,R.Guan,W.He,J.Zhou,G.Liu,H.Zhang,X.Yan,X.Yang,J.Zhang,Y.Lu,S.Zhou,Z.Ba,W.Liu,X.Yang,Y.Ma,Y.Liang,Y.Li,Y.Ji,D.Featherstone,W.J.Bellini,S.Xu,G Liang,and W.Xu.2007.Molecular epidemiology of measles viruses in China,1995-2003.Virol J 4:14.
    30.Xie,Z.D.,K.L.Shen,W.B.Xu,G T.Zhaori,and Z.Zhu.2004.Nucleoprotein gene analysis of the wild-type measles viruses circulated in Beijing in 2001.Chin Med J(Engl) 117:140.
    31.Yu,X.,F.Qian,Y.Sheng,D.Xie,D.Li,Q.Huang,Y.Zhang,Z.Yuan,and R.Ghildyal.2007.Clinical and genetic characterization of measles viruses isolated from adult patients in Shanghai in 2006.J Clin Virol 40:146.
    32.胡家瑜,张金芳,陶黎纳,袁政安.2005.上海市2001—2004年麻疹爆发疫情流行病学特征分析.中国计划免疫 11:473.
    33.何景雄,袁家麟,陈云华,徐枫,and朱宏幼.2006.上海市卢湾区2005年麻疹监测分析.上海预防医学杂志 18:177.
    34.Xu,A.Q.,Z.j.Fang,W.B.Xu,L.X.Wang,G.Wanshen,X.Qing,S.Haijun, L.A.Lee,and L.Xiaofeng.2003a.Active case-based surveillance for measles in China:lessons learned from Shandong and Henan provinces.J Infect Dis 187 Suppl 1:S258.
    35.马师,耿振新,田艳玲,张淑云,刘洁.2004.麻疹62例监测资料分析.实用儿科临床杂志 19:905.
    36.Featherstone,D.,D.Brown,and R.Sanders.2003.Development of the Global Measles Laboratory Network.J Infect Dis 187 Suppl 1:S264.
    37.Kremer,J.R.,F.Fack,C.M.Olinger,M.N.Mulders,and C.P.Muller.2004.Measles Virus Genotyping by Nucleotide-Specific Multiplex PCR.JOURNAL OF CLINICAL MICROBIOLOGY 42:3017?022.
    38.Hsu,E.C.,F.Sarangi,C.Iorio,M.S.Sidhu,S.A.Udem,D.L.Dillehay,W.Xu,P.A.Rota,W.J.Bellini,and C.D.Richardson.1998.A single amino acid change in the hemagglutinin protein of measles virus determines its ability to bind CD46 and reveals another receptor on marmoset B cells.J Virol 72:2905.
    39.Saito,H.,H.Sato,M.Abe,S.Harata,K.Amano,T.Suto,and M.Morita.1994.Cloning and characterization of the cDNA encoding the HA protein of a hemagglutination-defective measles virus strain.Virus Genes 8:107.
    40.姬奕昕,许文波,张燕,朱贞,蒋小泓,梁勇,周淑洁,詹军,陈慧,张杰,司源,冯燕,芦起,许松涛.2005.中国6省2005年麻疹病毒分离株分子特征分析.病毒学报21:407.
    41.Moss,W.J.,M.O.Ota,and D.E.Griffin.2004.Measles:immune suppression and immune responses.Int.J.Biochem.Cell Biol.36:1380-1385.
    42.Schneider-Schaulies,J.,L.M.Dunster,S.Schneider-Schaulies,and V.ter Meulen.1995.Pathogenetic aspects of measles virus infections.Vet Microbiol 44:113-125.
    43.Griffin,D.E.,R.T.Johnson,V.G.Tamashiro,T.R.Moench,E.Jauregui,I.Lindo de Soriano,and A.Vaisberg.1987.In vitro studies of the role of monocytes in the immunosuppression associated with natural measles virus infections.Clin Immunol Immunopatho145:375-383.
    44.Hahm,B.,N.Arbour,D.Naniche,D.Homann,M.Manchester,and M.B.Oldstone.2003.Measles virus infects and suppresses proliferation of T lymphocytes from transgenic mice beating human signaling lymphocytic activation molecule.J Virol 77:3505-3515.
    45.Niewiesk,S.,M.Gotzelmann,and V.ter Meulen.2000.Selective in vivo suppression of T lymphocyte responses in experimental measles virus infection. Proc Natl Acad Sci USA 97:4251-4255.
    46. Esolen, L. M., B. J. Ward, T. R. Moench, and D. E. Griffin. 1993. Infection of monocytes during measles. J Infect Dis 168:47-52.
    47. Griffin, D. E., T. R. Moench, R. T. Johnson, I. Lindo de Soriano, and A. Vaisberg. 1986. Peripheral blood mononuclear cells during natural measles virus infection: cell surface phenotypes and evidence for activation. Clin Immunol Immunopathol 40:305-312.
    48. Moss, W. J., J. J. Ryon, M. Monze, and D. E. Griffin. 2002. Differential regulation of interleukin (IL)-4, IL-5, and IL-10 during measles in Zambian children. J Infect Dis 186:879-887.
    49. Hoffman, S. J., F. P. Polack, D. A. Hauer, and D. E. Griffin. 2003. Measles virus infection of rhesus macaques affects neutrophil expression of IL-12 and IL-10. Viral Immunol 16:369-379.
    50. Griffin, D. E., and B. J. Ward. 1993. Differential CD4 T cell activation in measles. J Infect Dis 168:275-281.
    51. Howe, R. C., N. Dhiman, I. G. Ovsyannikova, and G. A. Poland. 2005. Induction of CD4 T cell proliferation and in vitro Th1-like cytokine responses to measles virus. Clin Exp Immunol 140:333-342.
    52. Atabani, S. F., A. A. Byrnes, A. Jaye, I. M. Kidd, A. F. Magnusen, H. Whittle, and C. L. Karp. 2001. Natural measles causes prolonged suppression of interleukin-12 production. J Infect Dis 184:1-9.
    53. Polack, F. P., S. J. Hoffman, W. J. Moss, and D. E. Griffin. 2002. Altered synthesis of interleukin-12 and type 1 and type 2 cytokinesin rhesus macaques during measles and atypical measles. J Infect Dis 185:13-19.
    54. Marie, J. C., J. Kehren, M. C. Trescol-Biemont, A. Evlashev, H. Valentin, T. Walzer, R. Tedone, B. Loveland, J. F. Nicolas, C. Rabourdin-Combe, and B. Horvat. 2001. Mechanism of measles virus-induced suppression of inflammatory immune responses. Immunity 14:69-79.
    55. Fugier-Vivier, I., C. Servet-Delprat, P. Rivailler, M. C. Rissoan, Y. J. Liu, and C. Rabourdin-Combe. 1997. Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells. J Exp Med 186:813-823.
    56. Servet-Delprat, C., P. O. Vidalain, H. Bausinger, S. Manie, F. Le Deist, O. Azocar, D. Hanau, A. Fischer, and C. Rabourdin-Combe. 2000. Measles virus induces abnormal differentiation of CD40 ligand-activated human dendritic cells. J Immunol 164:1753-1760.
    57. McKenna, K., A. S. Beignon, and N. Bhardwaj. 2005. Plasmacytoid dendritic cells: linking innate and adaptive immunity. J Virol 79:17-27.
