细胞因子MIF靶向的新型炎症显像剂的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探讨以MIF为靶向进行炎症显像的可行性,本研究所自行制备了放射性碘化标记的抗MIF单克隆抗体(anti-MIF McAb)及其对照抗体IgG,并在金黄色葡萄球菌、大肠杆菌和医用松节油诱导建立的三种小鼠炎症模型体内进行了生物学分布和显像的实验研究。研究内容分为以下三部分:
     第一部分:放射性碘化标记anti-MIF McAb和IgG的制备及生物学活性鉴定
     目的
     采用固相Iodogen法碘化标记anti-MIF McAb和IgG,对其标记率、放射化学纯度、稳定性及生物学活性进行系列研究,为下一步的研究提供实验基础。
     方法
     采用固相Iodogen法,~(125)I和/或~(131)I分别碘化标记了anti-MIF McAb和IgG。检测放射性碘化标记anti-MIF McAb及其对照抗体在室温储存不同时间后的放射化学纯度,观察其在体外的稳定性。以酶联免疫吸附法检测放射性碘化标记anti-MIF McAb的免疫学活性。
     结果
     1.~(125)I-anti-MIF McAb的标记率为82.35%,放化纯为98.25%,放射性比活度为29.56 GBq/μmol。
     2.~(131)I-anti MIF McAb的标记率为87.25%,放化纯为97.10%,放射性比活度为29.56 GBq/μmol。
     3.~(131)I-IgG的标记率为81.56%,放化纯为97.17%,放射性比活度为30.12GBq/μmol。
     结论
     三种标记物的稳定性和免疫活性良好,达到了用于进一步实验研究的要求标准。
     第二部分~(125)I—anti—MIF McAb在小鼠炎症模型体内的生物学分布研究
     目的
     建立金黄色葡萄球菌、大肠杆菌和医用松节油诱导的三种小鼠炎症模型,观察~(125)I-anti-MIF McAb在三种小鼠炎症模型的体内生物学分布,同时利用磷屏进行放射自显影炎症显像研究。
     方法
     1.建立小鼠炎症模型:BALB/c小鼠60只随机分为3组,每组20只。利用大肠杆菌、金葡萄球菌、松节油诱导建立小鼠炎症模型。
     2.~(125)I-anti-MIF McAb在炎症模型小鼠的体内分布:对每种炎症模型的小鼠采用腹腔注射法注射~(125)I-anti-MIF McAb 0.2ml约3.7MBq。在完成注射后第30min、4h、24h、48h和72h,从3组炎症小鼠中随机各取出3只脱臼处死,解剖取出全部炎症组织、心、肝、脾、肺、肾、骨、甲状腺、胸腺和左侧对照肌肉组织的样本,称重,利用γ计数器测定各器官或组织的放射性计数(cpm),并计算其平均cpm/g;测定~(125)I-antiMIF McAb注入量标准源的放射性计数,计算各器官或组织内放射性占标准源放射性的百分比(%ID)、T/NT。
     3.金黄色葡萄球菌组、大肠杆菌组、松节油组炎症模型小鼠各5只尾静脉注射3.7MBq 0.2mL~(125)I-anti-MIF McAb,在注射后24h、48h、72h分别用0.06%戊巴比妥0.2ml麻醉炎症模型小鼠,俯卧在磷屏上进行放射自显影。
     4.以RT-PCR、免疫组化法检测小鼠炎症模型炎症组织MIF基因及蛋白表达水平的变化,以证实放射性碘化标记的anti-MIF McAb在炎症部位的浓聚是由局部高表达的MIF基因及蛋白引起的。
     结果
     1.三种小鼠炎症模型在注射~(125)I-anti-MIFMcAb后30min,血液和肾、肝、脾等器官组织内的放射性计数均迅速增高,持续增高至4h后迅速降低,24h以后下降缓慢。在各器官组织中以肌肉和股骨内的放射性计数在各时间点为最低。
     2.炎症部位的放射性摄取在注射~(125)I-anti-MIF McAb 4h后开始明显增加,金葡菌组炎症部位24h的摄取最高,48h炎症部位摄取迅速跌落形成峰状;而松节油组4h炎症部位摄取即达较高值并持续至48h,72h迅速跌落;大肠杆菌组从4h开始炎症部位的放射性积聚一直持续缓慢增加,但其摄取均低于金葡菌组和松节油组。各时间点T/NT比值随时间的增加而逐渐升高:金葡菌组在30min即可升至4,24h金葡菌组、大肠杆菌组和松节油组分别为9.65、3.46和5.37,以后T/NT比值继续升高,48h三组小鼠炎症模型的T/NT比值均达到了7以上。炎症部位的放射自显影结果与体内生物学分布观察到的T/NT变化相一致。
     3.RT-PCR、免疫组化结果表明:小鼠金葡菌炎症组织中MIF mRNA、MIF蛋白高表达,与炎症显像浓聚程度正相关。
     结论
     ~(125)I-anti-MIF McAb能够靶向性聚集于炎症病灶,且在靶组织中清除缓慢,放射自显影与体内生物学分布观察到的T/NT变化相一致。
     第三部分~(131)I-anti-MIF McAb和~(131)I-IgG
     在小鼠炎症模型体内生物学分布的对比研究
     目的
     建立金黄色葡萄球菌小鼠炎症模型,对比研究~(131)I-anti-MIF McAb和~(131)I—IgG在小鼠炎症模型体内的生物学分布及磷屏显像特点
     方法
     1.建立BALB/c小鼠金葡菌炎症模型。
     2.40只模型鼠随机分为两组,采用尾静脉注射法,每只模型小鼠注射~(131)I-anti-MIF McAb或~(131)I-IgG各0.2ml约3.7 MBq。
     3.在注射后24h、48h和72h,从两组炎症小鼠模型中随机各取出5只脱臼处死,解剖取出全部炎症组织、心、肝、脾、肺、肾、骨、甲状腺、胸腺和左侧对照肌肉组织的样本,称重,利用γ单道能谱仪测定各器官或组织的放射性计数(cpm),并计算其平均cpm/g;测定~(131)I-IgG注入量标准源的放射性计数,计算各器官或组织内放射性占标准源放射性的百分比(%ID)。
     4.从两组炎症小鼠模型中随机各取出5只,分别在24h、48h、72h用0.06%戊巴比妥0.2ml麻醉,进行磷屏自显影显像。
     结果
     1.~(131)I-anti-MIF McAb和~(131)I-IgG在炎症模型鼠体内的分布各自有明显不同的特点。~(131)I-IgG组血液放射性明显高于~(131)I-anti-MIF McAb,且消减缓慢,而~(131)I-anti-MIF McAb组肝、脾及肾的放射性在各时相均较~(131)I-IgG组高,差异有显著性(p<0.05)。
     2.注射~(131)I-anti-MIF McAb和~(131)I-IgG 24h后,炎症部位均有较多的放射性浓聚。~(131)I-anti-MIF McAb的炎症部位积聚量在注射后24h、48h、72h均明显高于~(131)I-IgG组(p<0.05),表明~(131)I-anti-MIF-McAb在炎症部位有比~(131)I-IgG更特异的浓聚。
     3.炎症部位的放射自显影显像结果与体内生物学分布观察到的生物学分布变化相一致。
     结论
     与~(131)I-IgG相比,~(131)I-anti-MIF-McAb在炎症部位更具有靶向的特异性浓聚。~(131)I的半衰期8天,比较适合于临床显像。
     本研究结果表明:放射性碘化标记的抗MIF单克隆抗体(anti-MIF McAb)制备简便、性能稳定,能够靶向性聚集于炎症病灶,且在靶组织中清除缓慢,放射自显影图像质量好,为其临床应用研究提供了可靠的实验依据。
Background
     To quickly and exactly detect acute or subacute inflammatory lesions is a difficult subject in clinical. In most cases to determine the anatomical location of the inflammatory lesions is even more important than to identify of the type of infection pathogen. The fast and accurate positioning inflammatory lesions are very helpful to clarify the cause of inflammation and to make rapid effective treatment. Traditional diagnostic imaging technologies such as X-ray, CT and ultrasound imaging can not make accurate identification when the abscess had not yet formed. The radioisotope inflammatory imaging can detect and locate the inflammatory lesions, especially deep inflammatory lesions which is its advantage. So radioisotope inflammatory imaging is a most effective method of early diagnosis of inflammation or infection.
     The commonly used inflammatory imaging agents are ~(67)Ga-citrate, ~(111)In-WBC, ~(99m)Tc-HMPAO labeled leukocytes, ~(99m)Tc-or ~(111)In-IgG, radiolabeled liposome, and so on, but all of them have some shortcomings and deficiencies. For example: the commonly used radiolabeled-WBC imaging need a large number of human blood, that may have the risk of blood pollution and cross infection during isolation ,which limits its use in clinical. The radiolabeled non-specific immunoglobulin imaging is easily to use, but there are non-specific deposition in blood, liver, spleen, and kidney. In recent years, there are many new types of inflammatory imaging agent research reported along with the medicine and pharmaceutical development. For example: the radiolabeled anti-granulocyte monoclonal antibody or antibody fragment, radiolabeled IL-1, 8, radiolabeled the chemical synthesized peptides of WBC receptor and ciprofloxacin. However, some kinds of specific and sensitive deficiencies still existed, which limit their clinical application. Therefore, seeking a new, specific and sensitive inflammatory imaging agent is currently urgent in clinical.
