甘蓝型油菜核不育系9012AB的遗传模式修正与BnRf位点的物理定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用杂种优势是提高油菜产量、增强抗耐性、缓解产量与品质矛盾的重要途径。隐性细胞核雄性不育具有不育性稳定彻底,恢复源广,无负胞质效应等优点,是一种具有较大应用潜力的授粉控制系统。然而,大部分隐性核不育材料无法完全保持,制种时必须拔除母本行中约50%的可育株。因此,应用隐性核不育系在大面积制种时成本高且风险较大。上世纪90年代,9012AB类型的隐性核不育通过引入临保系产生100%不育群体,为隐性核不育系统的利用开辟了一条新的途径。目前,该系统(或相似系统)已成为我国乃至世界油菜杂种优势利用的重要途径之一。本研究在系统的遗传分析和图谱定位的基础上,修正了9012AB的育性遗传模型。在此基础上,通过比较作图实现了BnRf位点的精细定位,并最终将其定位到一个BAC克隆13.8kb的物理区间内,主要结果如下:
     1.9012AB类型核不育育性遗传模式的修正。通过对9012AB及其临保系T45与来源不同的几个自交系和常规品种的遗传分析,发现之前被广泛接受的三对基因(Bnms3,Bnms4,Bnrf(?)或Bnesp)控制育性的遗传模式不能合理解释9012A与DH206A杂交后代的育性分离比率。基于这一事实,对9012AB的育性遗传模式进行了修正,即雄性不育只受Bnms3和BnRf两个位点控制,显性BnMs3为野生型可育基因,隐性Bnms3为突变不育基因;而原来假定的BnMs4位点实质上是BnRfa位点的一种复等位基因型BnRfa(恢复型),该位点的另外两种基因型分别为BnRfb(不育型)和BnRfc(可育型),三者的显隐性关系为BnRfa>BbRfb>BnRfc.按照这一遗传模式,9012AB可育株基因型为BnMs3ms3RfbRfb,不育株基因型为Bnms3ms3RfbRfb;临保系基因型为Bnms3ms3RfcRfc,恢复系基因型为BnMs3Ms3或Bn__RraRfa
     2.BnRf复等位遗传模式的分子标记验证。在来源于(9012A×DH206A)F2中可育株与9012A回交得到的育性分离比为1:1的F2BC1株系中,鉴定出基因型为Bnms3ms3RfaRfb的可育株。在该类型可育株继续与9012A回交得到育性分离比为1:1的群体RG206AB(RG206A,Bnms3ms3RfbRgbRG206B,Bnms3ms3RfaRfb)中,筛选获得了与BnRga等位基因型连锁的13个AFLP标记和5个SSR标记。标记整合发现,5个SSR标记都被定位于A7连锁群且同时与BnRfb基因型连锁,而3个由AFLP转化而成的SCAR标记亦与BnRfb存在连锁关系。在此基础上,利用BnRfb精细定位的标记实现了BnRfa的精细定位,并将BnRfa和BnRfb共定位到标记AT3G24240与AT3G23900之间,对应拟南芥共线性区域约50kb。该结果从分子标记水平上初步证实了Rf位点复等位遗传模式的可靠性,并为该位点物理图谱的整合奠定基础。
     3.含BnRf位点区域的物理图谱构建。利用BnRfb共分离的分子标记AT3G23870从9012A中扩增的特异序列为探针筛选甘蓝型油菜BAC克隆文库,获得16个阳性克隆。位点两侧最近的共显性标记AT3G23900及AT3G24240对候选克隆的PCR分析表明,BAC克隆JBnB089D05和JBnB134D11最可能包含目标位点。而源于JBnB089D05两侧末端序列开发的标记BES18和BES19进一步被定位到BnRf两侧,证实该克隆包含目标基因。从该BAC克隆上获得了BnRf两侧最近标记AT3G23900与AT3G23910-1之间13.8kb的序列,预测表明其包含3个完整的ORF及2个ORF的部分片段。
The utilization of heterosis is an important approach to improve yield, resistance for biotic stress and abiotic stress, and alleviate yield and quality contradictions in rapeseed. As an effective pollination-control system, recessive genic male sterile (RGMS) lines are always regarded to possess several advantages, such as stable and thorough male sterility, almost no restriction of restorers and diverse sources of cytoplasplasm. However, a major drawback of most RGMS lines lies in the fact that the male-sterility can not be fully maintained. This shortcoming would inevitably cause a high labour cost for removal of the50%fertile from the mother line and a great risk of seed purity in commercial production of hybrids. This trouble has been basically solved with the introduction of a novel RGMS line9012AB, which has the capability of generating a complete male-sterile population by crossing9012A plants with the so-called temporary maintainers. In this study, we modified the hereditary mode on the inheritance of male sterility in9012AB, as a result of classical genetic analyses and molecular marker assay. Based on this result, we finely mapped the BnRf locus through map integration and comparative genomics, and finally delimited it into a13.8-kb DNA fragment of a BAC clone. The main results were as follows:
     1. Modification on the hereditary mode of male sterility in9012AB. By genetic analyses of the crosses between9012AB and its temporary maintainer line T45with some inbred lines and open-pollination (OP) cultivars, we found that the fertility segregation data cannot be united under the previous widely-accepted tri-genic hereditary mode on sterility inheritance. Instead, we proposed a new mode to interpret the fertility control in9012AB that it is conditioned by two individual loci, i.e. BnMs3and BnRf. At the BnMs3locus, the dominant allele can restore the male sterility caused by the recessive allele. The putative BnMs4locus is actually one allele of BnRf (BnRfa, the restoration allele), and the other two alleles are respectively BnRfb (the sterility allele from9012A) and BnRf (the wild type allele from TAM), with the dominance relationship of BnRfa>BnRfb>BnRf. According to this new mode, the genotypes of9012A,9012B and its temporary maintainer line T45are individually Bnms3ms3RfbRfb, BnMs3ms3Rfb Rfband Bnms3ms3RfcRfc. Similarly, the genotype of restoration lines is BnMs3Ms3__or__RfaRf
