糖尿病性心肌病的发病机制及能量代谢干预对心肌保护作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:大鼠糖尿病性心肌病模型的建立及PPARα-FFA信号传导通路在糖尿病性心肌病中的作用
     目的建立2型糖尿病及糖尿病性心肌病大鼠模型,研究过氧化物酶体激活物受体α-游离脂肪酸(PPARα-FFA)信号传导通路以及心肌重塑在糖尿病性心肌病病程中的作用。
     材料和方法:65只雌性Wistar大鼠,随机选出8只作为对照组(CON)给予普通饮食;其余57只用以诱导2型糖尿病,饲以高脂高糖饮食,4周后检测空腹血糖、胰岛素。以小剂量链脲佐菌素腹腔注射,48小时后,空腹血糖≥16.7mmol/L为2型糖尿病模型。随机选取8只糖尿病鼠(其余留作他用)为糖尿病性心肌病组(DCM),继续饲养16周后用超声心动图评价心功能,取血检测血糖、胰岛素、FFA水平,心脏称重,免疫组化检测心肌组织胶原分数,观察Ⅰ、Ⅲ型胶原和PPARα的表达,并用电镜观察心肌超微结构。
     结果:(1)有40只大鼠符合2型糖尿病标准,与CON(n=8)组相比,糖尿病大鼠表现为高血糖、高胰岛素血症。血游离脂肪酸水平增加(208±18.3μmol/L vs 128±11.3μmol/L,P<0.01)。(2)糖尿病性心肌病(DCM,n=6)组2只死亡,心功能减退,以舒张功能减退为主;与CON组比较,心脏重量指数增加(DCM组4.42±0.46 vs CON组3.54±0.34,P<0.01);胶原分数增加(DCM组2.21±0.56 vs CON组1.61±0.36,P<0.01);Ⅰ、Ⅲ型胶原比率显著增加。心肌超微结构显示心肌纤维变性坏死,间质胶原纤维增多,有大量糖原颗粒沉积,微血管基底膜轻度增厚等。(3)PPARα的表达DCM组显著高于CON组(DCM组65.34±3.7vs CON组48.69±4.9, P<0.01)。结论:实验成功地构建以胰岛素抵抗为特征的2型糖尿病及糖尿病心肌病模型,心肌组织中PPARα表达上调、血FFA水平增加与心肌重塑,心肌病进展密切相关。
     第二部分:过氧化物酶体激活物受体激动剂非诺贝特抑制STZ诱导的大鼠糖尿病心肌病的心肌炎症和心肌重塑
     目的:通过构建的糖尿病性心肌病大鼠模型,观察过氧化物酶体激活物受体α(PPARα)激动剂非诺贝特对糖尿病心肌病心肌炎症因子的作用以及对心肌重塑的影响。方法:对照组(CON)大鼠普通饲料喂养,由STZ诱导的2型糖尿病鼠继续给予高脂高糖饲料并随机分为三组:糖尿病心肌病组(DCM),非诺贝特低剂量干预组(LFIB, 4 mg·kg-1·day-1)和高剂量干预组(HFIB, 40 mg·kg-1·day-1),每组8只,干预16周。超声心动图评价心功能,测定血糖、胰岛素、胆固醇、甘油三脂(TG)以及游离脂肪酸(FFA)含量,评价心脏重量指数,胶原容积分数(CVF),免疫组化以及RT-PCR检测肿瘤坏死因子(TNF-α)、白介素10(IL-10)和PPARα的表达,观察心肌超微结构。
     结果:(1)超声心动图检查显示糖尿病大鼠心功能减退,DCM组尤为显著,两组不同剂量的非诺贝特干预后与DCM组相比心功能明显改善(P<0.01),但两干预组之间无显著差异(P>0.05)。(2)与CON组比较,糖尿病大鼠血糖、血胰岛素水平显著升高,血胆固醇、TG以及FFA水平增加。与DCM组比较,非诺贝特对血糖、胰岛素无显著影响,但可显著降低血胆固醇、TG以及FFA水平;血FFA浓度在HFIB组显著低于LFIB组(187±13.6 vs 168±17.3μmol/L,P<0.05)。(3)DCM组TNF-α、IL-10以及PPARα的表达明显增加,病理检查及超微结构可见心肌损伤以及心肌重塑,药物干预可降低TNF-α、IL-10以及PPARα的表达,减轻心肌重塑;RT-PCR分析进一步显示TNF-α的mRNA表达在DCM组上调(0.83±0.08),在LFIB、HFIB干预组下调,分别为(0.58±0.07、0.55±0.07),与DCM组相比差异有非常显著意义(P<0.01),而与CON组相比,仍有显著差异(P<0.01)。与CON组相比,IL-10mRNA表达在DCM组显著升高,干预组表达上调更加明显(P<0.01)。
     结论:心肌能量代谢和炎症因子表达的变化、心肌重塑与糖尿病性心肌病病程密切相关,激活PPARα通路可能通过平衡炎症因子表达改善糖尿病大鼠的心肌重塑和心脏功能。
     第三部分曲美他嗪对糖尿病性心肌病大鼠心肌重塑以及转化生长因子β1的影响
     目的:研究曲美他嗪对糖尿病性心肌病心肌重塑及对转化生长因子β1表达的影响。方法:采用高脂高糖饲养并且以小剂量STZ诱导出2型糖尿病动物模型,随机分为未治疗的糖尿病心肌病组(DCM)、曲美他嗪干预组(TMZ, 10 mg·kg-1·day-1)、卡托普利干预组(CAP, 50 mg·kg-1·day-1),另设正常对照组(CON),每组8只。16周后,采用超声心动图等评价各组的心功能改变,评价心脏重量指数、胶原容积分数(CVF),免疫组织化学以及逆转录-聚合酶链反应(RT-PCR)检测心肌组织中TGF-β1含量以及mRNA表达。