     With the rapidly development of immunology and other basic medical research, people begin to know more and more about the effect of cytokines during inflammation developing. The significance of cytokines in diagnostic and treatment inflammation has been cause a highly attention. In recent years, macrophage migration inhibitory factor (macrophage migration inhibitory factor, MIF) has been confirmed to be an important inflammatory response regulator. MIF can promote macrophage accumulation, proliferation, activation, adhesion, and phagocytosis in the local of inflammation, it also can promote the formation of a variety of cytokines, can offset the immune inhibition by corticosteroid hormones for other inflammatory cytokines. MIF plays an important role in the local or systemic inflammation and immune responses, and is a key media in systemic inflammatory response syndrome. The study of anti-inflammatory drugs targeted MIF has become a hot spot in medical research at present. The purpose of this study is to provide experimental basis for clinical application of the MIF targeted inflammation imaging agent by investigating the synthesis, preparation, biodistribution and dynamic imaging using radioisotope labeled anti-MIF monoclonal antibody.
     Method
     1 .Radiolabeled anti-MIF McAb was oxidized by Iodogen with 125-I (or 131 -I) . The stability was detected by investigating the radiochemical purity of radioiodine labeled anti-MIF McAb and its control antibody in the 37℃storage at different times. The immunological activity of radioiodine labeled anti-MIF McAb was measured by ELISA.
     2. Mice were induced inflammation by injecting of S.aurous, E.coli and turpentine oil. When the swelling of the muscle was apparent, the radiopharmaceuticals were injected .The mice of each group were sacrificed at different time after the injection. A sample of 1ml blood was obtained. The whole infected tissue, the control lateral muscle, heart, liver, spleen, kidney, lung and the sample of bone were taken, weighted, counted for radioactivity in a gamma counter and then calculated the tissue concentrations which expressed as percentage injected dose per gram %ID/g,T/NT.
     3. In order to make sure that the high intake of radiolabeled anti-MIF antibody in inflammatory tissue is caused by high expression of MIF in locus; the expression of MIF in locus was analyzed by RT-PCR and immunohistochemistry.
     4. Whole-body images were obtained with storage phosphor screen. Serial images were performed at 24h, 48h, and 72h after injection. The anesthetized mice were placed on the storage phosphor screen plate with the ventral side facing the plate, in subdued light. The plate was exposed to a mouse for 45 minutes. At cessation of exposure, the plate was immediately covered with an opaque plastic sheet, then transferred to the scanner, and scanned by typhoon trio + (laser red 633 nm, pixel size 200 mcrons, phosphor mode: best sensitivity).
     Results
     1. Radioiodine labeled antibody was separated from free iodine using a size exclusion column (Sephadex G-25, Pharmacia). The specific activity of ~(125)I-anti-MIF McAb is 29.56 GBq/μmol. The radiochemical purity is 98.25% (paper chromatography). The specific activity of ~(131)I-anti-MIF McAb is 29.56 GBq/μmol, of ~(131)I-IgG is 30.12 GBq/μmol. The radiochemical purity of ~(131)I-anti-MIF McAb is 97.10% (paper chromatography), and that of ~(131)I-IgG is 97.17% (paper chromatography).The immunological activities of radioiodine labeled anti MIF McAb was proved through ELISA (Enzyme-linked immune -sorbent assay).
     2. ~(125)I-anti-MIF McAb shortly transited from the peritoneal cavity to the circulation after intraperitoneal injection, it went up and reached a zenith at 4 hours post injection, and then the activity in the blood went down quickly. The change of activity in the heart and lung was the same as blood. The biodistribution of ~(125)I-anti-MIF McAb showed the highest uptake and the lowest decrease in the inflammatory tissue. The activity in the blood was higher than the kidney, liver, spleen, heart, and lung. Peak uptake in the kidney, liver, spleen occurred around 30 minutes, followed by gradual clearance over time. This indicated that the product of ~(125)I-anti-MIF McAb was excreted from kidney or swallowed by reticuloendothelium of liver and spleen, resulting in deiodination; the