     2. Molecular marker evidence on the multiple-allele BnRf locus. From the F2BC1families9012A×(9012A×DH206A)F2in which a fertility segregation ratio of1:1is observed, the fertile plants with the genotype of Bnms3ms3RfaRfb were identified. By successively backcrossing these plants with9012A, we generated a ferlity segregation population RG206AB (RG206A, genotyped as Bnms3ms3RfhbRfb;RG206B, genotyped as Bnms3ms3RfaRfb). Molecular marker screen among this population enabled us to yield13AFLP markers and5SSR markers associated with BnRf. Marker integration showed that all these5SSR markers are located on the A7linkage group of B. napus and linked to the allele of BnRfb. Similarly, three of the7AFLP-converted SCAR markers are also genetically close to BnRf. These results together drove us to finely map the BnRfa allele by using the previously identified markers from the high-resolution genetic map of BnRfb. As expected, both of the BnRf and BnRfb alleles were finally delimited to a region flanked by marker AT3G24240and AT3G23900, corresponding to a physical region of50kb in Arabidopsis chromosome3. This investigation on molecular markers around BnRfa and BnRf greatly supports the allelism of them at the BnRflocus.
     3. Physical mapping of the BnRf locus. We amplified the specific fragment from the genomic DNA of9012A by using the cosegregated marker AT3G23870. This PCR product as a hybridization probe fished16positive BAC clones from a B. napus BAC clone library, and. PCR analysis with the nearest flanking codominant markers (AT3G23900and AT3G24240) showed that BAC clones JBnB089D05and JBnB134D11are most likely to contain the candidate locus of BnRf. Subsequent mapping of the BAC end derived markers BES18and BES19on respective side of BnRf, further indicated that JBnB089D05is the target BAC clone which spans the BnRf locus. We successfully recovered the13.8-kb fragment between the closest flanking markers AT3G23870and AT3G23910-1from JBnB089D05. Gene prediction of the13.8-kb sequence showed that there are3complete ORFs and partial genomic sequences of2ORFs.
引文
1.陈凤祥,胡宝成,李成等.甘蓝型油菜隐性细胞核雄性不育完全保持系选育成功.中国农业科学,1995,28(5):94-95
    2.陈凤祥,胡宝成,李成,李强生,陈维生,张曼琳.甘蓝型油菜细胞核雄性不育性的遗传研究.隐性核不育系9012A的遗传.作物学报,1998,24:431-438
    3.陈凤祥,胡宝成,李强生,吴新杰,侯树敏,费维新,江莹芬.中国甘蓝型油菜隐性上位互作核不育研究与利用.第十二届国际油菜大会论文集,2007
    4.陈凤祥,胡宝成,李强生.细胞核不育材料9012A的发现与初步遗传.见:全国植物雄性不育及杂种优势利用青年学术讨论会论文集.北京农业大学学报,1993,2:20-25
    5.陈升.应用分子标记辅助选择培育光谱、高抗白叶枯病的杂交水稻恢复系.[博士学位论文].武汉:华中农业大学,2000
    6.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2000
    7.冯辉,魏毓棠,许明.大白菜核基因雄性不育系遗传假说及其验证.中国科学技术协会第二届青年学术年会园艺学论文集.北京:北京农业大学出版社,1995:458-466
    8.傅廷栋.杂交油菜的育种与利用(第二版).武汉:湖北科学技术出版社,2000,1-3
    9.何俊平.甘蓝型油菜隐性细胞核雄性不育基因ms3的精细定位.[博士学位论文].武汉:华中农业大学图书馆,2008
    10.洪登峰.甘蓝型油菜显性细胞核雄性不育基因Ms/Mf的定位.[博士学位论文].武汉:华中农业大学图书馆,2006
    11.侯国佐,王华,张瑞茂.甘蓝型油菜细胞核雄性不育材料117A的遗传研究.中国油料,1990,2:7-10
    12.侯国佐.油菜隐性核不育研究与利用.北京:科学科技文献出版社,2009,240-277
    13.雷绍林.甘蓝型油菜隐性核不育恢复基因BnMS2的精细定位与候选基因鉴定.[博士学位论文].武汉:华中农业大学图书馆,2009
    14.雷绍林.甘蓝型油菜隐性核不育恢复基因BnMS2的精细定位与候选基因鉴定.[博士学位论文].武汉:华中农业大学图书馆,2009
    15.李景娟,张正斌,李魏强,徐萍.六倍体小麦基因克隆方法研究进展.麦类作物学报,2007,27(2):349-353
    16.李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传规律探讨及其应用.上海农业学报,1985,1(2):1-12
    17.李树林,周志疆,周熙荣.甘蓝型油菜隐性核不育系S45AB的遗传.上海农业学报,1993,94:1-7
    18.刘俊.甘蓝型油菜显性核不育基因与恢复基因的基因定位.武汉:华中农业大学图书馆,2008
    19.刘仁虎,孟金陵.MapDraw,在Excel中绘制遗传连锁图的宏.遗传,2003,25:317-321
    20.龙欢,姚家玲,涂金星.3种甘蓝型油菜雄性不育系花药发育的细胞学研究.华中农业大学学报,2005,6:570-575
    21.宋来强,傅廷栋,杨光圣.1对复等位基因控制的油菜(Brassica napus LI)显性核不育系609AB的遗传验证.作物学报,2005,31:869-875
    22.孙超才,赵华,王伟荣,李延莉,钱小芳,方光华.隐性核不育油菜两型系20118AB的遗传与利用.上海农业学报,2004,20:30-32
    23.涂金星,傅廷栋,郑用琏.甘蓝型油菜核不育材料育性基因的RAPD标记.华中农业大学学报,1997,16:112-117
    24.王丽丽,魏鹏,刘志勇,李承或,王玉刚,冀瑞琴,冯辉.大白菜显性核复等位基因雄性不育恢复基因Msf的SSR标记.园艺学报,2010,37(6):923-930
    25.王丽侠,赵建伟,徐芳森,刘仁虎,孟金陵.与甘蓝型油菜重要经济性状有关的DNA克隆在拟南芥遗传图谱中的整合.遗传学报,2002,29:741-746
    26.文燕萍.分子标记辅助选择甘蓝型油菜育139隐性细胞核雄性不育系及临保系.[硕士学位论文].武汉:华中农业大学图书馆,2011
    27.夏军红,郑用琏.玉米Rf3近等基因系的分子标记辅助回交选育与效益分析.作物学报,2002,28(3):339-344
    28.肖麓.新型甘蓝型油菜核不育系的选育及隐性上位基因BnRf的定位.[博士学位论文].武汉:华中农业大学图书馆,2008
    29.谢彦周.甘蓝型油菜隐性细胞核雄性不育上位抑制基因的精细定位.[博士学位 论文].武汉:华中农业大学图书馆,2010
    30.杨光圣,瞿波,傅廷栋.三个甘蓝型油菜隐性细胞核雄性不育系小孢子发生的细胞学研究.华中农业大学学报,1999,18:520-523
    31.易斌.甘蓝型油菜隐性核不育基因Bnmsl的精细定位和克隆.[博士学位论文].武汉:华中农业大学图书馆,2007
    32.易斌.甘蓝型油菜隐性核不育基因Bnmsl的精细定位和克隆.[博士学位论文].武汉:华中农业大学图书馆,2007
    33.袁力行.利用RFLP, SSR, AFLP和RAPD标记分析玉米自效系遗传多样性的比较研究.遗传学报,2000,27(8):725-733
    34.张瑞茂,陈大伦,汤晓华等.甘蓝型油菜隐性细胞核雄性不育系118A的发现与选育.贵州农业科学,2006,34(6):5-7
    35.张玉华.分子标记辅助选育甘蓝型油菜隐性细胞核雄性不育系及其临保系.[硕士学位论文].武汉:华中农业大学图书馆,2009
    36. Aarts G M, Dirkse W G, Stiekema W J. Transposon tagging of a male sterility gene in Arabidopsis. Nature,1993,363:715-717
    37. Albertsen M C, Fox T W, Trimnell M R. Tagging, cloning and characterizing a male fertility gene in maize. Am J Bot,1993,80:16
    38. Arondel V, Lemieux B, Hwang I, Gibson S, Goodman H M, Somerville C R. Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopis. Science,1992,258:1353-1355
    39. Atanassova B. Functional male sterility (ps2) in tomato (Lycopersicon esculentum Mill.) and its application in breeding and hybrid seed production. Euphytica,1999, 107:13-21