     结果:(1)DCM组出现了心肌病的特征,表现为现舒张功能减退,E/A比值下降,IVRT缩短,-dp/dt max下降, CVF增加为(0.38±0.09 vsCON组0.16±0.04),TGF-β1的免疫组化平均积分光密度值(IDP)显著增加(1.03±0.12vsCON组0.22±0.06), mRNA水平显著增加(1.01±0.1 vsCON组0.42±0.07),均为P<0.01。(2)与DCM组相比,TMZ和CAP干预组心脏重量指数下降(P<0.05),舒张功能明显改善,CVF减少,两组分别为(0.27±0.05)、(0.24±0.06),与DCM组(0.38±0.09)相比都有显著差异(均P<0.01);TGF-β1的IDP在两干预组分别为(0.75±0.08)、(0.74±0.08),与CON组(1.03±0.12)相比均显著降低(均P<0.01);TGF-β1mRNA表达在两干预组明显下调,TMZ和CAP干预组分别为(0.71±0.09)、(0.73±0.22),与CON组相比均有显著差异(均P<0.01)。
     结论:曲美他嗪可以减轻糖尿病性心肌病中心肌胶原沉积,减轻心室重塑,其作用可能与抑制心肌组织中TGF-β1的表达有关。
PartⅠModel construction and effect of PPARα-FFA signal pathway in STZ–induced diabetic cardiomyopathy rats
     Objective To construct ideal diabetic cardiomyopathy model in streptozotocin (STZ) induced type 2 diabetic rats,and investigate the effect of peroxisome proliferator -activated receptor alpha(PPARα)and free fatty acids (FFA) signals transduction pathway in the development of diabetic cardiomyopathy through detecting cardiac expression changes of PPARαand metabolic alteration of FFA.
     Methods 65 female Wistar rats were randomized into control group (CON, n=8), feeding with general diet all the time, and experimental group ( n=57), which were fed with high glucose and hyperlipid diet for 4 weeks, to induce insulin resistance. Then diabetes mellitus was induced by a single injection of STZ (35 mg/kg; i.p.), Hyperglycemia (≥16.7mmol/L) was confirmed 48h later.The diabetic rats were fed with high glucose and hyperlipid diet for 16 weeks continually and 8 of them were randomized into diabetic cardiomyopathy group(DCM), Hemodynamic characterization was determined by echocardiography,the myocardial pathologic and ultrastructure changes was observed by microscope and electron microscope. The collagen volume fraction(CVF, VG staining)and expression of types I, III collagen and PPARαwere quantified by digital image analysis. Levels of blood glucose, insulin, total cholesterol, triacylglycerol and FFA were determined using biochemical or RIA methods.
