注浆微型钢管组合桩加固土质边坡模型试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩土边坡稳定问题一直是岩土工程界广泛关注的问题。注浆微型钢管组合桩作为一种新型抗滑结构,以其施工方便、适应能力强等优点在边坡加固和滑坡治理尤其是一些应急、抢修工程中都得到了广泛应用,但目前对于微型组合桩的抗滑作用机理尚缺乏系统全面的认识。
     论文主要对注浆微型钢管组合桩在土质边坡中的抗滑工作性状开展模型试验研究。考虑不同的微型桩组合截面形式,对单排微型桩、桩排距分别为2D(D为微型桩的直径)、4D、6D和8D的矩形截面微型组合桩以及桩间距分别为2.5D、4D和6D的圆形截面微型组合桩进行了室内模型试验。根据模型试验结果,对矩形截面和圆形截面组合形式下注浆微型钢管组合桩的荷载分布特征、桩的内力变形特征及其破坏模式进行了分析,给出了不同工况下微型组合桩的工作性状。试验研究结果表明:微型组合桩从开始承担水平推力到破坏可分为三个阶段,分别为弹性变形阶段、塑性变形阶段和破坏阶段,且不同的阶段,各单桩的受力存在一定的差异;微型组合桩中各单桩的破坏模式为双塑性铰破坏。组合桩内的各桩排间距越小,各桩后塑性区土体发生应力重叠的几率越大,从而可能导致组合桩整体抗滑性能的下降;而组合桩内各桩排间距越大,则组合桩的整体协调性能也就越差,同样可以导致组合桩整体抗滑性能的降低,因此,合理的桩间距应该使群桩不利效应相对较低而整体协调性能相对较高,从而能够使微型组合桩发挥其最大的承载性能。本次模型试验中,排距为6D的矩形截面微型组合桩和桩距为6D的圆形截面微型组合桩的加固效果最佳,建议在实际工程中可优先考虑采用桩排距为6D的矩形截面或桩间距为6D的圆形截面微型组合桩。
Geotechnical slope stabilization problem has been becoming one of most important problems in geotechnical engineering field at all times.Grouted micro steel-tube composite pile is a new type of retaining structure.With the advantage of its convenient construction and strong adaptability, the composite piles are widely used in slope stabilization and landslide remediation, especially in emergency repair projects.However, it is lack of systematic and comprehensive understanding on how and why the technique works.
     In this article,model tests are done to study the anti-sliding behavior of the grouted micro steel-tube composite piles in earth slope.In consideration of different section shape of composite micropiles, the testing programs are divided into three sets, that is, one row pile model;rectangle cross section composite micropile models with row distances of 2D,4D,6D and 8D (D is pile diameter);and circular cross section composite micropile models with pile spacings of 2.5D,4D and 6D.Based on the test results, the load distribution characteristic, the internal force and deformation behaviors of piles, and the failure modes of rectangle and circular cross section composite micropiles are analyzed. The behavior characteristics of composite micropiles under different operating mode are proposed. The experiment results indicate three behavioral stages of composite micropiles,that is, elastic deformation stage,plastic deformation stage and failure stage.The mobilized force of each pile differs in different stage.The damage form of each pile in composite micropiles can be defined as double plastic hinges failure.When the pile spacing or row distance decreases,the probability of the plastic zone of soil behind the micropiles cross and overlap increases,which may degrade the overall anti-sliding performance of micropiles;on the contrary, when the pile spacing or row distance increaces, the overall coordination performance of micropiles degrades, which also can degrade the overall anti-sliding performance of micropiles.Therefore, reasonable pile spacing should reduce the adverse group effect of micropiles relatively, improve the overall coordination performance of micropiles relatively and can mobilize the greatest lateral bearing capacity. In this testing programs, rectangle cross section composite micropiles with row distance of 6D and circular cross section composite micropiles with pile spacing of 6D have optimum reinforcement effect, so these two geometric arrangements are suggested to be considered as priority in practical projects.
引文
[1]栾茂田,年廷凯.1976年香港秀茂坪人工填土边坡滑坡灾害评析[J].防灾减灾工程学报.2003,23(1):114-117.