    40. Bailey M F. A cost of restoration of male fertility in a gynodioecious species, Lobelia siphilitica. Evolution,2002,56:2178-2186
    41. Bentolila S, Alfonso A A, Hanson M R. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc Natl Acad Sci USA,2002, 99:10887-10892
    42. Bernatzky, R., Tanksle S. D. Majority of random cDNA clones correspond to single loci in the tomato genome. Mol Gen Genet,1986,203:8-14
    43. Bohuon E, Keith D, Parkin I, Sharpe A, Lydiate D. Alignment of the conserved C genomes of Brassica oleracea and Brassica napus. Theor Appl Genet,1996, 93(5):833-839
    44. Bortiri E, Jackson D, Hake S. Advances in maize genomics:the emergence of positional cloning. Curr Opin Plant Biol,2006,9:164-171
    45. Bostein D, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980,32:314-31
    46. Bostein D, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980,32:314-31
    47. Brugmans B, van der Hulst R G, Visser R G, Lindhout P, van Eck H J. A new and versatile method for the successful conversion of AFLP markers into simple single locus markers. Nucleic Acids Res,2003,31:e55
    48. Brunel D, Froger N, Pelletier G. Development of amplified consensus genetic markers (ACGMs) in Brassica napus from Arabidopsis thaliana sequences of known biological function. Genome,1999,42:387-402
    49. Budar F, Touzet P, De Paepe R. The nucleo-mitochondrial conflict in cytoplasmic male sterilities revisited. Genetica,2003,117:3-16
    50. Cavell A, Lydiate D, Parkin I, Dean C, Trick M. Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome,1998,41(1):62-69
    51. Cheng X, Xu J, Xia S, Gu J, Yang Y, Fu J, Qian X, Zhang S, Wu J, Liu K. Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet,2009,118:1121-1131
    52. Chi X F, Lou X Y, Shu Q Y. Progressive fine mapping in experimental populations: an improved strategy toward positional cloning. J Theor Biol,2008,253:817-823
    53. Choi S R, Teakle G R, Plaha P, Kim J H, Allender C J, Beynon E, Piao Z Y, Soengas P, Han T H, King G J, Barker G C, Hand P, Lydiate D J, Batley J, Edwards D, Koo D H, Bang J W, Park B S, Lim Y P. The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet,2007, 115:777-792
    54. Choi S R, Teakle G R, Plaha P, Kim J H, Allender C J, Beynon E, Piao Z Y, Soengas P, Han T H, King G J, Barker G C, Hand P, Lydiate D J, Batley J, Edwards D, Koo D H, Bang J W, Park B S, Lim Y P. The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet,2007, 115:777-792
    55. Churchill G A, Giovannoni J J, Tanksley S D. Pooled-sampling makes high-resolution mapping practical with DNA markers. Proc Natl Acad Sci USA,1993,90: 16-20
    56. Coe E H, McCormick S M, Modena S A. White pollen in maize. J Herederity,1981, 72:31-320
    57. Cui X, Wise R P, Schnable P S. The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science,1996,272:1334-1336
    58. Dawson J, Wilson Z A, Aarts M G M, Braithwaite A F, Briaty L G, Mulligan B J. Microspore and pollen development in six male-sterile mutants of Arabidopsis thaliana. Can J Bot,1993,71:629-638
    59. Desloire S, Gherbi H, Laloui W, Marhadour S, Clouet V, Cattolico L, Falentin C, Giancola S, Renard M, Budar F, Small I, Caboche M, Delourme R, Bendahmane A. Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family. EMBO Rep,2003,4:588-594
    60. Ding J, Lu Q, Ouyang Y, Mao H, Zhang P, Yao J, Xu C, Li X, Xiao J, Zhang Q. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci USA,2012,109(7):2654-2659
    61. Dixon M S, Jones D A, Hatzixanthis K, Ganal M W, Tanksley S D, Jones J D G. High resolution mapping of the physical location of the tomato Cf-2 gene. Mol Plant-Microbe Interact,1995,8:200-206
    62. Driscoll C J. Modified XYZ system of producing hybrid wheat. Crop Sci,1985,25: 115-116
    63. Driscoll C J. XYZ system of producing hybrid wheat. Crop Sci,1972,12:516-517
    64. Dun X, Zhou Z, Xia S, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T. BnaC. Tic40, a plastid inner membrane translocon originating from Brassica oleracea, is essential for tapetal function and microspore development in Brassica napus. Plant J,2011, 68:532-545
    65. Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet,2006,112: 1164-1171
    66. Fan C C, Yu S B, Wang C R, Xing Y Z. A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. Theor Appl Genet,2009,118:465-472
    67. Feng H, Wei P, Piao Z, Liu Z, Li C, Wang Y, Ji R, Ji S, Zou T, Choi S, Lim Y. SSR and SCAR mapping of a multiple-allele male-sterile gene in Chinese cabbage (Brassica rapa L.). Theor Appl Genet,2009,119:333-339
    68. Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA,2003,100(25):15253-15258