activity of ~(125)I-anti-MIF McAb in the inflammatory tissue increased gradually for three inflammation models. The highest uptake was S. aureus group and the lowest was E. coli group. In all three groups, T/NT was >3 at 4h post injection and increased continually in the whole observed period: T/NT ratio was >7 at 48h and >9 at 72h Mice with the left thigh inflammation were injected intravenously via the tail vein by ~(131)I-anti-MIF McAb or ~(131)I IgG, respectively. It shows that the ~(131)I-anti-MIF McAb group T/NT ratio was > 6 at 24h, and increased continually, T/NT ratio was > 9 until 72h, but the ~(131)I-IgG group T/NT ratio was > 6 at 48h and > 8 at 72h. The highest uptake happened in the ~(131)I-anti-MIF McAb group (p<0.05). The T/B ratios for the ~(131)I-anti-MIF McAb group werel.41±0.031, 1.53±0.018, 2.58±0.025 at 24h, 48h and 72h after injection, respectively. These ratios were significantly higher than that of ~(131)I-IgG group (p<0.05).
     3. Result of RT-PCR showed that the expression of MIF mRNA in normal tissues were little changes at 24h, 48h and 72h. However, there was a 3-fold increase in MIF mRNA expression in inflammatory tissues at 24h compared with normal tissues (p<0.05). There was a 2-fold increase in MIF mRNA levels in inflammatory tissues at 48h compared with normal tissues (p<0.05). Immunohistochemistry result showed that the localization of MIF protein in tissues specimens from inflammatory mouse at 24h, 48h, and 72h after focal inflammation occurred. MIF was negative expressed in normal tissues. However, there was a significant increase in MIF expression in inflammatory specimens according to the time after focal inflammation occurred in the first 48h and then decreased at 72h. MIF-expression localized among the inflammatory cells strongly after focal inflammation occurred.
     4. After ~(125)I-anti-MIF McAb were injected intravenously via the tail vein. Whole-body autoradiography showed that all inflammation foci could be visualized clearly from 24h after injection, but after 48h images were much clearer in accordance with the high T/NT ratio. The radioactivity was the highest in S. aureus lesion, average in turpentine lesion, and the lowest in E.coli lesion. The whole-body autoradiography images of the ~(131)I-anti-MIF McAb and ~(131)I-IgG at 24h, 48h and 72h after injection showed that both radiotracers focally increased uptake in the inflammatory muscles beginning at 24h. Compared analysis of the scintigrams of three times points showed that the ~(131)I-anti-MIF McAb group had much more clear images than the ~(131)I-IgG groups which is in accordance with the high T/NT ratio (p<0.05).
     Conclusion
     1. Radioiodine labeled anti-MIF McAb made from Iodogen method is of high radiochemical purity and with high stability.
     2. Radioiodine labeled anti-MIF McAb achieve very high target to background ratio and has relatively low level of accumulation in non-target tissues, it possess a high relations with local expression of MIF.
     3. Whole-body autoradiography showed that all inflammation foci could be visualized clearly by storage phosphor screen.
     This study demonstrates the ability of radioiodinated anti-MIF McAb to measure in vivo inflammatory events represented by high expression of MIF and suggests that radiolabeled anti-MIF McAb warrants further investigation as a potential inflammation-seeking agent for imaging to detect inflammatory disorders.
引文
1.Boerman OC,Rennen H,Oyen WJ,et al.Radiopharmaceuticals to image infection and inflammation.Semin Nucl Med.2001;31(4):286-295.
    2.Alavi A,Gupta N,ilberini JL,et al.Positron emission tomography imaging in nonmalignant thoracicd isorders.Semin Nucl Med.2002;32(4):293-321.
    3.Vaneer D,et al.Radiolabeled chemotactic cytokine:new agents for scintigraphic imaging of infection and inflammation.Q J Nucl Med 2003;47:246-255.
    4.Charito Love.Radionuclide imaging of infection.J Nucl Med Technol 2004;32:47-57.
    5.Hironi M,Masaharu N,Kenji M,et al.Efect of anti-macrophage migration factor antibody on lipopolysaccharide-induced pulmonary neutrophil accumulation.Am Respir Crit Care Med.1998;158(2):573-579.
    6.T.Calandra,T.Roger.Macrophage migration inhibitory factor:a regulator of innate immunity.Nature Reviews Immunology.2003;3(10):791-800.
    7.Calandra T,Roger T.Macrophage migration inhibitory factor:a regulator of innate immunity.Nat Rev Immunol.2003;3:791-800.
    8.Denkinger,C.M,Metz,C,Fingerle-Rowson,G,Denkinger,M.D,Forsthuber,T.Macrophage migration inhibitory factor and its role in autoimmune disease.Arch Immunol Ther Exp.2004;52:389-400.
    9.C.M.Denkinger,C.Metz,G.Fingerle-Rowson,M.D.Denkinger,T.G.Forsthu ber.Macrophage migration inhibitory factor and its role in autoimmune diseases.Archivum Immunologiae at Therapiae Experimentalis.2004;52(6):389-400.