    58. Huang, Q., D. Liu, P. Majewski, L. C. Schulte, J. M. Korn, R. A. Young, E. S. Lander, and N. Hacohen. 2001. The Plasticity of Dendritic Cell Responses to Pathogens and Their Components. Science 294:870-875.
    59. Santini, S. M., T. Di Pucchio, C. Lapenta, S. Parlato, M. Logozzi, and F. Belardelli. 2002. The natural alliance between type I interferon and dendritic cells and its role in linking innate and adaptive immunity. J Interferon Cytokine Res 22:1071 -1080.
    60. Vidalain, P. O., O. Azocar, C. Rabourdin-Combe, and C. Servet-Delprat. 2001. Measle virus-infected dendritic cells develop immunosuppressive and cytotoxic activities. Immunobiology 204:629-638.
    61. Zhang, Z., and F. S. Wang. 2005. Plasmacytoid dendritic cells act as the most competent cell type in linking antiviral innate and adaptive immune responses. Cell Mol Immunol 2:411 -417.
    62. Servet-Delprat, C, P. O. Vidalain, O. Azocar, F. Le Deist, A. Fischer, and C. Rabourdin-Combe. 2000. Consequences of Fas-mediated human dendritic cell apoptosis induced by measles virus. J Virol 74:4387-4393.
    63. Vidalain, P. O., O. Azocar, B. Lamouille, A. Astier, C. Rabourdin-Combe, and C. Servet-Delprat. 2000. Measles virus induces functional TRAIL production by human dendritic cells. J Virol 74:556-559.
    64. Palosaari, H., J. P. Parisien, J. J. Rodriguez, C. M. Ulane, and C. M. Horvath. 2003. STAT protein interference and suppression of cytokine signal transduction by measles virus V protein. J Virol 77:7635-7644.
    65. Hahm, B., M. J. Trifilo, E. I. Zuniga, and M. B. A. Oldstone. 2005. Viruses Evade the Immune System through Type Ⅰ Interferon-Mediated STAT2-Dependent, but STAT1-Independent, Signaling. Immunity 22:247-257.
    66. Dubois, B., P. J. Lamy, K. Chemin, A. Lachaux, and D. Kaiserlian. 2001. Measles virus exploits dendritic cells to suppress CD4+ T-cell proliferation via expression of surface viral glycoproteins independently of T-cell trans-infection. Cell Immunol 214:173-183.
    67. Klagge, I. M, V. ter Meulen, and S. Schneider-Schaulies. 2000. Measles virusinduced promotion of dendritic cell maturation by soluble mediators does not overcome the immunosuppressive activity of viral glycoproteins on the cell surface.. Eur. J. Immunol. 30:2741-2750.
    68. Barton, G. M. 2007. Viral recognition by Toll-like receptors. Semin Immunol 19:33-40.
    69. Bieback, K., E. Lien, I. M. Klagge, E. Avota, J. Schneider-Schaulies, W. P. Duprex, H. Wagner, C. J. Kirschning, V. Ter Meulen, and S. Schneider-Schaulies. 2002. Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J Virol 76:8729-8736.
    70. O'Garra, A., P. L. Vieira, P. Vieira, and A. E. Goldfeld. 2004. IL-10-producing and naturally occurring CD4+ Tregs: limiting collateral damage. J Clin Invest 114:1372-1378.
    71. Schlender, J., V. Hornung, S. Finke, M. Gunthner-Biller, S. Marozin, K. Brzozka, S. Moghim, S. Endres, G. Hartmann, and K. K. Conzelmann. 2005. Inhibition of toll-like receptor 7- and 9-mediated alpha/beta interferon production in human plasmacytoid dendritic cells by respiratory syncytial virus and measles virus. J Virol 79:5507-5515.
    72. Anderson, R. M., R. M. May, and B. Anderson. 1991. Infectious Diseases of Humans: Dynamics and Control. Oxford Science Publications, Oxford.
    73. Gabutti, G., M. C. Rota, S. Salmaso, B. M. Bruzzone, A. Bella, and P. Crovari. 2002. Epidemiology of measles, mumps and rubella in Italy. Epidemiol Infect 129:543-550.
    74. Aiqiang, X., F. Zijian, X. Wenbo, W. Lixia, G. Wanshen, X. Qing, S. Haijun, L. A. Lee, and L. Xiaofeng. 2003. Active case-based surveillance for measles in China: lessons learned from Shandong and Henan provinces. J Infect Dis 187 Suppl 1:S258-263.
    75. He, J. X., J. L. Yuan, Y. H. Chen, F. Xu, and H. Y. Zhu. 2006. Analysis on Measles Surveillance of Luwan District, Shanghai in 2005. Shanghai Journal of Preventive Medicine 18:177-178.
    76. Williams, J. R., and P. Manfredi. 2004. Ageing populations and childhood infections: the potential impact on epidemic patterns and morbidity. Int J Epidemiol 33:566-572.
    77. Ma, S., Z. X. Geng, Y. L. Tian, S. Y. Zhang, and Y. Liu. 2004. Measles Surveillance Data Analysis of 62 Child Cases. J App Clin Ped 19:905-906.
    78. Atrasheuskaya, A. V., E. M. Blatun, A. A. Neverov, S. N. Kameneva, N. L. Maksimov, I. A. Karpov, and G. M. Ignatyev. 2005. Measles in Minsk, Belarus, 2001-2003: clinical, virological and serological parameters. J Clin Virol 34:179-185.
    79. Qiang, O., L. Xinian, Z. Renfang, and T. Xuying. 2004. Clinical and epidemiologieal analysis of 67 sporadic adult patients with measles. World Journal of Infection 4:502.
    80. Xiaojue, L., X. Hua, and Z. Jiaxin. 2005. Analysis on the clinical symptom of 224 adult measles patients Chin J Exp Clin Virol 19:99.
    81. Yi, L., H. Youwei, W. Xiaohong, and Z. Qirong. 2000. New characterize of measles epidemic during 1990's, in Shanghai. Chiness Journal of Clinical Pediatric 18:142-144.
    82. Zheng, Y. F., X. N. Liu, Q. Huang, Y. Ling, H. Q. Sun, and H. Z. Lu. 2005. Clinical analysis of 102 measles patients in Shanghai at 2005. World Journal of Infection 5:497-498.
    83. CDC. 2005. Global Measles and Rubella Laboratory Network, January 2004-June 2005. Morbidity and Mortality Weekly Report 54:1100-1104.
    84. Zhang, Y., Z. Zhu, P. A. Rota, X. Jiang, J. Hu, J. Wang, W. Tang, Z. Zhang, C. Li, C. Wang, T. Wang, L. Zheng, H. Tian, H. Ling, C. Zhao, Y. Ma, C. Lin, J. He, J. Tian, Y. Ma, P. Li, R. Guan, W. He, J. Zhou, G. Liu, H. Zhang, X. Yan, X. Yang, J. Zhang, Y. Lu, S. Zhou, Z. Ba, W. Liu, X. Yang, Y. Ma, Y. Liang, Y. Li, Y. Ji, D. Featherstone, W. J. Bellini, S. Xu, G. Liang, and W. Xu. 2007. Molecular epidemiology of measles viruses in China, 1995-2003. Virol J 4:14.
    85. Yu, X. L., F. X. Qian, Y. Z. Sheng, D. S. Xie, D. Li, Q. Huang, Y. Zhang, Z. H. Yuan, and R. Ghildyal. 2007. Clinical and genetic characterization of measles viruses isolated from adult patients in Shanghai in 2006. J Clin Virol 40:146-151.