    69. Fleischmann R D, Adams M D, White O, Clayton R A, Kirkness E F, Kerlavage A R, Bult C J, Tomb J F, Dougherty B A, Merrick J M et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science,1995,269:496-512
    70. Formanova N, Li X Q, Ferrie A M, Depauw M, Keller W A, Landry B, Brown G G. Towards positional cloning in Brassica napus:generation and analysis of doubled haploid B. rapa possessing the B. napus pol CMS and Rfp nuclear restorer gene. Plant Mol Biol,2006,61:269-281
    71. Formanova N, Stollar R, Geddy R, Mahe L, Laforest M, Landry B S, Brown G G. High-resolution mapping of the Brassica napus Rfp restorer locus using Arabidopsis-derived molecular markers. Theor Appl Genet,2010,120:843-851
    72. Fujii S, Toriyama K. Suppressed expression of retrograde-regulated male sterility restores pollen fertility in cytoplasmic male sterile rice plants. Proc Natl Acad Sci USA,2009,106(23):9513
    73. Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science,2009,325(5943):998-1001
    74. Giraudat J, Hauge B M, Valon C, Smalle J, Parcy F, Goodman H M. Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell,1992,10:1251-1261
    75. Goff S A, Ricke D, Lan T H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science,2002,296(5565):92-100
    76. Gore M A, Chia J M, Elshire R J, Sun Q, Ersoz E S, Hurwitz B L, Peiffer J A, Mcmullen M D, Grills G S, Ross-Ibarra J. A first-generation haplotype map of maize. Science,2009,326(5956):1115
    77. Gorguet B, Schipper D, van Lammeren A, Visser R G, van Heusden A W. ps-2, the gene responsible for functional sterility in tomato, due to non-dehiscent anthers, is the result of a mutation in a novel polygalacturonase gene. Theor Appl Genet,2009, 118:1199-1209
    78. Grelon M, Budar F, Bonhomme S, Pelletier G. Ogura cytoplasmic male-sterility(CMS) associated orfl38 is translated into a mitochondrial membrane polypeptide in male-sterile Brassica napus. Mol Gen Gene,1994,243:540-547
    79. Hanson M R, Bentolila S. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell,2004,16 Suppl:S154-169
    80. He J, Ke L, Hong D, Xie Y, Wang G, Liu P, Yang G. Fine mapping of a recessive genic male sterility gene (Bnms3) in rapeseed (Brassica napus) with AFLP-and Arabidopsis-derived PCR markers. Theor Appl Genet,2008,117:11-18
    81. Huang L, Brooks S A, Li W L, Fellers J P, Trick H N, Gill B S. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics,2003,164:655-664
    82. Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas W J, Wang X, Xie B, Ni P. The genome of the cucumber, Cucumis sativus L. Nat Genet,2009,41(12):1275-1281
    83. Huang S, Xu X, Pan S. Genome sequence and analysis of the tuber crop potato. Nature,2011,475:U 189-U194
    84. Huang Z, Chen Y,Yi B, Xiao L, Ma C, Tu J, Fu T. Fine mapping of the recessive genic male sterility gene (Bnms3) in Brassica napus L. Theor Appl Genet,2007,115: 113-118
    85. Huang Z, Xiao L, Dun X, Xia S, Yi B, Wen J, Shen J, Ma Ch, Tu J, Meng J, Fu T. Improvement of the recessive genic male sterile lines with a subgenomic background in Brassica napus by molecular marker-assisted selection. Mol Breed,2012, 29:181-187
    86. Imai R, Koizuka N, Fujimoto H, Hayakawa T, Sakai T, Imamura J. Delimitation of the fertility restorer locus Rfkl to a 43-kb contig in Kosena radish (Raphanus sativus L.). Mol Genet Genomics,2003,269:388-394
    87. International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature,2005,436:793-800
    88. Itabashi E, Iwata N, Fujii S, KazamaT, Toriyama K. The fertility restorer gene, Rf2, for Lead Rice-type cytoplasmic male sterility of rice encodes a mitochondrial glycine-rich protein. Plant J,2011,65(3):359-367
    89. Jaillon O, Aury J M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature,2007,449(7161):463-467
    90. Jander G, Norris S R, Rounsley S D, Bush D F, Levin I M, Last R L. Arabidopsis map-based cloning in the post-genome era. Plant Physiol,2002,129:440-450
    91. Jean M, Brown G G, Landry B S. Genetic mapping of nuclear fertility restorer genes for the'Polima'cytoplasmic male sterility of canola(Brassica napus L.) using DNA markers. Theor Appl Genet,1997,95:321-328
    92. Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet,2010,42(6):541-544
    93. Jing B, Heng S, Tong D, Wan Z, Fu T, Tu J, Ma C, Yi B, Wen J, Shen J. A male sterility-associated cytotoxic protein ORF288 in Brassica juncea causes aborted pollen development. J Exp Bot,2012,63(3):1285-1295
    94. Johal G S, Briggs S P. Reductase activity encoded by the HM1 disease resistance gene in maize. Science,1992,258(5084):985-987