    1.吴永强等.人源化单克隆抗体研究进展.微生物免疫学进展.2008;36:73-75.
    2.Khazaeli M B,Conry R M,Lobuglio A F.Human response to monoclonal antibodies.J Immuther.1994,15:42-52.
    3.Andres-RY,Schubiger-PA,riefenauer-L,et al.Immunoscintigraphic localization of inflammatoral lesions:concept,radiolabelling and in vitro testing of a granulocyte specific antibody.Eur J Nucl Med.1988;13(11):582-586.
    4.Joseph K,Hoffken H,Bosslet-k,Schorlemmer HU.Imaging of inflammation with granulocytes labeled in vivo.Nncl Med Commun.1988;9(10):763-76.
    5.Becker WS,Saptogino A,Wolf FG.The single ~(99m)Tc-granulocyte antibodies scan in inflammatory diseases.Nucl Med Commun.1992;13(3):182-192.
    6.Lind P,Langsteger W,Koltringer P,et al.Immunoscintigraphy of inflammatory processes with a Technetium-99m-labeled monoclonal antigranulocyte antibody(MabBW250/183).J Nucl Med.1990;31(4):417-423.
    7.Becker W,Bair J,Behr T,et al.Detection of softtissue infections and osteomyelitis using a Technetium-99m labeled anti-granulocyte monoclonal fragment.J Nucl Med.1994;35:1436-14.
    8.Becket W,Golldenberg D M,Wolf F.The use monoclonal antibodies and antibody fragments in imaging of infectious lesions.Semin Nucl Med 1994;24:142-153.
    9.Thakyr M L,Marcus C S,Henneman P,et al.Imaging inflammatory diseases with neutrophil specific Technetium-99m-labeled monoclonal antibody anti-SSEA-1.J Nucl Med.1996:37(11):1789-1795.
    10.刘长征,王浩丹,胡雅儿.实验核医学与核药学.北京:人民卫生出版社,1999:83-93.
    11.李军,王世真.几种~(99m)Tc标记人免疫球蛋白(HIG)方法的比较.中国医学科学院学报.1995:17:296-299.
    12.Sakahara H,et al.In vivo instability of reduction-mediated ~(99m)Tc labeled monoclonal antibody.Nucl Med Biol.1993;20:617.
    1.Boerman OC,Rennen H,Oyen WJ,et al.Radiopharmaceuticals to image infection and inflammation.Semin Nucl Med.2001;31(4):286-295.
    2.LavanderJP,Lowe J,Baker JR,Burns JI,et al.Gallium-67 citrate scanning in neoplastic and inflammatory lesions.Br J Rad.1971;44:361-366.
    3.Hallet M B.The significance of stimulus-response coupling in the neutrophil for physiology and pathology.The Neutrophil:Cellular Biochemistry and Physiology.Baton Raton,FL:CRC Press;1989:1-22.
    4.Barton H V,Cannon C P,Murphy S A,et al.Association between white blood cell counts,Epicardial blood flow,myocardial infarction.Circulation.2000;102:2329-2334.
    5.陈方,张裕民,周前等.炎症显像剂~(99m)Tc-HIG一步法药盒的制备和实验研究.中华核医学杂志.1995:15(3):174-178.
    6.Alavi A,Gupta N,Alberini JL,et al.Positron emission tomography imaging in nonmalignant thoracicd isorders.Semin Nucl Med.2002;32(4):293-321.
    7.Y.P.DeJong,A.C.Abadia,Molina,A.R.Satoskar,et al.Development of chronic colitis is dependent on the cytokine MIF.Nature Immunology.2001;2(11):1061-1066.
    8.F.A.Bozza,R.N.Gomes,A.M.Japiass u,et al.Macrophage migration inhibitory factor levels correlate with fatal outcome in sepsis.Shock.2004;22(4):309 - 313.
    9.T.Ohkawara,J.Nishihira,H.Takeda,et al.Amelioration of dextran sulfate sodium-induced colitis by anti-macrophage migration inhibitory factor antibody in mice.Gastroenterology.2002;123(1):256 - 270.
    10.Y.Sakai,A.Masamune,A.Satoh,J.Nishihira,T.Yamagiwa,T.Shimosegaw.Macrophage migration inhibitory factor is a critical mediator of severe acute pancreatitis.Gastroenterology.2003;124(3):725 - 736.
    11.Hironi M,Masaharu N,Kenji M,et al.Effect of anti-macrophage migration factor antibody on lipopolysaccharide induced pulmonary neutrophil accumulation.Am Respir Crit Care Med.1998;158(2):573-579.
    12.Sternlicht MD,Werb Z.How matrix metallo proteinases regulate cell behavior.Ann Rev Cell Dev Biol.2001,17:463-516.
    13.B.R.Bloom,B.Bennett.Mechanism of a reaction in vitro associated with delayed-type hypersensitivity.Science.1966;153(3731):80 - 82.
    14.J.R.David.Delayed hypersensitivity in vitro:its mediation by cell-free substances formed by lymphoid cell-antigen interaction.Proceedings of the National Academy of Sciences of the United States of America.1966;56(1):72 - 77.
    15.张永学.实验核医学(供研究生用).北京:人民卫生出版社,2002:54.
    16.C.M.Denkinger,C.Metz,G.Fingerle-Rowson,M.D.Denkinger,T.G.Forsth uber.Macrophage migration inhibitory factor and its role in autoimmune diseases.Archivum Immunologiae at Therapiae Experimentalis.2004;52(6):389-400.
    17.Pickett C.Evaluation of storage phosphor imaging systems.Molecular Dynamics Technical.1992.Note #55,Sunnyvale,CA.
    18.A.Shigematsu,N.Motoji,A.Hatori,T.Satoh.Progressive application of autoradiography in pharmacokinetic and metabolic studies for the development of new drugs.Regul Toxicol Pharmacol.1995;22:122 - 142.
    19.S.Sihver,W.Sihver,M.Bergstr(o∣¨)m,A.U.H(o∣¨)glund,P.Sj(o∣¨)berg,B.L(?)ngstr(o∣¨)m,Y.Watanabe.Quantitative autoradiography with short lived positron emission tomography tracers: A study on muscarinic acetylcholine receptors with N-[~(11)C] methyl-4-piperidylbenzilate.J Pharmacol Exp Ther. 1999;2:917-922.
    