    86. Holden, H. Y., R. K. Oldham, J. R. Ortaldo, and R. B. Herberman, eds. 1976. Cryopreservation of the functional activity of normal and immune leukocytes and of tumor cells. Academic Press, New York.
    87. CDC. 2002. Standard Protocols for Molecular Epidemiology,Measles Virus Section, CDC. Center for disease prevention and control, United States., Atlanta. 38.
    88. Liu, J., H. M. Wei, Z. G. Tian, J. B. Feng, and N. Song. 1999. Establishment of detecting methods of Th1/Th2 cytokine gene. Chinese Journal of Immunology 15.
    89. Helin, E., R. Vainionpaa, T. Hyypia, I. Julkunen, and S. Matikainen. 2001. Measles virus activates NF-kappa B and STAT transcription factors and production of IFN-alpha/beta and IL-6 in the human lung epithelial cell line A549. Virology 290:1-10.
    90. Salonen, R., J. Ilonen, and A. A. Salmi. 1989. Measles virus inhibits lymphocyte proliferation in vitro by two different mechanisms. Clin Exp Immunol 75:376-380.
    91. Nakatsu, Y., M. Takeda, S. Ohno, R. Koga, and Y. Yanagi. 2006. Translational inhibition and increased interferon induction in cells infected with C protein-deficient measles virus. J Virol 80:11861-11867.
    92. Takeuchia, K., S. Kadotaa, M. Takedab, N. Miyajimac, and K. Nagataa. 2003. Measles virus V protein blocks interferon (IFN)-K/L but not IFN-Q signaling by inhibiting STAT1and STAT2 phosphorylation. FEBS Letters 545:177-182.
    93. Zilliox, M. J., G. Parmigiani, and D. E. Griffin. 2006. Gene expression patterns in dendritic cells infected with measles virus compared with other pathogens. Proc Natl Acad Sci USA 103:3363-3368.
    94. Hahm, B., C. Jaeho, and M. B. A. Oldstone. 2007. Measles virus-dendritic cell interaction via SLAM inhibits innate immunity: Selective signaling through TLR4 but not other TLRs mediates suppression of IL-12 synthesis. Virology 358:251-357.
    95. Netea, M. G., J. W. Van der Meer, and B. J. Kullberg. 2004. Toll-like receptors as an escape mechanism from the host defense. Trends Microbiol 12:484-488.
    96. Jaye, A., C. A. Herberts, S. Jallow, S. Atabani, M. R. Klein, P. Hoogerhout, M. Kidd, C. A. van Els, and H. C. Whittle. 2003. Vigorous but short-term gamma interferon T-cell responses against a dominant HLA-A*02-restricted measles virus epitope in patients with measles. J Virol 77:5014-5016.
    97. Dhiman, N., I. G. Ovsyannikova, J. E. Ryan, R. M. Jacobson, R. A. Vierkant, V. S. Pankratz, S. J. Jacobsen, and G. A. Poland. 2005. Correlations among measles virus-specific antibody, lymphoproliferation and Th1/Th2 cytokine responses following measles-mumps-rubella-Ⅱ(MMR-Ⅱ) vaccination.Clin Exp Immunol 142:498-504.
    98.Howe,R.C.,I.G.Ovsyannikova,N.A.Pinsky,and G.A.Poland.2005.Identification of Th0 cells responding to measles virus.Hum Immunol 66:104-115.
    99.Roscic-Mrkic,B.,R.A.Schwendener,B.Odermatt,A.Zuniga,J.Pavlovic,M.A.Billeter,and R.Cattaneo.2001.Roles of macrophages in measles virus infection of genetically modified mice.J Virol 75:3343-3351.
    100.Okada,H.,F.Kobune,T.A.Sato,T.Kohama,Y.Takeuchi,T.Abe,N.Takayama,Tsuchiya T,and M.Tashiro.2000.Extensive lymphopenia due to apoptosis of uninfected lymphocytes in acute measles patients.Arch Virol 145:905-920.
    101.Thornton,S.,G.P.Boivin,K.N.Kim,F.D.Finkelman,and R.Hirsch.2000.Heterogeneous effects of IL-2 on collagen-induced arthritis.J Immunol 165:1557-1563.
    102.McKimm,J.,and F.Rapp.1977.Variation in ability of measles virus plaque progeny to induce interferon.Proc Natl Acad Sci U S A 74:3056-3059.
    103.Bolt,G.,K.Berg,and M.Blixenkrone-Moller.2002.Measles virus-induced modulation of host-cell gene expression.J Gen Virol 83:1157-1165.
    104.Shingai,M.,T.Ebihara,N.A.Begum,A.Kato,T.Honma,K.Matsumoto,H.Saito,H.Ogura,M.Matsumoto,and T.Seya.2007.Differential type ⅠIFN-inducing abilities of wild-type versus vaccine strains of measles virus.J Immunol 179:6123-6133.
    105.Chesler,D.A.,and C.S.Reiss.2002.The role of IFN-gamma in immune responses to viral infections of the central nervous system.Cytokine Growth Factor Rev 13:441-454.
    106.Griffin,D.E.,B.J.Ward,E.Jauregui,R.T.Johnson,and A.Vaisberg.1990.Immune activation during measles:interferon-gamma and neopterin in plasma and cerebrospinal fluid in complicated and uncomplicated disease.J Infect Dis 161:449-453.
    107.Shi,T.,W.Z.Liu,F.Gao,G.Y.Shi,and S.D.Xiao.2005.Intranasal CpG-oligodeoxynucleotide is a potent adjuvant of vaccine against Helicobacter pylori,and T helper 1 type response and interferon-gamma correlate with the protection.Helicobacter 10:71-79.
    108. Sommer, F., H. Wilken, G. Faller, and M. Lohoff. 2004. Systemic Th1 immunization of mice against Helicobacter pylori infection with CpG oligodeoxynucleotides as adjuvants does not protect from infection but enhances gastritis. Infect Immun 72:1029-1035.
    109. Gans, H. A., Y. Maldonado, L. L. Yasukawa, J. Beeler, S. Audet, M. M. Rinki, R. DeHovitz, and A. M. Arvin. 1999. IL-12, IFN-gamma, and T cell proliferation to measles in immunized infants. J Immunol 162:5569-5575.
    110. Sato, H., F. Kobune, Y. Ami, M. Yoneda, and C. Kai. 2007. Immune responses against measles virus in cynomolgus monkeys. Comp Immunol Microbiol Infect Dis In press.
    111. Malefyt, R. D. W., J. Abrams, B. Bennett, C. G. Figdor, and J. E. D. Vries. 1991. Interleukin 10(EL,.10) Inhibits Cytokine Synthesis by Human Monocytes: An Autoregulatory Role of IL-10 Produced by Monocytes. Journal of Experimental Medicine 174:1209-1220.
    112. Kingsley, C. I., M. Karim, A. R. Bushell, and K. J. Wood. 2002. CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4- and IL-10-dependent immunoregulation of alloresponses. J Immunol 168:1080-1086.
    113. Bazil, V., and J. L. Strominger. 1991. Shedding as a mechanism of down-modulation of CD14 on stimulated human monocytes. The Journal of Immunology 147:1567-1574.