    95. Kaul M L H. Male sterility in higher plants. Berlin Heidelberg New York:Springer, 1988,4-9
    96. Ke L P, Sun Y Q, Hong D F, Liu P W, Yang G S. Identification of AFLP markers linked to one recessive genic male sterility gene in oilseed rape, Brassica napus. Plant Breed,2005,124:367-370
    97. Ke L P, Sun Y Q, Liu P W, Yang G S. Identification of AFLP fragments linked to one recessive genic male sterility (RGMS) in rapeseed(Brassica napus L.) and conversion to SCAR markers for marker-aided selection. Euphytica,2004,138: 163-168
    98. Kikuchi S, Fujima D, Sasazaki S, Tsuji S, Mizutani M, Fujiwara A, Mannen H. Construction of a genetic linkage map of Japanese quail (Coturnix japonica) based on AFLP and microsatellite markers. Anim Genet,2005,36:227-231
    99. Kim H, Choi S R, Bae J, Hong C P, Lee S Y, Hossain M J, Nguyen D V, Jin M, Park B S, Bang J W, Bancroft I, Lim Y P. Sequenced BAC anchored reference genetic map that reconciles the ten individual chromosomes of Brassica rapa. BMC Genomics,2009,10:432
    100.Komori T, Ohta S, Murai N, Takakura Y, Kuraya Y, Suzuki S, Hiei Y, Imaseki H, Nitta N. Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L.). Plant J,2004,37:315-325
    101.Kosambi D D. The estimation of map distances from recombination values. Ann Eugen,1944,12:172-175
    102.Kowalski S P, Lan T H, Feldmann K A, Paterson A H. Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved organization. Genetics,1994,138(2):499-510
    103.Krattinger S G, Lagudah E S, Spielmeyer W, Singh R P, Huerta-Espino J, Mcfadden H, Bossolini E, Selter L L, Keller B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science,2009, 323(5919):1360-1363
    104.Lander E, Green P, Abrahamson J, Barlow A, Daley M, Lincoln S, Newburg L. MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics,1987,1:174-181
    105.Landgren M, Zetterstrand M, Sundberg E, Glimelius K. Alloplasmic male-sterile Brassica lines containing B. tournefortii mitochondria express an ORF 3'of the atp6 gene and a 32 kDa protein. Plant Mol Biol,1996,32:879-890
    106.Lei S, Yao X, Yi B, Chen W, Ma C, Tu J, Fu T. Towards map-based cloning:fine mapping of a recessive genic male-sterile gene (BnMs2) in Brassica napus L. and syntenic region identification based on the Arabidopsis thaliana genome sequences. Theor Appl Genet,2007,115:643-651
    107.L'homme Y, Stahl R J, Li X Q, Hameed A, Brown G G. Brassica nap cytoplasmic male sterility is associated with expression of a mtDNA region containing a chimeric gene similar to the pol CMS-associated orf224 gene. Current genetics,1997, 31(4):325-335
    108.Li C, Zhou A, Sang T. Rice domestication by reducing shattering. Science,2006,311: 1936-1939
    109.Li H, Chen X, Yang Y, Xu J, Gu J, Fu J, Qian X, Zhang S, Wu J, Liu K. Development and genetic mapping of microsatellite markers from whole genome shotgun sequences in Brassica oleracea. Mol Breed,2011,28:585-596
    110.Li J, Hong D F, He J P, Ma L, Wan L L, Liu P W, Yang G S. Map-based cloning of a recessive genic male sterility locus in Brassica napus L. and development of its functional marker. Theor Appl Genet,2012, DOI 10.1007/s00122-012-1827-5
    111.Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet,2011,43(12):1266-1269
    112.Lincoln S, Daly M, Lander E. Constructing genetic maps with MAPMAKER/EXP 3.0. Whitehead Institute Technical Report,3rd ed.,1992, Whitehead Technical Institute, Cambridge, Mass
    113.Liu N, Shan Y, Wang F P, Xu C G, Peng K M, Li X H, Zhang Q. Identification of an 85-kb DNA fragment containing pmsl, a locus for photoperiod-sensitive genic male sterility in rice. Mol Gen Genet,2001,266:271-275
    114.Liu X Q, Wang L, Chen S, Lin F, Pan Q H. Genetic and physical mapping of Pi36(t), a novel rice blast resistance gene located on rice chromosome 8. Mol Genet Genomics,2005,274:394-401
    115.Liu Y G, Shirano Y, Fukaki H, Yanai Y, Tasaka M, Tabata S, Shibata D. Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc Natl Acad Sci USA,1999,96:6535-6540
    116.Liu Z, Liu P W, Long F R, Hong D F, He Q B, Yang G S. Fine mapping and candidate gene analysis of the nuclear restorer gene Rfp for pol CMS in rapeseed (Brassica napus L.). Theor Appl Genet,2012, doi 10.1007/s00122-012-1870-2
    117.Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Park B S, Choi S R, Lim Y P, Meng J. Flowering time quantitative trait Loci analysis of oilseed brassica in multiple environments and genome wide alignment with Arabidopsis. Genetics,2007,177:2433-2444