    20. I. Klebovich, J.Szunyog, I.Hazai.TLC-DAR for the analysis of biological samples. A newly developed rapid tool for studying drug metabolism, J Planar Chromatogr. 1997; 10:399-405.
    
    21. Bergstrom M, Awad R, Estrada S, Malman J, Lu L, Lendvai G,Bergstrom-Pettermann E, Langstrom B. Autoradiography with positron emitting isotopes in positron emission tomography tracer discovery.Mol Imag Biol. 2004;5:390 - 6.
    
    22. Passchier J, van Waarde A, Doze P, Elsinga PH, Vaalburg W. Influence of P-glycoprotein on brain uptake of ~(18)F-MPPF in rats. Eur J Pharmacol 2000;407:273-80.
    
    23. Johnston RF, Pickett SC, Barker DL. Autoradiography using storage phosphor technology. Electrophoresis. 1990;11:355-60.
    1.T.Calandra,T.Roger.Macrophage migration inhibitory factor:a regulator of innate immunity.Nature Reviews Immunology.2003;3(10):791 - 800.
    2.胡立宽,李贞,霍振国,等.~(131)Ⅰ-C50放射免疫显像诊断卵巢癌.中华核医学杂志.2001:21(4):203.
    3.常伟勤,许天敏,陈慧.~(153)Sm标记的抗AFP单克隆抗体在荷人肝癌裸鼠体内的放射性分布.中国实验诊断学,2006:12:142-145.
    4.Ghosh A,Heston WD.Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer.J Cell Biochem.2004;91(3):528-539.
    5.Narula J,Khaw BA,Dec GW.Diagnostic accuracy of antimyosin scintigraphy in suspected myocarditis.J Nucl Cardiol.1996;3(5):371-381.
    6.Martin M E,Moya-Mur JL,Casanova M,et al.Role of noninvasive antimyosin imaging in infants and children with clinically suspected myocarditis.J Nucl Med.2004;45(3):429-437.
    7.Schechter NR,Yang DJ,Azhdarinia A,et al.Assessment of epidermal growth factor receptor with ~(99m)Tc-ethlenedicysteine-C225 monoclonal antibody.Anticancer drugs.2003;14(1):49-56.
    8.Narula J,Malhotra A,Yasuda T,et al.Usefulness of antimyosin antibody imaging for the detection of active rheumatic myocarditis.Am J Cardiol.1999;84(10):946-950.
    9.Bergler R,Klein J,Sochor H,Stanek G,et al.Indium-111-monoclonal antimyosin antibody and magnetic resonance imaging in the diagnosis of acute lympho-pericarditis.Arch Intern Med.1993;153(23):2696-2700.
    10.Lekakis J,Dimopoulos M,Nanas J,et al.Antimyosin scintigraphy for detection of cardiac amyloidosis.Am J Cardiol.1997;80(7):963-965.
    11.Estorch M,Carrio I,Berna L,etal.In antimyosin scintigraphy after doxorubicin therapy in patients with advanced breast cancer.J Nucl Med.1990;31(12):1965-1969.
    12.Unlu M,Temiz N H,Cengel A.Myocardial Indium-111-antimyosin up take in essential hypertension.Nuklearmedizin.2003;42(3):99-103.
    13.Morguet A J,Sandrock D,Siegener M,et al.Indium-111-antimyosin Fab imaging to demonstratemyocardial involvement in systemic lupus erythematosus.J Nucl Med.1995;36(8):1432-1435.
    14.Krause TH,Schumichen Cbeck A,Lang B,et al.Scintigraphy using In-111-labeled antimyosin in vasculitis with myocardial involvement.Nuk learmedizin.1990;29(1):177-179.
    15.Verna E,Ceriani L,Casucci R,etal.Myocardial up take of Indium-111-antimyosin after coronary angiop lasty.Relationship with the total burden of ischemia.Eur Heart J.1995;16(4):478-484.
    16.Ballester M,Marti V,Carrio Ⅰ,et al.Spectrum of alcohol-induced myocardial damage detected by Indium-111-labeled monoclonal antimyosin antibodies.J Am Coll Cardiol.1997;29(1):160-167.
    17.Siegel AJ,Lewandrowski KB,Strauss HW,et al.Normal postrace antimyosin myocardial scintigraphy in asymptomatic marathon runnerswith elevated serum creatine kinase MB isoenzyme and troponin T levels.Evidence against silent myocardial cell necrosis.Cardiology.1995;86(6):451-456.
    18.Morris TA,Marsh JJ,Konopka,et al.Improved imaging of deep venous thrombi during anticoagulation using radiolabeled anti-D-dimer antibodies.Nucl Med Commun.2004:25(9):917-922.
    19.刘瑜,董小黎,宋爱丽等.锝标记抗D-二聚体单克隆抗体对兔早期股静脉血栓的放射免疫显像研究.中国病理生理杂志.2004:20(12):2365-2368.
    20. Das KC,White CW.Detection of thioredoxin in human serum and biolof ical samples using a sensitive sandwich ELISA with digoxigenin labeled antibody.J Immuno Methods. 1998;211:9-20.
    