     Results (1) Hyperglycemia was displayed in 40 STZ-induced rats followed with hyperinsulinemia, 2 rats of DCM group were died at the end of experiment. Diastolic function deteriorated in DCM-group(n=6) exhibited low E wave to A wave ratio (E/A) (DCM, 0.83±0.21 versus CON, 1.28±0.18, P<0.01)and shortened isovolumic relaxation time (IVRT)(DCM, 29.13±7.10 versus CON, 45.06±5.03, P<0.01). Histopathology revealed ventricular remodeling in STZ–DCM heart. The HW/BW ratio, ColⅠ/ ColⅢratio in DCM group (4.42±0.46, 15.49±0.87, respectively) is higher than that in CON group(3.54±0.34, 6.51±0.96, P<0.01), the CVF of LV was significantly higher in DCM (2.21±0.56) than CON (1.61±0.36, P<0.01) rats. The ultrastructure of DCM heart presented focal degeneration and disarranged order of myofilament, increased interstitial collagen and glycogen granule deposite, etc.(2) Systemic and cardiac metabolism changes: Compared with CON group, there were elevated plasma concentrations of glucose, insulin, Chol, Tg and FFA in DCM group. This was paralleled by abundant PPARαexpression in DCM-group (65.34±3.67) versus CON-group (48.69±4.88, P<0.01).
     Conclusion STZ-induced insulin-resistant type 2 diabetic and diabetic cardiomyopathy rats model were established successfully. The expression alterations of PPARαand metabolism changes of FFA involve in the abnormality of myocardial metabolism and myocardial remodeling, and possibly play an important role in the development of diabetic cardiomyopathy.
     PartⅡPPARαagonist fenofibrate inhibits myocardial inflammation and remodeling in STZ-induced diabetic cardiomyopathy rats
     Objective To construct diabetic cardiomyopathy(DCM)model in streptozotocin (STZ) induced type 2 diabetic rats,and investigate the effect of peroxisome proliferator-activated receptor alpha(PPARα)agonist fenofibrate on myocardial inflammatory factors and myocardial remodeling.
     Methods Control rats were fed with common diet. Type 2 diabetes rats was induced by high energy diet, then treated with lower dose of STZ and continuous high glucose and hyperlipid diet. The model rats were randomized into three groups : diabetic cardiomyopathy (DCM) group, intervention group treated with low dose fenofibrate(LFIB, 4 mg·kg-1·day-1) and intervention group treated with high dose fenofibrate(HFIB, 40 mg·kg-1·day-1)for 16 weeks, respectively, with 8 rats in each group. Hemodynamic characterization was determined by echocardiography, the myocardial ultrastructure changes was observed by electron microscope, and the plasma biochemical indicators,heart weight index,typeⅠandⅢcollagens, collagen volume fraction, myocardial cytokine gene and protein expression (TNF-α, IL-10, PPARα) were detected respectively by biochemical methods, semi-quantity RT-PCR and immunohistochemistry at the end of experiment.
     Results (1) The decreased left ventricular systolic and diastolic function, myocardial remodeling were manifested in all diabetic rats, and these abnormalities were more significant in DCM group. Fenofibrate intervention groups with two different doses significantly improved the cardiac function compared with DCM group(P<0.01). But the two intervention groups had no significant difference(P>0.05). (2) Compared with CON group, there were significant elevated plasma concentrations of glucose, insulin, Chol, Tg and FFA in DCM group. Fenofiberate treatment had no effect on the level of blood glucose and insulin, but significantly decreased the concentration of blood Chol, Tg and FFA. The level of FFA in HFIB group was significantly lower than that in LFIB group(187±13.6 vs 168±17.3μmol/L,P<0.05). (3) The expression of TNF-α, IL-10 and PPARαwas increased significantly,the myocardial impairment and remodeling was displayed.in DCM . In contrast , The expression of TNF-α, IL-10 and PPARαwas decreased and the myocardial remodeling was attenuated by fenofiberate treatment, moreover, RT-PCR analysis further suggested that mRNA expression of TNF-αwas upregulated in DCM group(0.83±0.08), which was down regulated in LFIB and HFIB intervention groups. The values in these two groups were 0.58±0.07 and 0.55±0.07, respectively, both of which had significant difference compared with that of DCM group(P<0.01), while which still had significant difference compared with that of CON group. On the contrary, mRNA expression of IL-10 increased significantly in DCM group, while the expression was obviously upregulated in two intervention groups(P<0.01).
     Conclusion The alteration of myocardial energy metabolism and expression of inflammatory factors, myocardial remodeling are close related with the development of DCM. The activation of PPARαpathway could balance the expression of inflammatory factors and then improve myocardial remodeling and cardiac function.
     PartⅢInfluence of trimetazidine on myocardial remodeling and transforming growth factor-beta 1 expression in STZ-induced diabetic cardiomyopathy rats
     Objective:To investigate the influence of trimetazidine on myocardial remodeling in diabetic cardiomyopathy in STZ-induced diabetic cardiomyopathy rats and the alteration of transforming growth factor-beta 1( TGF-β1).