    [2]成永刚.近二十年来国内滑坡研究的现状及动态[J].地质灾害与环境保护.2003,14(4):1-5.
    [3]徐振斯.特种小口径抗滑桩在某滑坡抢险工程中的应用[J].南方国土资源.2004(8):22-23.
    [4]陈喜昌,石胜伟.小口径钻孔组合桩的理论研究与应用前景[J].中国地质灾害与防治学报.2002,]3(3):82-85.
    [5]Tom Armour P E P G.Micropile Design and Construction Guidelines Implementation Manual[R].FHWA Office of Technology Applications, FHWA Federal Lands Highway Division Offices, FHWA Region 10.2000.
    [6]吕凡任,陈云敏,梅英宝.小桩研究现状和展望[J].工业建筑.2003,33(4):56-59.
    [7]吴文平.抗滑微型桩组合结构的计算理论研究[D].西南交通大学,2008.
    [8]周德培,王唤龙,孙宏伟.微型桩组合抗滑结构及其设计理论[J].岩石力学与工程学报.2009(07).
    [9]白晨光,贾立宏,马金普,等.抗弯功能微型桩在基坑支护中的应用[J].岩土工程学报.2006,28(B11):1656-1658.
    [10]贾立宏.微型桩预支护下的土钉墙支护方法[J].建筑施工.2001,23(6):405-406.
    [11]吕科验,田革坚.人工挖孔灌注桩与微型钢管桩在狭窄场地深基坑边坡控制中的应用[J].岩土工程界.2006,9(12):61-63.
    [12]吴开国,郭登林,李有智.深基坑淤泥层微型钢管排桩式锚杆挡墙施工[A].见:西南六省、区、市七方土木建筑工程学会第二十四次学术年会[C].2006.
    [13]杨志银,张俊.复合土钉墙技术在深圳的应用与发展[J].岩土工程学报.2006,28(B11):1673-1676.
    [14]唐竞.浅谈微型钢管桩与锚杆联合支护技术的应用[J].山西建筑.2008,34(22):108-110.
    [15]王丽艳,袁新明.微型桩复合地基沉降和动力特性研究[J].水利学报.2005.36(12):1492-1497.
    [16]孙少锐,吴继敏,魏继红,等.树根桩加固边坡的稳定性分析与评价[J].岩土力学.2003,24(5):776-780.
    [17]潘家铮.建筑物的抗滑稳定和滑坡分析[M].北京:中国水利水电出版社,1980.
    [18]Bruce D A. Dimillio A F,Juran I.Primer on micropiles[J].Civil Engineering (New York). 1995,65(12):51-54.
    [19]郑瑜.国外微型桩发展概况[J].港口工程.1990(5):49-53.
    [20]史佩栋,何开胜.小桩的起源、应用与发展(1)[J].岩土工程界.2005,8(8):18-19.
    [21]Jensen W G.Anchored geo-support systems for landslide stabilization.[D].University of Wyoming..2001.
    [22]Benslimane A.Dynamic behavior of micropile systems subjected to sinusoidal ground motions:Centrifugal model studies[D].United States-New York:Polytechnic University, 2000.
    [23]Lee S J.Behavior of a single micropile in sand under cyclic axial loads[D].United States-Illinois:University of Illinois at Urbana-Champaign,2004.
    [24]Loehr J E, Ang E C,Parra J R, et al.Design methodology for stabilizing slopes using recycled plastic reinforcement[A].In:Geotechnical Engineering for Transportation Projects: Proceedings of Geo-Trans 2004,July 27.2004-July 31,2004[C].Los Angeles, CA, United states:American Society of Civil Engineers.2004:723-731.
    [25]Ito T, Matsui T. Methods to estimate lateral force acting on stabilizing piles.[J].Soils and Foundations.1975.15(4):43-59.
    [26]冯君,周德培,江南,等.微型桩体系加固顺层岩质边坡的内力计算模式[J].岩石力学与工程学报.2006.25(2):284-288.
    [27]蒋楚生,周德培.微型桩抗滑复合结构设计理论探讨[J]I铁道工程学报.2009(02):39-43.