    114. Belkaid, Y., and B. T. Rouse. 2005. Natural regulatory T cell in infectious disease. Nature Immunology 6:353-360.
    115. Rouse, B. T., P. P. Sarangi, and S. Suvas. 2006. Regulatory T cells in virus infections. Immunol Rev 212:272-286.
    1.CDC.2000.Measles-United States.In Morbidity and Mortallity Weekly.,Vol.Rep.49.Centers for Disease Control and Prevention,Atlanta,p.557.
    2.Hersh,B.S.,G.Tambini,A.C.Nogueira,P.Carrasco,and C.A.de Quadros.2000.Review of regional measles surveillance data in the Americas,1996-1999.Lancet 355:1943?948.
    3.Wang,L.X.,G.Zeng,A.L.Lisa,Z.W.Yang,J.J.Yu,J.Zhou,X.F.Liang,C.Xu,and H.Q.Bai.2003.Progress in Accelerated Measles Control in the People's Republic of China,1991-2000.Journal of Infectious Disease 187(Suppl 1):S252.
    4.WHO.1995.Measles.Progress towards global control and regional elimination,1998—1999.Weekly Epicemiological Record 74:429?4.
    5.WHO.2004.Progress towards measles elimination,westem hemisphere,2002—003.Weekly Epicemiological Record 15:149.
    6.Xu,A.Q.,Z.j.Fang,W.B.Xu,L.X.Wang,G.Wanshen,X.Qing,S.Haijun,L.A.Lee,and L.Xiaofeng.2003.Active case-based surveillance for measles in China:lessons leamed from Shandong and Henan provinces.J Infect Dis 187 Suppl 1:S258.
    7.WHO.2007.Reducing global disease burden of measles and rubella:Report of the WHO Steering Committee on research related to measles and rubella vaccines and vaccination,2005.In Vaccine,Vol.25,p.1.
    8.WPRO/WHO.2004.Task force meeting on measles elimination in the Western Pacific Region.Western Pacific Regional Office of WHO,Manila.
    9.WPRO/WHO.2005.RCM Resolution WPR/RC56.R8.World Health Organization Regional Office for the Western Pacific,Manila,Philippines.
    10.卫生部.2005卫生部公布2004年度全国法定报告传染病疫情.《卫生部公报》第2期(总号:019).卫生部,北京,总号:021.
    11.Yu,X.,S.Wang,J.Guan,Mahemuti,Purhati,A.Gou,Q.Liu,X.Jin,and R.Ghildyal.2007.Analysis of the cause of increased measles incidence in Xinjiang,China in 2004.Pediatr Infect Dis J 26:513.
    12.卫生部.2005.卫生部公布2005年2季全国法定报告传染病疫情.《卫生部公报》卫生部,北京,总号:021.
    13.何景雄,袁家麟,陈云华,徐枫,朱宏幼.2006.上海市卢湾区2005年麻疹监测分析.上海预防医学杂志18:177.
    14.Griffin,D.2001.Measles.
    15.Segev,Y.,R.Ofir,S.Salzberg,A.Heller,Y.Weinstein,N.Isakov,S.Udem,M.Wolfson,and B.Rager-Zisman.1995.Tyrosine phosphorylation of measles virus nucleocapsid protein in persistently infected neuroblastoma cells.J Virol 69:2480.
    16.Bourhis,J.M.,V.Receveur-Brechot,M.Oglesbee,X.Zhang,M.Buccellato,H.Darbon,B.Canard,S.Finet,and S.Longhi.2005.The intrinsically disordered C-terminal domain of the measles virus nucleoprotein interacts with the C-terminal domain of the phosphoprotein via two distinct sites and remains predominantly unfolded.Protein Sci 14:1975.
    17.Longhi,S.,V.Receveur-Brechot,D.Karlin,K.Johansson,H.Darbon,D.Bhella,R.Yeo,S.Finet,and B.Canard.2003.The C-terminal domain of the measles virus nucleoprotein is intrinsically disordered and folds upon binding to the C-terminal moiety of the phosphoprotein.JBiol Chem 278:18638.
    18.Johansson,K.,J.M.Bourhis,V.Campanacci,C.Cambillau,B.Canard,and S.Longhi.2003.Crystal structure of the measles virus phosphoprotein domain responsible for the induced folding of the C-terminal domain of the nucleoprotein.J Biol Chem 278:44567.
    19.Ait-Oufella,H.,B.Horvat,Y.Kerdiles,O.Herbin,P.Gourdy,J.Khallou-Laschet,R.Merval,B.Esposito,A.Tedgui,and Z.Mallat.2007.Measles virus nucleoprotein induces a regulatory immune response and reduces atherosclerosis in mice.Circulation 116:1707.
    20.Laine,D.,J.M.Bourhis,S.Longhi,M.Flacher,L.Cassard,B.Canard,C. Sautes-Fridman, C. Rabourdin-Combe, and H. Valentin. 2005. Measles virus nucleoprotein induces cell-proliferation arrest and apoptosis through NTAIL-NR and NCORE-FcgammaRIIB1 interactions, respectively. J Gen Virol 86:1771.
    21. Marie, J. C, F. Saltel, J. M. Escola, P. Jurdic, T. F. Wild, and B. Horvat. 2004. Cell surface delivery of the measles virus nucleoprotein: a viral strategy to induce immunosuppression. J Virol 78:11952.
    22. Karlin, D., S. Longhi, and B. Canard. 2002. Substitution of two residues in the measles virus nucleoprotein results in an impaired self-association. Virology 302:420.
    23. Takeuchi, K., M. Takeda, N. Miyajima, Y. Ami, N. Nagata, Y. Suzaki, J. Shahnewaz, S. Kadota, and K. Nagata. 2005. Stringent requirement for the C protein of wild-type measles virus for growth both in vitro and in macaques. J Virol 79:7838.
    24. Shaffer, J. A., W. J. Bellini, and P. A. Rota. 2003. The C protein of measles virus inhibits the type I interferon response. Virology 315:389.
    25. Reutter, G. L., C. Cortese-Grogan, J. Wilson, and S. A. Moyer. 2001. Mutations in the measles virus C protein that up regulate viral RNA synthesis. Virology 285:100.
    26. Liston, P., and D. J. Briedis. 1994. Measles virus V protein binds zinc. Virology 198:399.
    27. Tober, C, M. Seufert, H. Schneider, M. A. Billeter, I. C. Johnston, S. Niewiesk, V. ter Meulen, and S. Schneider-Schaulies. 1998. Expression of measles virus V protein is associated with pathogenicity and control of viral RNA synthesis. J Virol 72:8124.
    28. Sheppard, R. D., C. S. Raine, M. B. Bornstein, and S. A. Udem. 1985. Measles virus matrix protein synthesized in a subacute sclerosing panencephalitis cell line. Science 228:1219.
    29. Young, K. K., B. E. Heineke, and S. L. Wechsler. 1985. M protein instability and lack of H protein processing associated with nonproductive persistent infection of HeLa cells by measles virus. Virology 143:536.
    30. Tahara, M., M. Takeda, and Y. Yanagi. 2007. Altered interaction of the matrix protein with the cytoplasmic tail of hemagglutinin modulates measles virus growth by affecting virus assembly and cell-cell fusion. J Virol 81:6827.
    31. Tahara, M., M. Takeda, and Y. Yanagi. 2005. Contributions of matrix and large protein genes of the measles virus edmonston strain to growth in cultured cells as revealed by recombinant viruses. J Virol 79:15218.
    32. Miyajima, N., M. Takeda, M. Tashiro, K. Hashimoto, Y. Yanagi, K. Nagata, and K. Takeuchi. 2004. Cell tropism of wild-type measles virus is affected by amino acid substitutions in the P, V and M proteins, or by a truncation in the C protein. J Gen Virol 85:3001.