     Method:Control rats were fed with common diet. Type 2 diabetes rats was established by high energy diet, then treated with lower dose of STZ and continuous high glucose and hyperlipid diet. The diabetic model animals were randomized into three groups: untreated DCM group, TMZ group and CAP group. A normal control group was set up in advance(n=8/group)After STZ injection and drug administration for sixteen weeks, LV function was evaluated by echocardiogram and heart weight index, collagen volume fraction (CVF )were calculated. myocardial cytokine gene and protein expression ( TNF-α, IL-10, PPARα) were detected. Myocardial TGF-β1 content and mRNA expression was quantified by immunohistochemistry and RT-PCR .
     Result:(1)DCM hearts demonstrated diabetic cardiomyopathy phenotype, including a significant reduction of LV diastolic function , reflected by lowered E/A ratio, shortened isovolumic relaxation time (IVRT) and decreased -dp/dt max .The CVF was increased to 0.38±0.09. The immunohistochemistry IDP and the level of mRNA were increased, which were (1.03±0.12)and (1.01±0.1), respectively. Compared with CON group, both groups had significant difference (P<0.01 in both groups). (2) In contrast, the ratio of heart weight/body weight was significantly decreased in TMZ and CAP rat groups compared with DCM rats(P<0.05); The diastolic function in TMZ and CAP groups was improved, the CVF was decreased(P<0.01)the values in both groups were (0.27±0.05) and(0.24±0.06), respectively. Compared with DCM group, both groups had significant difference (P<0.01 in both groups). IDP in both intervention groups were (0.75±0.08) and (0.74±0.08), respectively, which were significantly decreased compared with that in CON groups (P<0.01 in both groups). The mRNA expression of TGF-β1 was down regulated significantly, the values of TMZ and CAP groups were (0.71±0.09) and (0.73±0.22), respectively. Compared with CON group, both groups had significant difference (P<0.01 in both groups).
     Conclusion: Trimetazidine improved myocardial collagen deposition and myocardial remodeling in diabetic rats,associated with the decrease in expression of TGFβ1. Optimization of myocardial energy metabolism may be useful in prevention and treatment of diabetic myocardial disease.
引文
1 Poornima IG, Parikh P, Shannon RP. Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res, 2006,98(5):596-605.
    2 Bollano E, Omerovic E, Svensson H, et al. Cardiac remodeling rather than disturbed myocardial energy metabolism is associated with cardiac dysfunction in diabetic rats. Int J Cardiol, 2006,114(2). 195-201
    3 Huss JM, Kelly DP. Nuclear receptor signaling and cardiac energetics. Circ Res,2004,95(6):568-78.
    4 Severson DL. Diabetic cardiomyopathy: recent evidence from mouse models of type 1 and type 2 diabetes. Can J Physiol Pharmacol, 2004,82(10):813-23.
    5 Li C, Cao L, Zeng Q, et al. Taurine may prevent diabetic rats from developing cardiomyopathy also by downregulating angiotensin II type2 receptor expression. Cardiovasc Drugs Ther, 2005,19(2):105-12.
    6张峰,吕清江,李长运,等.牛磺酸对糖尿病心肌病大鼠的保护作用.临床心血管病杂志, 2005(1):25-28.
    7 Finck BN. The role of the peroxisome proliferator-activated receptor alpha pathway in pathological remodeling of the diabetic heart. Curr Opin Clin Nutr Metab Care, 2004,7(1):391-6.
    8 Schiffrin EL. Peroxisome proliferator-activated receptors and cardiovascular remodeling. Am J Physiol Heart Circ Physiol, 2005,288(10):H1037-43.
    9 Finck BN, Lehman JJ, Leone TC, et al. The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest J, 2002,109(1):121-30.
    10 Aoyama T, Peters JM, Iritani N, et al. Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (PPARalpha). J Biol Chem, 1998,273(5):5678-84.
    11 The need for a large-scale trial of fibrate therapy in diabetes: the rationale and design of the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. [ISRCTN64783481]. Cardiovasc Diabetol, 2004,3:9-20
    12 Miao Y, Zhang W, Zhong M, et al. Activation of transforming growth factor-beta1/Smads signal pathway in diabetic cardiomyopathy and effects of valsartan thereon: experiment with rats. Zhonghua Yi Xue Za Zhi. 2007 Feb 6;87(6):366-70.