    118.Lukowitz W, Gillmor C S, Scheible W R. Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you. Plant Physiol,2000,123: 795-805
    119.Lysak M A, Cheung K, Kitschke M, Bures P. Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size. Plant Physiol,2007,145:402-410
    120.Lysak M A, Koch M A, Pecinka A. Chromosome triplication found across the tribe Brassicea. Genome Res,2005,15:516-525
    121.Majoros W H, Pertea M, Salzberg S L.TigrScan and GlimmerHMM:two open source ab initio eukaryotic gene-finders. Bioinformatics,2004,20:2878-2879
    122.Mariani C, de Beuckeleer M, Truettner J, Leemans J, Goldberg R B. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature,1990,347:737-741
    123.Mariani C, Gossele V, De Beuckeleer M, De Blcok M, Goldberg M, De Greef R, Leemans J. A chimaeric robonuclease inhibitor gene restores fertility to male sterile plants. Nature,1992,357:384-387
    124.Mayerhofer R, Wilde K, Mayerhofer M, Lydiate D, Bansal V K, Good A G, Parkin I A. Complexities of chromosome landing in a highly duplicated genome:toward map-based cloning of a gene controlling blackleg resistance in Brassica napus. Genetics,2005,171:1977-1988
    125.Mccouch S R, Zhao K, Wright M, Tung C W, Ebana K, Thomson M, Reynolds A, Wang D, Declerck G, Ali M L. Development of genome-wide SNP assays for rice. Breed Science,2010,60(5):524-535
    126.Mcgrath J M, Quiros C. Inheritance of isozyme and RFLP markers in Brassica campestris and comparison with B. oleracea. Theor Appl Genet,1991,82(6):668-673
    127.Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw J H, Senin P, Wang W, Ly B V, Lewis K L T. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature,2008,452(7190):991-996
    128.Miura K, Ikeda M, Matsubara A, Song X, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet,2010,42(6):545-549
    129.Moffatt B A, Somerville C. Positive selection for male-sterile mutants of Arabidopsis lacking adene phosphoribosyl transferase activity. Plant Physiol,1988,86:1150-1154
    130.Muangprom A, Osborn T C. Characterization of a dwarf gene in Brassica rapa, including the identification of a candidate gene. Theor Appl Genet,2004,108: 1378-1384
    131.Mun J H, Kwon S J, Yang T J, Seol Y J, Jin M, Kim J A, Lim M H, Kim J S, Baek S, Choi B S, Yu H J, Kim D S, Kim N, Lim K B, Lee S I, Hahn J H, Lim Y P, Bancroft I, Park B S. Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol,2009,10:R111
    132.Nonomura K I, Miyoshi K, Eiguchi M, Suzuki T, Miyao A, Hirochika H, Kurata N. The MSP1 gene is necessary to restrict the Number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. Plant Cell,2003, 15:1728-1739
    133.Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki G, Nakazono M, Hirai A, Kadowaki K. The complete sequence of the rice (Oryza sativa L.) mitochondrial genome:frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol Genet Genomics,2002,268:434-445
    134.Osborn T C, Kole C, Parkin I A P, Sharpe A G, Kuiper M, Lydiate D J, Trick M. Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics,1997,146:1123-1129
    135.Palmer J D, Shields C R, Cohen D B, Orton T J. Chloroplast DNA evolution and the origin of amphidiploids Brassica species. Theor Appl Genet,1983,65:181-189
    136.Pan S, Czarnecka-Verner E, Gurley W. Role of the TATA binding protein-transcription factor IIB interaction in supporting basal and activated transcription in plant cells. Plant Cell,2000,12,125-136
    137.Panjabi P, Jagannath A, Bisht N C, Padmaja K L, Sharma S, Gupta V, Pradhan A K, Pental D. Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers:homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics,2008,9:113
    138.Paran I, Michelmore R. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet,1993,85:985-993
    139.Park J Y, Koo D H, Hong C P, Lee S J, Jeon J W, Lee S H, Yun P Y, Park B S, Kim H R, Bang J W, Plaha P, Bancroft I, Lim Y P. Physical mapping and microsynteny of Brassica rapa ssp.pekinensis genome corresponding to a 222kb gene-rich region of Aribidosis chromosome 4 and partially duplicated on chromosome 5. Mol Gen Genet, 2005,274,579-588
    140.Parkin I A, Gulden S M, Sharpe A G, Lukens L, Trick M, Osborn T C, Lydiate D J. Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics,2005,171:765-781
    141.Parkin I A, Sharpe A G, Keith D J, Lydiate D J. Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome,1995,38: 1122-1131
    142.Paterson A H, Bowers J E, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A. The Sorghum bicolor genome and the diversification of grasses. Nature,2009,457(7229):551-556