    33. Alkhatib, G., J. Roder, C. Richardson, D. Briedis, R. Weinberg, D. Smith, J. Taylor, E. Paoletti, and S. H. Shen. 1994. Characterization of a cleavage mutant of the measles virus fusion protein defective in syncytium formation. J Virol 68:6770.
    34. Gombart, A. F., A. Hirano, and T. C. Wong. 1993. Conformational maturation of measles virus nucleocapsid protein. J Virol 67:4133.
    35. Schmid, A., P. Spielhofer, R. Cattaneo, K. Baczko, V. ter Meulen, and M. A. Billeter. 1992. Subacute sclerosing panencephalitis is typically characterized by alterations in the fusion protein cytoplasmic domain of the persisting measles virus. Virology 188:910.
    36. Takeda, M., S. Ohno, F. Seki, Y. Nakatsu, M. Tahara, and Y. Yanagi. 2005. Long untranslated regions of the measles virus M and F genes control virus replication and cytopathogenicity. J Virol 79:14346.
    37. Colf, L. A., Z. S. Juo, and K. C. Garcia. 2007. Structure of the measles virus hemagglutinin. Nat Struct Mol Biol 14:1227.
    38. Hu, A., R. Cattaneo, S. Schwartz, and E. Norrby. 1994. Role of N-linked oligosaccharide chains in the processing and antigenicity of measles virus haemagglutinin protein. J Gen Virol 75 (Pt 5): 1043.
    39. Tanaka, K., M. Xie, and Y. Yanagi. 1998. The hemagglutinin of recent measles virus isolates induces cell fusion in a marmoset cell line, but not in other CD46-positive human and monkey cell lines, when expressed together with the F protein. Arch Virol 143:213.
    40. Ohgimoto, S., K. Ohgimoto, S. Niewiesk, I. M. Klagge, J. Pfeuffer, I. C. Johnston, J. Schneider-Schaulies, A. Weidmann, V. ter Meulen, and S. Schneider-Schaulies. 2001. The haemagglutinin protein is an important determinant of measles virus tropism for dendritic cells in vitro. J Gen Virol 82:1835.
    41. Hummel, K. B., and W. J. Bellini. 1995. Localization of monoclonal antibody epitopes and functional domains in the hemagglutinin protein of measles virus. J Virol 69:1913.
    42. Saito, H., O. Nakagomi, and M. Morita. 1995. Molecular identification of two distinct hemagglutinin types of measles virus by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). Mol Cell Probes 9:1.
    43. Hsu, E. C., F. Sarangi, C. Iorio, M. S. Sidhu, S. A. Udem, D. L. Dillehay, W. Xu, P. A. Rota, W. J. Bellini, and C. D. Richardson. 1998. A single amino acid change in the hemagglutinin protein of measles virus determines its ability to bind CD46 and reveals another receptor on marmoset B cells. J Virol 72:2905.
    44. Dorig, R. E., A. Marcil, A. Chopra, and C. D. Richardson. 1993. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75:295.
    45. Naniche, D., G. Varior-Krishnan, F. Cervoni, T. F. Wild, B. Rossi, C. Rabourdin-Combe, and D. Gerlier. 1993. Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 67:6025.
    46. Yant, S., A. Hirano, and T. C. Wong. 1997. Identification of a cytoplasmic Tyr-X-X-Leu motif essential for down regulation of the human cell receptor CD46 in persistent measles virus infection. J Virol 71:766.
    47. Maisner, A., J. Alvarez, M. K. Liszewski, D. J. Atkinson, J. P. Atkinson, and G. Herrler. 1996. The N-glycan of the SCR 2 region is essential for membrane cofactor protein (CD46) to function as a measles virus receptor. J Virol 70:4973.
    48. Manchester, M., J. E. Gairin, J. B. Patterson, J. Alvarez, M. K. Liszewski, D. S. Eto, J. P. Atkinson, and M. B. Oldstone. 1997. Measles virus recognizes its receptor, CD46, via two distinct binding domains within SCR1-2. Virology 233:174.
    49. Adams, E. M., M. C. Brown, M. Nunge, M. Krych, and J. P. Atkinson. 1991. Contribution of the repeating domains of membrane cofactor protein (CD46) of the complement system to ligand binding and cofactor activity. J Immunol 147:3005.
    50. Buckland, R., and T. F. Wild. 1997. Is CD46 the cellular receptor for measles virus? Virus Res 48:1.
    51. Ono, N., H. Tatsuo, K. Tanaka, H. Minagawa, and Y. Yanagi. 2001. V domain of human SLAM (CDw150) is essential for its function as a measles virus receptor. J Virol 75:1594.
    52. Hsu, E. C, C. Iorio, F. Sarangi, A. A. Khine, and C. D. Richardson. 2001. CDwl50(SLAM) is a receptor for a lymphotropic strain of measles virus and may account for the immunosuppressive properties of this virus. Virology 279:9.
    53. Tatsuo, H., N. Ono, K. Tanaka, and Y. Yanagi. 2000. SLAM (CDw150) is a cellular receptor for measles virus. Nature 406:893.
    54. Hausknecht, M. J., R. A. Wise, R. G. Brower, C. Hassapoyannes, M. L. Weisfeldt, J. Suzuki, and S. Permutt. 1986. Effects of lung inflation on blood flow during cardiopulmonary resuscitation in the canine isolated heart-lung preparation. Circ Res 59:676.
    55. Takeda, M., M. Tahara, T. Hashiguchi, T. A. Sato, F. Jinnouchi, S. Ueki, S. Ohno, and Y. Yanagi. 2007. A human lung carcinoma cell line supports efficient measles virus growth and syncytium formation via a SLAM- and CD46-independent mechanism. J Virol 81:12091.
    56. Moss, W. J., M. O. Ota, and D. E. Griffin. 2004. Measles: immune suppression and immune responses. Int. J. Biochem.Cell Biol. 36:1380.
    57. Goldfield, M., N. H. Boyer, and L. Weinstein. 1955. Electrocardiographic changes during the course of measles. J Pediatr 46:30.
    58. Chadwick, D. W., S. Martin, P. H. Buxton, and A. H. Tomlinson. 1982. Measles virus and subacute neurological disease: an unusual presentation of measles inclusion body encephalitis. J Neurol Neurosurg Psychiatry 45:680.
    59. Ishikawa, A., T. Murayama, N. Sakuma, and Y. Saito. 1981. Subacute sclerosing panencephalitis: atypical absence attacks as first symptom. Neurology 31:311.
    60. Miller, S. D., Y. Katz-Levy, K. L. Neville, and C. L. Vanderlugt. 2001. Virus-induced autoimmunity: epitope spreading to myelin autoepitopes in Theiler's virus infection of the central nervous system. Adv Virus Res 56:199.
    61. Nommensen, F. E., and N. W. Dekkers. 1981. Detection of measles antigen in conjunctival epithelial lesions staining by lissamine green during measles virus infection. J Med Virol 7:157.
    62. Llanes-Rodas, R., and C. Liu. 1966. Rapid diagnosis of measles from urinary sediments stained with fluorescent antibody. N Engl J Med 275:516.
    63. UytdeHaag, F. G., R. S. van Binnendijk, M. J. Kenter, and A. D. Osterhaus. 1994. Cytotoxic T lymphocyte responses against measles virus. Curr Top Microbiol Immunol 189:151.