    21. Hnatowich D, Virzi G, Ruskoqske M. Investigation of avidin and biotin for imaging.J Nucl Med. 1987; 28:1294-1302.
    
    22. Paganelle G, Magnani P, Ziyo F, et al.Three step monoclonal tumor targeting in carcinoembryonic antigen positive patients. Cancer Res.1991; 51:5960-5966.
    
    23. Rusckowski M, Fritz B, Hnatowich D. Localization of infection using streptoavidin and biotin: An alternative to nonspecific polyclonal immunoglobulin.J Nucl Med. 1992; 33:1810-1815.
    
    24. Samuel A, Paganaelli G, Chiesa R, et al.Detection of prosthetic vascular graft infection using Avidin-Indium-111-Biotin scintigraphy. J Nucl Med. 1996; 37:55-61.
    
    25. Rusckowske M, Paganelli G, Hnatowich D, et al. Imaging osteomyelitis with streptavidin and Indium-111-labeled biotin.J Nucl Med.1996;37:1655-1662.
    1. Bloom, B.R.; Bennett, B. Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science 1966; 153:80-82
    
    2. David, J.R. Delayed hypersensitivity in vitro: its mediation by cell-free substances formed by lymphoid cell-antigen interaction. Proc Natl Acad Sci USA 1966; 56: 72-77
    
    3. Bermhagen, J.; Calandra, T.; Mitchell, R.A.; Martin, S.B.; Tracey, K.J.; Voelter, W. MIF is a pituitary-derived cytokine that potentiates lethal endotoxaemia.Nature 1993; 365: 756-759
    
    4. Denkinger, C.M.; Metz, C; Fingerle-Rowson, G.; Denkinger, M.D.; Forsthuber,T. Macrophage migration inhibitory factor and its role in autoimmune disease.Arch Immunol Ther Exp. 2004; 52: 389-400
    
    5. Calandra, T.; Roger, T. Macrophage migration inhibitory factor: a regulator of Innate immunity. Nat Rev Immunol. 2003; 3: 791-800
    
    6. E. Lolis. Glucocorticoid counter regulation: Macrophage migration inhibitory factor as a target for drug discovery. Curr Opin Pharmacol. 2001; 1:662-668.
    
    7. Y.P. de Jong; A.C. Abadia-Molina; A.R.Satoskar. Development of chronic colitis is dependent on the cytokine MIF. Nat Immunol. 2001; 2:1061-1066
    
    8. F.A.Bozza.; R.Gomes.; A.M.Japiassu.; M.soares.; H.Castro-Faria-Neto and P.T.Bozza. Macrophage migration inhibitory factor levels correlate with fatal outcome in sepsis. Shock. 2004; 22:309-313
    
    9. T.Ohkawara, J.; Nishihira, H. ;Takeda, S.; Hige, M. Kato and T .Sugiyama.Amelioration of dextran sulfate sodium-induced colitis by anti-Macrophage migration inhibitory factor antibody in mice. Gastroenterology. 2002; 123:256-270
    
    10. Y.Sakai.; A. Masamune.; A. Satoh.; J. Nishihira.; T. Yamagiwa and T.Shimosegawa.Macrophage migration inhibitory factor is a critical mediator of severe acute pancreatitis .Gastroenterology.2003;124:725-736
    
    11. M. Leech; C.Metz, P; Hall, P. Hutchinson.; K .Gianis, M. Smith .Macrophage migration inhibitory factor in rheumatoid arthritis: evidence of proinflammatory function and regulation by glucocorticoids. Arthritis Rheum. 1999; 42:1601-1608
    
    12. N.Yabunaka; J. Nishihira; Y.Mizue; M.Tsuji.;M.Kumagai and Y.Ohtsuka .Elevated serum content of Macrophage migration inhibitory factor in patients with type2 diabetes. Diabetes Care. 2000; 23:256-258
    
    13. F. Nicoletti.; A. creange.; D.Orlikowski.; F.Bolgert.;K.Mangano and C.Metz .Macrophage migration inhibitory factor (MIF) seems crucially involved in Guillain-Barre syndrome and experiment allergic neuritis. J Neuroimmunol. 2005;168:168-174
    
    14. M. Niino.; A.Ogata.; S.Kikuchi.; K.Tashiro and J. Nisshihira. Macrophage migration inhibitory factor in the cerebrospinal fluid of patients with conventional and optic-spinal forms of multiple sclerosis and neuro-Behcet's disease. J Neurol Sci. 2000; 179:1066-1078
    
    15. Van der Laken C.J.; Boerman O.C and Oyen J.G. Scintigraphic detection of infection and inflammation: new developments with special emphasis on receptor interaction. Eur J Med.1998;25:535-546
    
    16. Becker, W. The contribution of nuclear medicine to the patient with infection.Eur J Nucl Med.1995; 15:105-122
    
    17. Vinjamuri S.; Hall A V.; Solanski K.K.; Bomanji J.; Siraj Q.; O'Shaughnessy E. Comparison of 99mTc infection imaging with radiolabelled white-cell imaging in the evaluation of bacterial infection.Lancet.1996;347:233-235
    