    143.Peters J L, Cnudde F, Gerats T. Forward genetics and map-based cloning approaches. Trends Plant Sci,2003,8:484-491
    144.Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger M J, Vincourt P, Blanchard P. Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet,2005,111:1514-1523
    145.Priya P, Arun J, Naveen C B, Sarita S, Vibha G, Akshay K P, Deepak P. Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers:homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics 2008,9:113
    146.Rana D, van den Boogaart T, O'Neill C M, Hynes L, Bent E, Macpherson L, Park J Y, LimY P, Bancroft I. Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J,2004,40:725-733
    147.Redona M S, Plaschke J, Konig S U, Borner A, Sorrells M E, Tanksley S D, Ganal M W. Abundance, variability and chromosomal location of microsatellite in wheat. Mol Gen Genet,1995,246:327-333
    148.Saumitou-Laprade P, Cuguen J, Vernet P. Cytoplasmic male sterility in plants: molecualr evidence and the nucleocytoplasmic conflict. Trends Ecol Evol,1994, 9:43-435
    149.Schmutz J, Cannon S B, Schlueter J, Ma J, Mitros T, Nelson W, Hyten D L, Song Q, Thelen J J, Cheng J. Genome sequence of the palaeopolyploid soybean. Nature,2010, 463(7278):178-183
    150.Schnable P S, Wise R P. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci,1998,3:75-180
    151.Schnable P S, Ware D, Fulton R S, Stein J C, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves T A. The B73 maize genome:complexity, diversity, and dynamics. Science,2009,326(5956):1112-1115
    152.Schranz M E, Lysak M A, Mitchell-Olds T. The ABC's of comparative genomics in the Brassicaceae:building blocks of crucifer genomes. Trends Plant Sci,2006,11: 535-542
    153.Singer T, Fan Y, Chang H S, Zhu T, Hazen S P, Briggs S P. A high-resolution map of Arabidopsis recombinant inbred lines by whole-genome exon array hybridization. PLoS genetics,2006,2(9):e144
    154.Singh M, Brown G G. Suppression of cytoplasmic male sterility by nuclear genes alters expression of a novel mitochondrial gene region. Plant Cell,1991,3:1349-1362
    155.Singh S P, Pandey T, Srivastava R, Verma P C, Singh P K, Tuli R, Sawant S V. BECLIN1 from Arabidopsis thaliana under the generic control of regulated expression systems, a strategy for developing male sterile plants. Plant Biotechnology Journal,2010,8(9):1005-1022
    156.Song L Q, Fu T D, Tu J X, Ma C Z, Yang G S. Molecular validation of multiple allele inheritance for dominant genic male sterility gene in Brassica napus L. Theor Appl Genet,2006,113:55-62
    157.Song X, Huang W, Shi M, Zhu M, Lin H. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet,2007, 39(5):623-630
    158.Stein N, Graner A. Map-based gene isolation in cereal genomes. In:Gupta PK, Varshney RK eds., Cereal genomics. Berlin Heidelberg New York:Springer,2004, 332-338
    159.Stiewe G, Pleines S, Coque M, Gielen J. New hybrid system for Brassica napus. European Patent Application, EP2016821,2009
    160.Takahashi J S, Pinto L H, Vitaterna M H. Forward and reverse genetic approaches to behavior in the mouse. Science 1994; 264:1724-1733
    161.Tanksley S D, Ganal M W, Martin G B. Chromosome landing:a paradigm for map-based gene cloning in plants with large genomes. Trends Genet,1995,11:63-68
    162.The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature,2000,408:796-815
    163.Thomas C M, Vos P, Zabeau M, Jones D A, Norcott K A, Chadwick B P, Jones J D G. Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to Cladosporium fulvum. Plant J, 1995,8:785-794
    164.Town C D, Cheung F, Maiti R, Crabtree J, Haas B J, Wortman J R, Hine E E, Althoff R, Arbogast T S, Tallon L J, Vigouroux M, Trick M, Bancroft I. Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell,2006,18:1348-1359
    165.Tuskan G A, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science,2006,313(5793):1596-1604
    166.U N. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilisation. Jpn J Bot,1935,7:389-452
    167.Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M et al. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Res,1995,23:4407-4414
    168.Wan L L, Xia X Y, Hong D F, Li J,Yang G S. ABnormal vacuolization of the tapetum during the tetrad stage is associated with male sterility in the recessive genic male sterile Brassica napus L. line 9012A. J of Plant Bio,2010,53:121-133
    169.Wang J, Long Y, Wu B, Liu J, Jiang C, Shi L, Zhao J, King G J, Meng J. The evolution of Brassica napus FLOWERING LOCUS T paralogues in the context of inverted chromosomal duplication blocks. BMC Evol Biol,2009,9:271