    64. Salonen, R., J. Ilonen, and A. A. Salmi. 1989. Measles virus inhibits lymphocyte proliferation in vitro by two different mechanisms. Clin Exp Immunol 75:376.
    65. Sanchez-Lanier, M., P. Guerin, L. C. McLaren, and A. D. Bankhurst. 1988. Measles virus-induced suppression of lymphocyte proliferation. Cell Immunol 116:367.
    66. McChesney, M. B., A. Altaian, and M. B. Oldstone. 1988. Suppression of T lymphocyte function by measles virus is due to cell cycle arrest in G1. J Immunol 140:1269.
    67. Griffin, D. E., B. J. Ward, E. Jauregui, R. T. Johnson, and A. Vaisberg. 1990. Immune activation during measles: interferon-gamma and neopterin in plasma and cerebrospinal fluid in complicated and uncomplicated disease. J Infect Dis 161:449.
    68. Griffin, D. E., and B. J. Ward. 1993. Differential CD4 T cell activation in measles. J Infect Dis 168:275.
    69. Moss, W. J., Ryon, J. J., Monze, M., & Griffin, D. E. 2002. Differential regulation of interleukin (IL)-4, IL-5, and IL-10 during measles in Zambian children. Journal of Infectious Diseases 186:879.
    70. Griffin, D. E., B. J. Ward, and L. M. Esolen. 1994. Pathogenesis of measles virus infection: an hypothesis for altered immune responses. J Infect Dis 170 Suppl 1:S24.
    71. Schneider-Schaulies, J., L. M. Dunster, S. Schneider-Schaulies, and V. ter Meulen. 1995. Pathogenetic aspects of measles virus infections. Vet Microbiol 44:113.
    72. Roscic-Mrkic, B., R. A. Schwendener, B. Odermatt, A. Zuniga, J. Pavlovic, M. A. Billeter, and R. Cattaneo. 2001. Roles of macrophages in measles virus infection of genetically modified mice. J Virol 75:3343.
    73. Mark K. Slifka, D. H., 2 Antoinette Tishon,2 Robb Pagarigan,2 and a. M. B. A. Oldstone2. 2003. Measles virus infection results in suppression of both innate and adaptive immune responses to secondary bacterial infection. J. Clin. Invest 111:805.
    74. Li, H., C. J. Hickman, R. F. Helfand, H. Keyserling, L. J. Anderson, and W. J. Bellini. 2001. Induction of cytokine mRNA in peripheral blood mononuclear cells of infants after the first dose of measles vaccine. Vaccine 19:4896.
    75. Nakatsu, Y., M. Takeda, S. Ohno, R. Koga, and Y. Yanagi. 2006. Translational inhibition and increased interferon induction in cells infected with C protein-deficient measles virus. J Virol 80:11861.
    76. Naniche, D., A. Yeh, D. Eto, M. Manchester, R. M. Friedman, and M. B. Oldstone. 2000. Evasion of host defenses by measles virus: wild-type measles virus infection interferes with induction of Alpha/Beta interferon production. J Virol 74:7478.
    77. Schlender, J., V. Hornung, S. Finke, M. Gunthner-Biller, S. Marozin, K. Brzozka, S. Moghim, S. Endres, G. Hartmann, and K. K. Conzelmann. 2005. Inhibition of toll-like receptor 7- and 9-mediated alpha/beta interferon production in human plasmacytoid dendritic cells by respiratory syncytial virus and measles virus. J Virol 79:5507.
    78. Yokota, S., H. Saito, T. Kubota, N. Yokosawa, K. Amano, and N. Fujii. 2003. Measles virus suppresses interferon-alpha signaling pathway: suppression of Jak1 phosphorylation and association of viral accessory proteins, C and V, with interferon-alpha receptor complex. Virology 306:135.
    79. Shingai, M., T. Ebihara, N. A. Begum, A. Kato, T. Honma, K. Matsumoto, H. Saito, H. Ogura, M. Matsumoto, and T. Seya. 2007. Differential type Ⅰ IFN-inducing abilities of wild-type versus vaccine strains of measles virus. J Immunol 179:6123.
    80. Andrejeva, J., K. S. Childs, D. F. Young, T. S. Carlos, N. Stock, S. Goodbourn, and R. E. Randall. 2004. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter. Proc Natl Acad Sci U S A 101:17264.
    81. Rota, P. A., A. E. Bloom, J. A. Vanchiere, and W. J. Bellini. 1994. Evolution of the nucleoprotein and matrix genes of wild-type strains of measles virus isolated from recent epidemics. Virology 198:724.
    82. WHO. 1998. Standardization of the nomenclature for describing the genetic characteristics of wild-type measles viruses. Wkly Epidemiol Rec 73:265.
    83. WHO. 2001. Nomenclature for describing the genetic characteristics of wild-type measles viruses (update). Wkly Epidemiol Rec 76:249.
    84. WHO. 2001. Nomenclature for describing the genetic characteristics of wild-type measles viruses (update). Part I. Wkly Epidemiol Rec 76:242.
    85. WHO. 2003. Update of the nomenclature for describing the genetic characteristics of wild-type measles viruses: new genotypes and reference strains. Wkly Epidemiol Rec 78:229.
    86. Morita, Y., T. Suzuki, M. Shiono, M. Shiobara, M. Saitoh, H. Tsukagoshi, M. Yoshizumi, T. Ishioka, M. Kato, K. Kozawa, K. Ttanaka-Taya, Y. Yasui, M. Noda, N. Okabe, and H. Kimura. 2007. Sequence and phylogenetic analysis of the nucleoprotein (N) gene in measles viruses prevalent in gunma, Japan, in 2007. Jpn J Infect Dis 60:402.
    87. Vaidya, S. R., N. S. Wairagkar, D. Raja, D. D. Khedekar, P. Gunasekaran, S. Shankar, A. Mahadevan, and N. Ramamurty. 2007. First detection of measles genotype D7 from India. Virus Genes.
    88. Chironna, M., R. Prato, A. Sallustio, D. Martinelli, C. Germinario, P. Lopalco, and M. Quarto. 2007. Genetic characterization of measles virus strains isolated during an epidemic cluster in Puglia, Italy 2006-2007. Virol J 4:90.
    89. Okafuji, T., T. Okafuji, M. Fujino, and T. Nakayama. 2006. Current status of measles in Japan: molecular and seroepidemiological studies. J Infect Chemother 12:343.
    90. Gioula, G., A. Papa, M. Exindari, A. Melidou, D. Chatzidimitriou, D. Karabaxoglou, A. Antoniadis, and V. Kyriazopoulou. 2007. Greek measles epidemic strain, 2005-2006. Epidemiol Infect 135:570.
    91. Riddell, M. A., P. Lynch, L. Jin, and D. Chibo. 2006. Measles case imported from Europe to Victoria, Australia, March 2006. Euro Surveill 11:E060518 2.
    92. Muwonge, A., M. Nanyunja, P. A. Rota, J. Bwogi, L. Lowe, S. L. Liffick, W. J. Bellini, and S. Sylvester. 2005. New measles genotype, Uganda. Emerg Infect Dis 11:1522.
    93. Djebbi, A., O. Bahri, T. Mokhtariazad, M. Alkhatib, A. Ben Yahia, D. Rezig, E. Mohsni, and H. Triki. 2005. Identification of measles virus genotypes from recent outbreaks in countries from the Eastern Mediterranean Region. J Clin Virol 34:1.