    [28]White D J,Thompson M J.Suleiman M T, et al.Behavior of slender piles subject to free-field lateral soil movement[J].Journal of Geotechnical and Geoenvironmental Engineering.2008,134(4):428-436.
    [29]孙书伟.顺层高边坡开挖松动区研究及微型桩加固边坡的内力计算[D].铁道部科学研究院.2006.
    [30]Bruce D A,Cadden A W. Sabatini P J. Practical advice for foundation design-Micropiles for structural support[A].In:Geo-Frontiers 2005,January 24,2005-January 26,2005[C]. Austin. TX, United states:American Society of Civil Engineers,2005:523-547.
    [31]Brown D A,Morrison C.Reese L C.Lateral behavior of a pile group in sand[J].Journal of Geotech.Engrg..ASCE.1988.114(11):1261-1276.
    [32]Ashour M,Norris G.Pilling P.Lateral loading of a pile in layered soil using the strain wedge model[J].Journal of Geotechnical and Geoenvironmental Engineering.1998,124(4): 303-315.
    [33]Ashour M.Norris G.Modeling lateral soil-pile response based on soil-pile interaction[J]. Journal of Geotechnical and Geoenvironmental Engineering.2000.126(5):420-428.
    [34]王年香.被动桩与土体相互作用研究综述[J].水利水运科学研究.2000(3):69-76.
    [35]史佩栋,何开胜.小桩的起源、应用与发展(Ⅳ)[J].岩土工程界.2005.8(11):19-23.
    [36]丁光文.微型桩处理滑坡的设计方法[J].西部探矿工程.2001,13(4):15-17.
    [37]朱宝龙,胡厚田,张玉芳,等.钢管压力注浆型抗滑挡墙在京珠高速公路K108滑坡治理中的应用[J].岩石力学与工程学报.2006,25(2):399-406.
    [38]朱宝龙.类软土滑坡工程特性及钢管压力注浆型抗滑挡墙的理论研究[D].西南交通大学,2005.
    [39]孙厚超.微型组合桩结构抗滑机理分析及设计方法[D].成都理工大学.2007.
    [40]Sadek M, Shahrour I, Mroueh H.Influence of micropile inclination on the performance of a micropile network[J].Ground Improvement.2006,10(4):165-172.
    [41]高永涛,张友葩,吴顺川.土质边坡抗滑桩机理分析[J].北京科技大学学报.2003.25(2):117-123.
    [42]姜春林,吴顺川,吴承霞,等.复活古滑坡治理及微型抗滑桩承载机理[J].北京科技大学学报.2007,29(10):975-979.
    [43]Bruce J, Ruel M,Ansari N.Design and construction of a micropile wall to stablize a railway embankment[A].In:Deep Foundations Institute Annual Conference on Deep Foundations: Emerging Technologies;20040929-1001;Vancouver(CA)[C].Vancouver(CA):2004: 153-161.
    [44]Ho C L, Coyne A G, Canou J, et al.Model tests of micropile networks applied to slope stabilization[A].In:International conference on soil mechanics and foundation engineering[C].A A Balkema.1997:1223-1226.
    [45]闫金凯,殷跃平,门玉明.微型桩单桩加固滑坡体的模型试验研究[J].工程地质学报.2009(05).
    [46]Boeckmann A Z. Load transfer in micropiles for slope stabilization from test of large-scale physical models[D].Columbia:University of Missouri-Columbia.2006.
    [47]Textor N.Load transfer in reticulated and non-reticulated micropiles from large-scale tests [D].University of Missouri-Columbia,2007.
    [48]Bozok O. Response of micropiles in earth slopes from large-scale physical model tests[D]. University of Missouri-Columbia.2009.
    [49]孙书伟,朱本珍,马惠民,等.微型桩群与普通抗滑桩抗滑特性的对比试验研究[J].岩土工程学报.2009(10).
    [50]马青杰.注浆与钢管微型桩组合结构加固滑坡离心模型试验研究[D].西南交通大学:2009.
    [51]韩理安等.水平承载桩的计算[M].长沙:中南大学出版社.2004.
    [52]韩理安,韩时琳.水平力作用下群桩效应的临界桩距[J].水运工程.1998(5):48-49.