    170.Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Ba i Y, Mun J H, Bancroft I, Cheng F. The genome of the mesopolyploid crop species Brassica rapa. Nat Genet,2011, 43(10):1035-1039
    171.Wang Z, Zou Y, Li X, Zhang Q, Chen L, Wu H, Su D, Chen Y, Guo J, Luo D, Long Y, Zhong Y, Liu Y G. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell,2006,18:676-687
    172.Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell research,2008,18(12):1199-1209
    173.Williams J G K, Kubelik A R, Livak K J, Rafalski J A and Tingey S V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res,1990,18:6531-6535
    174.Wilson ZA, Zhang D B. From Arabidopsis to rice:pathways in pollen development. J Exp Bot,2009,60:1479-1492
    175.Wu K S, Tanksley S D. Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet,1993,241:225-235
    176.Xia S, Cheng L, Zu F, Dun X, Zhou Z, Yi B, Wen J, Ma C, Shen J, Tu J. Mapping of BnMs4 and BnRf to a common microsyntenic region of Arabidopsis thaliana chromosome 3 using intron polymorphism markers. Theor Appl Genet,2012:1-8
    177.Xiao L, Yi B, Chen Y F, Huang Z, Chen W, Ma C Z, Tu J X, Fu T D. Molecular markers linked to Bn;rf. a recessive epistatic inhibitor gene of recessive genie male sterility in Brassica napus L. Euphytica,2008,164:377-384
    178.Xie Y Z, Hong D F, Xu Z H, Liu P W, Yang G S. Identification of AFLP markers linked to the epistatic suppressor gene of a recessive genic male sterility in rapeseed and conversion to SCAR markers. Plant Breed,2008,127:145-149
    179.Xu J, Qian X, Wang X, Li R, Cheng X, Yang Y, Fu J, Zhang S, King G J, Wu J, Liu K. Construction of an integrated geneticlinkage map for the A genome of Brassica napus using SSR markers derived from sequenced BACs in B. rapa. BMC Genomics, 2010,11:594
    180.Xu Y B, Crouch J H. Marker-assisted selection in plant breeding:From publications to practice. Crop Sci,2008,48:391-407
    181.Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet,2008,40:761-767
    182.Yahiaoui N, Srichumpa P, Dudler R, Keller B. Genome analysis at different ploidy levels allows cloning of powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J,2004,37:528-538
    183.Yan L L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen J L, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science,2004,303:1640-1644
    184.Yan L L, Loukoianov A, Tranuilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene Vrnl. Proc Natl Acid Sci,2003, 100:6263-6268
    185. Yang P, Shu C, Chen L, Xu J S, Wu J S, Liu K D. Identification of a major QTL for silique length and seed weight in oilseed rape(Brassica napus L.). Theor Appl Genet, 2012, DOI 10.1007/s00122-012-1833-7
    186.Yang T J, Kim J S, Kwon S J, Lim K B, Choi B S, Kim J A, Jin M, Park JY, Lim M H, Kim H I, Lim YP, Kang J J, Hong J H, Kim C B, Bhak J, Bancroft I, Park B S. Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell,2006,18:1339-1347
    187.Yi B, Chen Y, Lei S, Tu J, Fu T. Fine mapping of the recessive genie male-sterile gene (Bnmsl) in Brassica napus L. Theor Appl Genet,2006,113:643-650
    188.Yi B, Zeng F, Lei S, Chen Y, Yao X, Zhu Y, Wen J, Shen J, Ma C, Tu J, Fu T (2010) Two duplicate CYP704B1-homologous genes BnMsl and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. Plant J 63:925-938
    189.Yu J, Hu S, Wang J, Wong G K S, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science,2002, 296(5565):79-92
    190.Zhang J, Lu Y, Yuan Y, Zhang X, Geng J, Chen Y, Cloutier S, McVetty, P B, Li G. Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa. Plant Mol Biol,2009,69:553-563
    191.Zhang L W, Li S P, Chen L, Yang G S. Identification and mapping of a major dominant quantitative trait locus controlling seeds per silique as a single Mendelian factor in Brassica napus L. Theor Appl Genet,2012, DOI 10.1007/s00122-012-1861-3
    192.Zhou H, Liu Q, Li J, Jiang D, Zhou L, Wu P, Lu S, Li F, Zhu L, Liu Z. Photoperiod-and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell research, 2012:1-12
    193.Zhou K J, Wang S H, Feng Y Q, Liu Z X, Wang G X. The 4E-ms system of producing hybrid wheat. Crop Sci,2006,46:250-255
    194.Zhou Z, Dun X, Xia S, Shi D, Qin M, Yi B, Wen J, Shen J, Ma C, Tu J. BnMs3 is required for tapetal differentiation and degradation, microspore separation, and pollen-wall biosynthesis in Brassica napus. J Exp Bot,2011,65(5):2041-2058
    195.Zhu Y, Dun X, Zhou Z, Xia S, Yi B, Wen J, Shen J, MaC, Tu J, Fu T. A separation defect of tapetum cells and microspore mother cells results in male sterility in Brassica napus:the role of abscisic acid in early anther development. Plant Mol Biol, 2010,72:111-123