    94. Korukluoglu, G., S. Liffick, D. Guris, F. Kobune, P. A. Rota, W. J. Bellini, A. Ceylan, and M. Ertem. 2005. Genetic characterization of measles viruses isolated in Turkey during 2000 and 2001. Virol J 2:58.
    95. Atrasheuskaya, A. V., E. M. Blatun, A. A. Neverov, S. N. Kameneva, N. L. Maksimov, I. A. Karpov, and G. M. Ignatyev. 2005. Measles in Minsk, Belarus, 2001-2003: clinical, virological and serological parameters. J Clin Virol 34:179.
    96. Tipples, G. A., M. Gray, M. Garbutt, and P. A. Rota. 2004. Genotyping of measles virus in Canada: 1979-2002. J Infect Dis 189 Suppl 1:S171.
    97. Papania, M. J., J. F. Seward, S. B. Redd, F. Lievano, R. Harpaz, and M. E. Wharton. 2004. Epidemiology of measles in the United States, 1997-2001. J Infect Dis 189 Suppl 1.S61.
    98. WHO. 2005. New genotype of measles virus and update on global distribution of measles genotypes. Wkly Epidemiol Rec 80:347.
    99. WHO. 2005. Global Measles and Rubella Laboratory Network, January 2004-June 2005. MMWR Morb Mortal Wkly Rep 54:1100.
    100. Rota, P. A., and W. J. Bellini. 2003. Update on the global distribution of genotypes of wild type measles viruses. J Infect Dis 187 Suppl 1:S270.
    101. Xu, W. B., Z. Zhu, Z. Y. Zhang, T. Z. Wang, X. H. Jiang, C. Y. Wang, W. K. He, J. G. Wang, C. Y. Li, L. Zheng, H. Ling, P. Li, G. Liu, H. J. Tian, S. J. Zhou, J. Tian, and B. Wang. 2003. An Analysis of W ild-type M easles Viruses of H 1 Genotype Circulated in China. Chinese Journal of Vaccine Immunization 9:1.
    102. Liffick, S. L., N. Thi Thoung, W. Xu, Y. Li, H. Phoung Lien, W. J. Bellini, and P. A. Rota. 2001. Genetic characterization of contemporary wild-type measles viruses from Vietnam and the People's Republic of China: identification of two genotypes within clade H. Virus Res 77:81.
    103. Smit, S. B., D. Hardie, and C. T. Tiemessen. 2005. Measles virus genotype B2 is not inactive:evidence of continued circulation in Africa.J Med Virol 77:550.
    104.Zhang,Y.,Z.Zhu,P.A.Rota,X.Jiang,J.Hu,J.Wang,W.Tang,Z.Zhang,C.Li,C.Wang,T.Wang,L.Zheng,H.Tian,H.Ling,C.Zhao,Y.Ma,C.Lin,J.He,J.Tian,Y.Ma,P.Li,R.Guan,W.He,J.Zhou,G.Liu,H.Zhang,X.Yan,X.Yang,J.Zhang,Y.Lu,S.Zhou,Z.Ba,W.Liu,X.Yang,Y.Ma,Y.Liang,Y.Li,Y.Ji,D.Featherstone,W.J.Bellini,S.Xu,G.Liang,and W.Xu.2007.Molecular epidemiology of measles viruses in China,1995-2003.Virol J 4:14.
    105.Xie,Z.D.,K.L.Shen,W.B.Xu,G.T.Zhaori,and Z.Zhu.2004.Nucleoprotein gene analysis of the wild-type measles viruses circulated in Beijing in 2001.Chin Med J (Engl) 117:140.
    106.Yu,X.,F.Qian,Y.Sheng,D.Xie,D.Li,Q.Huang,Y.Zhang,Z.Yuan,and R.Ghildyal.2007.Clinical and genetic characterization of measles viruses isolated from adult patients in Shanghai in 2006.J Clin Virol 40:146.
    107.Santibanez,S.,S.Niewiesk,A.Heider,J.Schneider-Schaulies,G.A.Berbers,A.Zimmermann,A.Halenius,A.Wolbert,I.Deitemeier,A.Tischer,and H.Hengel.2005.Probing neutralizing-antibody responses against emerging measles viruses (MVs):immune selection of MV by H protein-specific antibodies? J Gen Virol 86:365.
    108.Rota,J.S.,K.B.Hummel,P.A.Rota,and W.J.Bellini.1992.Genetic variability of the glycoprotein genes of current wild-type measles isolates.Virology 188:135.
    109.Saito,H.,H.Sato,and M.Abe.1992.[Isolation and characterization of the measles virus strains with low hemagglutination activity E J].Inter.virol.33:57.
    110.Tamin,A.,P.A.Rota,and Z.Wang.1994.Antigenic analysis of current wild type and vaccine strains of measles virus.J Infect Dis 170:795.
    111.Xu,W.B.,A.Tamin,J.S.Rota,L.B.Zhang,W.J.Bellini,and P.A.Rota.1998.New genetic group of measles virus isolated in the People's Republic of China.Journal of Virus Research 54:147.
    112.孙英杰,刘春梅,J.Lee.2001.辽宁省麻疹病毒流行株血凝蛋白特性分析.疾病控制杂志6:99.
    113.张建华,严菊英,徐宝祥,陆群英,邵传森.2003.浙江省麻疹野毒株抗原性变异分析.浙江预防医学15:3.
    114.吴霆.2000.中国防制麻疹的历史和现状.《中华流行病学杂志》21:143-146.
    115.戚志华,严有望,黄永进.2000.沪191株麻疹疫苗的流行病学效果评价.《中国计划免疫》10:290-293.
    116.俞素珍,王树巧,王立成.2004.诸暨市麻疹疫苗免疫持久性25年追踪情况总结.现代预防医学3l:560.
    117.Pahar,B.,J.Li,and M.B.McChesney.2005.Detection of T cell memory to measles virus in experimentally infected rhesus macaques by cytokine flow cytometry.J Immunol Methods 304:174.
    118.Ward,B.J.,N.Boulianne,and S.Rotnam.1995.Celullar immunity in measles vaccine failure:demonstration of measles antigen specific lymphoproliferative responses despite limited serum antibody pro2 induction after revaccination.J Infect Dis 172:1 591
    119.马瑞,曹子晶,郑惠茹等.2002.哈尔滨市1994~2001年麻疹流行病学分析.《中国公共卫生管理》18:142.
    120.朱青,李胜,叶绪芳等.2003.贵州省1999~2001年麻疹流行状况分析.《中华流行病学杂志》24:660.
    121.朱向军,田宏,张之伦.2004.天津市2002~2003年麻疹流行状况分析.《中华流行病学杂志》25:646.
    1.Ayata,M.,T.Kimoto,K.Hayashi,T.Seto,R.Murata,and H.Ogura.1998.Nucleotide sequences of the matrix protein gene of subacute sclerosing panencephalitis viruses compared with local contemporary isolates from patients with acute measles.Virus Res 54:107-115.
    2.Rima,B.K.,and W.P.Duprex.2005.Molecular mechanisms of measles virus persistence.Virus Res 111:132-147.
    3.Ballart,I.,M.Huber,A.Schmid,R.Cattaneo,and M.A.Billeter.1991.Functional and nonfunctional measles virus matrix genes from lethal human brain infections.J Virol 65:3161-3166.