    18. Krenning E P.; Kwekkebomm D J,.; Pauwels S.;Kvols L K.; Reubi J C.Somatostatin receptor scintigraphy.Nucl Med Annual. 1995; 1-50
    
    19.Plucher MR.; Blower PJ. Labelling of lekocytes with colloidal Tecnetium-99m-SnF2: an investigation of the labeling process by autoradiography.J Nul Med.1995; 22:101-107
    
    20. Guillermina Ferro-Flores.; Consuelo Arteaga de Murphy.; Martha Pedraza-lopez.; Laura Melendez-Alafort.; Yu-Min Zhang .; Mary Rusckowski. In vitro and in vivo assessment of ~(99m)Tc-UBI specificity for bacteria. Nucl Med Biol .2003; 6:597-603
    
    21. Visser GWM.; Klok RP.; Klein Gebbinck JW.; ter Linden T.; vanDongen GAMS,; Molthoff CF. Optimal quality ~(131)I-monoclonal antibodies on high-dose labeling in a large reaction volume ang temporarily coating the antibody with IODOGEN. J Nucl Med 2001;42:9-19
    
    22. Jayson GC; Zweit J.; Jackson A. Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies.J Natl Cancer Inst.2002;94:1484-1493
    23.Verel Ⅰ.;Visser GWM.;Boellaard R.Quantitative Zirconium-89 immuno-PET for in vivo scouting of Yttrium-90-1abeled monoclonal antibodies in xenograft-bearing nude mice.J Nucl Med.2003;44:1663-1670
    24.Morand,E.F.New therapeutic target in inflammatory disease:macrophage migration inhibitory factor.Intern Med J.2005;35:419-426
    25.Aeberli D.;Leech M.;Morand E.F.Macrophage migration inhibitory factor and glucocorticoid sensitivity.Rheumatology.2006;45:937-943.
    1. Okarvi SM. Peptide-based radiopharmaceuticals: future tools for diagnostic imaging of cancers and other diseases. Med Res Rev. 2004; 24: 357-97.
    
    2. Richard JC, Chen DL, Ferkol T. Schuster DP. Molecular imaging for pediatric lung diseases. Pediatr Pulmonol.2004; 37: 286-96.
    3. Staab EV, McCartney WH. Role of ~(67)Gallium in inflammatory disease. Semin Nucl Med 1978;8: 219-34.
    
    4. Seabold JE, Palestro CJ, Brown ML, Datz FL, Forstrom LA, Greenspan BS, McAfee JG, Schauwecker DS, Royal HD. Procedure guideline for gallium scintigraphy in inflammation. Society of Nuclear Medicine. J Nucl Med. 1997; 38: 994-7.
    
    5. Seabold JE, Forstrom LA, Schauwecker DS, Brown ML, Datz FL, McAfee JG, Palestro CJ, Royal HD. Procedure guideline for Indium-111-leukocyte scintigraphy for suspected infection/inflammation. Society of Nuclear Medicine. J Nucl Med. 1997; 38: 997-1001.
    
    6. De Schrijver M, Streule K, Senekowitsch R, Fridrich R.Scintigraphy of inflammation with nanometer-sized colloidal tracers. Nucl Med Commun. 1987;8: 895-908.
    
    7. Buscombe JR, Miller RF, Lui D, Ell PJ. Combined ~(67)Ga citrate and ~(99m)Tc-human immunoglobulin imaging in human immunodeficiency virus-positive patients with fever of undetermined origin. Nucl Med Commun.1991; 12:583-92.
    
    8. McAfee JG, Gagne G, Subramanian G, Schneider RF. The localization of Indium-111-leukocytes, Gallium-67-polyclonal IgG and other radioactive agents in acute focal inflammatory lesions. J Nucl Med. 1991; 32: 2126-31.
    
    9. Donnelly SC, Haslett C, Reid PT, Grant IS, Wallace WA, Metz CN, Bruce LJ, Bucala R. Regulatory role for macrophage migration inhibitory factor in acute respiratory distress syndrome. Nat Med. 1997; 3: 320-3.
    
    10. Bernhagen J, Calandra T, Mitchell RA, Martin SB, Tracey KJ, Voelter W,Manogue KR, Cerami A, Bucala R. MIF is a pituitary-derived cytokine that potentiates lethal endotoxaemia. Nature.1993; 365: 756-9.
    
    11. Bernhagen J, Mitchell RA, Calandra T, Voelter W, Cerami A, Bucala R.Purification, bioactivity, and secondary structure analysis of mouse and human macrophage migration inhibitory factor (MIF).Biochemistry. 1994; 33:14144-55.
    
    12. Kleemann R, Hausser A, Geiger G, Mischke R, Burger-Kentischer A,Flieger O, Johannes FJ, Roger T, Calandra T, Kapurniotu A, Grell M,Finkelmeier D, Brunner H, Bernhagen J. Intracellular action of the cytokine MIF to modulate AP-1 activity and the cell cycle through Jab1.Nature.2000;408:211-6.
    
    13. Bucala R. Signal transduction:A most interesting factor. Nature 2000; 408:146-7.
    
    14. Calandra T, Spiegel LA, Metz CN, Bucala R. Macrophage migration inhibitory factor is a critical mediator of the activation of immune cells by exotoxins of Gram-positive bacteria. Proc Natl Acad Sci U S A. 1998; 95:11383-8.
    
    15. Calandra T, Echtenacher B, Roy DL, Pugin J, Metz CN, Hultner L,Heumann D, Mannel D, Bucala R, Glauser MP. Protection from septic shock by neutralization of macrophage migration inhibitory factor. Nat Med. 2000; 6:164-70.
    