    4.Hirano,A.,A.H.Wang,A.F.Gombart,and T.C.Wong.1992.The matrix proteins of neurovirulent subacute sclerosing panencephalitis virus and its acute measles virus progenitor are functionally different.Proc Natl Acad Sci U S A 89:8745-8749.
    5.Takeda,M.,S.Ohno,F.Seki,Y.Nakatsu,M.Tahara,and Y.Yanagi.2005.Long untranslated regions of the measles virus M and F genes control virus replication and cytopathogenicity.J Virol 79:14346-14354.
    6.Miyajima,N.,M.Takeda,M.Tashiro,K.Hashimoto,Y.Yanagi,K.Nagata,and K.Takeuchi.2004.Cell tropism of wild-type measles virus is affected by amino acid substitutions in the P,V and M proteins,or by a truncation in the C protein.J Gen Virol 85:3001-3006.
    7.Tahara,M.,M.Takeda,and Y.Yanagi.2007.Altered interaction of the matrix protein with the cytoplasmic tail of hemagglutinin modulates measles virus growth by affecting virus assembly and cell-cell fusion.J Virol 81:6827-6836.
    8. Peeples, M. E., C. Wang, K. C. Gupta, and N. Coleman. 1992. Nuclear entry and nucleolar localization of the Newcastle disease virus (NDV) matrix protein occur early in infection and do not require other NDV proteins. J Virol 66:3263-3269.
    9. Lyles, D. S., L. Puddington, and B. J. McCreedy, Jr. 1988. Vesicular stomatitis virus M protein in the nuclei of infected cells. J Virol 62:4387-4392.
    10. Blondel, D., G. G. Harmison, and M. Schubert. 1990. Role of matrix protein in cytopathogenesis of vesicular stomatitis virus. J Virol 64:1716-1725.
    11. Jayakar, H. R., and M. A. Whitt. 2002. Identification of two additional translation products from the matrix (M) gene that contribute to vesicular stomatitis virus cytopathology. J Virol 76:8011-8018.
    12. Boulo, S., H. Akarsu, R. W. Ruigrok, and F. Baudin. 2007. Nuclear traffic of influenza virus proteins and ribonucleoprotein complexes. Virus Res 124:12-21.
    13. Cros, J. F., A. Garcia-Sastre, and P. Palese. 2005. An unconventional NLS is critical for the nuclear import of the influenza A virus nucleoprotein and ribonucleoprotein. Traffic 6:205-213.
    14. Ghildyal, R., C. Baulch-Brown, J. Mills, and J. Meanger. 2003. The matrix protein of Human respiratory syncytial virus localises to the nucleus of infected cells and inhibits transcription. Arch Virol 148:1419-1429.
    15. Ghildyal, R., A. Ho, and D. A. Jans. 2006. Central role of the respiratory syncytial virus matrix protein in infection. FEMS Microbiol Rev 30:692-705.
    16. Ahmed, M., and D. S. Lyles. 1998. Effect of vesicular stomatitis virus matrix protein on transcription directed by host RNA polymerases Ⅰ, Ⅱ, and Ⅲ. J Virol 72:8413-8419.
    17. Naniche, D., A. Yeh, D. Eto, M. Manchester, R. M. Friedman, and M. B. Oldstone. 2000. Evasion of host defenses by measles virus: wild-type measles virus infection interferes with induction of Alpha/Beta interferon production. J Virol 74:7478-7484.
    18. Nakatsu, Y., M. Takeda, S. Ohno, R. Koga, and Y. Yanagi. 2006. Translational inhibition and increased interferon induction in cells infected with C protein-deficient measles virus. J Virol 80:11861-11867.
    19. Rota, J. S., Z. D. Wang, P. A. Rota, and W. J. Bellini. 1994b. Comparison of sequences of the H, F, and N coding genes of measles virus vaccine strains. Virus Res 31:317-330.
    20. Forcic, D., M. Baricevic, R. Zgorelec, V. Kruzic, B. Kaic, B. M. Marina, L. C. Sojat, G. Tesovic, and R. Mazuran. 2004. Detection and characterization of measles virus strains in cases of subacute sclerosing panencephalitis in Croatia. Virus Res 99:51-56.
    21. Schmid, A., P. Spielhofer, R. Cattaneo, K. Baczko, V. ter Meulen, and M. A. Billeter. 1992. Subacute sclerosing panencephalitis is typically characterized by alterations in the fusion protein cytoplasmic domain of the persisting measles virus. Virology 188:910-915.
    22. Hirano, A., M. Ayata, A. H. Wang, and T. C. Wong. 1993. Functional analysis of matrix proteins expressed from cloned genes of measles virus variants that cause subacute sclerosing panencephalitis reveals a common defect in nucleocapsid binding. J Virol 67:1848-1853.
    23. Maisner, A., H. Klenk, and G. Herrler. 1998. Polarized budding of measles virus is not determined by viral surface glycoproteins. J Virol 12:5216-5278.
    24. Rima, B. K., and W. P. Duprex. 2006. Morbilliviruses and human disease. J Pathol 208:199-214.
    25. Naim, H. Y., E. Ehler, and M. A. Billeter. 2000. Measles virus matrix protein specifies apical virus release and glycoprotein sorting in epithelial cells. Embo J 19:3576-3585.
    26. Bohn, W., G. Rutter, H. Hohenberg, K. Mannweiler, and P. Nobis. 1986. Involvement of actin filaments in budding of measles virus: studies on cytoskeletons of infected cells. Virology 149:91-106.
    27. Stallcup, K. C., C. S. Raine, and B. N. Fields. 1983. Cytochalasin B inhibits the maturation of measles virus. Virology 124:59-74.
    28. Spielhofer, P., T. Bachi, T. Fehr, G. Christiansen, R. Cattaneo, K. Kaelin, M. A. Billeter, and H. Y. Naim. 1998. Chimeric measles viruses with a foreign envelope. J Virol 72:2150-2159.
    29. Cathomen, T., H. Y. Naim, and R. Cattaneo. 1998. Measles viruses with altered envelope protein cytoplasmic tails gain cell fusion competence. J Virol 72:1224-1234.
    30. Cathomen, T., B. Mrkic, D. Spehner, R. Drillien, R. Naef, J. Pavlovic, A. Aguzzi, M. A. Billeter, and R. Cattaneo. 1998. A matrix-less measles virus is infectious and elicits extensive cell fusion: consequences for propagation in the brain. Embo J 17:3899-3908.
    31. Pohl, C, W. P. Duprex, G. Krohne, B. K. Rima, and S. Schneider-Schaulies. 2007. Measles virus M and F proteins associate with detergent-resistant membrane fractions and promote formation of virus-like particles. J Gen Virol 88:1243-1250.
    32. Riedl, P., M. Moll, H. D. Klenk, and A. Maisner. 2002. Measles virus matrix protein is not cotransported with the viral glycoproteins but requires virus infection for efficient surface targeting. Virus Res 83:1 -12.
    33. Runkler, N., C. Pohl, S. Schneider-Schaulies, H. D. Klenk, and A. Maisner. 2007. Measles virus nucleocapsid transport to the plasma membrane requires stable expression and surface accumulation of the viral matrix protein. Cell Microbiol 9:1203-1214.
    34. Reuter, T., B. Weissbrich, S. Schneider-Schaulies, and J. Schneider-Schaulies. 2006. RNA interference with measles virus N, P, and L mRNAs efficiently prevents and with matrix protein mRNA enhances viral transcription. J Virol 80:5951-5957.