    16. Mikulowska A, Metz CN, Bucala R, Holmdahl R. Macrophage migration inhibitory factor is involved in the pathogenesis of collagen type Il-induced arthritis in mice. J Immunol. 1997; 158: 5514-7.
    
    17. Leech M, Metz C, Santos L, Peng T, Holdsworth SR, Bucala R, Morand EF. Involvement of macrophage migration inhibitory factor in the evolution of rat adjuvant arthritis. Arthritis Rheum. 1998; 41: 910-7.
    
    18. Bernhagen J, Bacher M, Calandra T, Metz CN, Doty SB, Donnelly T,Bucala R. An essential role for macrophage migration inhibitory factor in the tuberculin delayed-type hypersensitivity reaction. J Exp Med. 1996; 183:277-82.
    
    19. Lan HY, Mu W, Yang N, Meinhardt A, Nikolic-Paterson DJ, Ng YY,Bacher M, Atkins RC, Bucala R. De Novo renal expression of macrophage migration inhibitory factor during the development of rat crescentic glomerulonephritis.Am J Pathol. 1996; 149: 1119-27.
    
    20. Rossi AG, Haslett C, Hirani N, Greening AP, Rahman I, Metz CN, Bucala R, Donnelly SC. Human circulating eosinophils secrete macrophage migration inhibitory factor (MIF). Potential role in asthma. J Clin Invest. 1998;101:2869-74.
    
    21. Makita H, Nishimura M, Miyamoto K, Nakano T, Tanino Y, Hirokawa J,Nishihira J, Kawakami Y. Effect of anti-macrophage migration inhibitory factor antibody on lipopolysaccharide-induced pulmonary neutrophil accumulation. Am J Respir Crit Care Med. 1998; 158: 573-9.
    
    22. Hoi AY, Morand EF, Leech M. Is macrophage migration inhibitory factor a therapeutic target in systemic lupus erythematosus? Immunol Cell Biol. 2003;81:367-73.
    
    23. Kobayashi S, Nishihira J, Watanabe S, Todo S.Prevention of lethal acute hepatic failure by antimacrophage migration inhibitory factor antibody in mice treated with bacille Calmette-Guerin and lipopolysaccharide. Hepatology.1999; 29:1752-9.
    
    24. Zhang C, Hou GH, Han JK, Song J, Liang T. Radioiodine Labeled Anti-MIF McAb: A Potential Agent for Inflammation Imaging. Mediators Inflamm. 2007; 2007: 50180.
    
    25. Kobayashi M, Nasuhara Y, Kamachi A, Tanino Y, Betsuyaku T,Yamaguchi E, Nishihira J, Nishimura M. Role of macrophage migration inhibitory factor in ovalbumin-induced airway inflammation in rats. Eur Respir J. 2006; 27: 726-34.
    
    26 Yamaguchi E, Nishihira J, Shimizu T, Takahashi T, Kitashiro N, Hizawa N, Kamishima K, Kawakami Y. Macrophage migration inhibitory factor (MIF) in bronchial asthma. Clin Exp Allergy. 2000; 30: 1244-9.
    27. Rennen HJ, Boerman OC, Oyen WJ, Corstens FH. Imaging infection/inflammation in the new millennium. Eur J Nucl Med. 2001; 28:241-52.
    
    28. Becker W, Goldenberg DM, Wolf F. The use of monoclonal antibodies and antibody fragments in the imaging of infectious lesions. Semin Nucl Med. 1994;24: 142-53.
    
    29. Visser GW, Klok RP, Gebbinck JW, ter Linden T, van Dongen GA,Molthoff CF. Optimal quality ~(131)I-monoclonal antibodies on high-dose labeling in a large reaction volume and temporarily coating the antibody with IODOGEN. J Nucl Med. 2001; 42: 509-19.
    
    30. Jayson GC, Zweit J, Jackson A, Mulatero C, Julyan P, Ranson M,Broughton L, Wagstaff J, Hakannson L, Groenewegen G, Bailey J, Smith N, Hastings D, Lawrance J, Haroon H, Ward T, McGown AT, Tang M,Levitt D, Marreaud S, Lehmann FF, Herold M, Zwierzina H; European Organization for Research and Treatment of Cancer Biological Therapeutic Development Group. Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies. J Natl Cancer Inst. 2002; 94: 1484-93.
    
    31. Verel I, Visser GW, Boellaard R, Boerman OC, van Eerd J, Snow GB,Lammertsma AA, van Dongen GA. Quantitative 89Zr immuno-PET for in vivo scouting of 90Y-labeled monoclonal antibodies in xenograft-bearing nude mice. J Nucl Med. 2003; 44: 1663-70.
    
    32. Datz FL, Anderson CE, Ahluwalia R, Whiting JH, Gabor FV, Morton KA,Christian PE, Crebs K, Neptune M, Rauh DA. The efficacy of indium-111-polyclonal IgG for the detection of infection and inflammation. J Nucl Med. 1994; 35: 74-83.
    
    33. Abrams MJ, Juweid M, tenKate CI, Schwartz DA, Hauser MM, Gaul FE,Fuccello AJ, Rubin RH, Strauss HW, Fischman AJ. Technetium-99m-human polyclonal IgG radiolabeled via the hydrazino nicotinamide derivative for imaging focal sites of infection in rats. J Nucl Med. 1990; 31: 2022-8.
    
    34. Calame W, Feitsma HI, Ensing GJ, Goedemans WT, Camps JA, van Furth R, Pauwels EK. Detection of a local staphylococcal infection in mice with Technetium-99m-labeled polyclonal human immunoglobulin. J Nucl Med.1991; 32: 468-74.
    
    35 Bucala R, Donnelly SC. Macrophage migration inhibitory factor: a probable link between inflammation and cancer. Immunity. 2007; 26: 281-5.