    1 Huss JM, Kelly DP. Nuclear receptor signaling and cardiac energetics. Circ Res, 2004,95(6):568-78.
    2王重建,杨年红,许明佳,等.高脂饮食诱导大鼠肥胖易感性差异的研究.华中科技大学学报(医学版), 2005(1):70-73.
    3张峰,吕清江,李长运,等.牛磺酸对糖尿病心肌病大鼠的保护作用.临床心血管病杂志, 2005(1):25-28.
    4 Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev, 2004,25(4):543-67.
    5 Stanley WC, Chandler MP. Energy metabolism in the normal and failing heart: potential for therapeutic interventions. Heart Fail Rev, 2002,7(2):115-30.
    6 Kawada J. [New hypotheses for the mechanisms of streptozotocin and alloxan inducing diabetes mellitus]. Yakugaku Zasshi, 1992,112(11):773-91.
    7 Tschope C, Walther T, Koniger J, et al. Prevention of cardiac fibrosis and left ventricular dysfunction in diabetic cardiomyopathy in rats by transgenic expression of the human tissue kallikrein gene. FASEB J, 2004,18(7):828-35.
    8 Yoon YS, Uchida S, Masuo O, et al. Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circulation, 2005,111(16):2073-85.
    9 Li C, Cao L, Zeng Q, et al. Taurine may prevent diabetic rats from developing cardiomyopathy also by downregulating angiotensin II type2 receptor expression. Cardiovasc Drugs Ther, 2005,19(2):105-12.
    10 Mizushige K, Yao L, Noma T, et al. Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulin-resistant prediabetic stage of a type II diabetic rat model. Circulation, 2000,101(8):899-907.
    11 Kelly DP. PPARs of the heart: three is a crowd. Circ Res, 2003,92(5):482-4.
    12 Carley AN, Severson DL. Fatty acid metabolism is enhanced in type 2 diabetic hearts. Biochim Biophys Acta, 2005,1734(2):112-26.
    13 Schiffrin EL, Amiri F, Benkirane K, et al. Peroxisome proliferator-activated receptors: vascular and cardiac effects in hypertension. Hypertension, 2003,42(4):664-8.
    14 Schiffrin EL. Peroxisome proliferator-activated receptors and cardiovascular remodeling. Am J Physiol Heart Circ Physiol, 2005,288(3):H1037-43.
    15 Aasum E, Belke DD, Severson DL, et al. Cardiac function and metabolism in Type 2 diabetic mice after treatment with BM 17.0744, a novel PPAR-alpha activator. Am J Physiol Heart Circ Physiol, 2002,283(3):H949-57.
    1 Laakso M. Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes, 1999,48(5):937-42.
    2 Huss JM, Kelly DP. Nuclear receptor signaling and cardiac energetics. Circ Res, 2004,95(6):568-78.
    3 Kelly DP. PPARs of the heart: three is a crowd. Circ Res, 2003,92(5):482-4.
    4 Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res, 2000,49(10):497-505.
    5 Diep QN, Benkirane K, Amiri F, et al. PPAR alpha activator fenofibrate inhibits myocardial inflammation and fibrosis in angiotensin II-infused rats. J Mol Cell Cardiol, 2004,36(2):295-304.
    6 Miyamoto T, Takeishi Y, Tazawa S, et al. Fatty acid metabolism assessed by 125I-iodophenyl 9-methylpentadecanoic acid and expression of fatty acid utilization enzymes in volume-overloaded hearts. Eur J Clin Invest, 2004,34(3):176-81.
    7 Iglarz M, Touyz RM, Viel EC, et al. Peroxisome proliferator-activated receptor-alpha and receptor-gamma activators prevent cardiac fibrosis in mineralocorticoid-dependent hypertension. Hypertension, 2003,42(4):737-43.
    8 The need for a large-scale trial of fibrate therapy in diabetes: the rationale and design of the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. [ISRCTN64783481]. Cardiovasc Diabetol, 2004,3:9-20.
    9 Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev, 2004,25(4):543-67.
    10张峰,吕清江,李长运,等.牛磺酸对糖尿病心肌病大鼠的保护作用.临床心血管病杂志, 2005(1):25-28.
    11 Tschope C, Walther T, Koniger J, et al. Prevention of cardiac fibrosis and left ventricular dysfunction in diabetic cardiomyopathy in rats by transgenic expression of the human tissue kallikrein gene. FASEB J, 2004,18(7):828-35.
    12 Yoon YS, Uchida S, Masuo O, et al. Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circulation, 2005,111(16):2073-85.
    13 Zhou YT, Grayburn P, Karim A, etal.Lipotoxic heart disease in obese rats:implications for human obesity. Proc Natl Acad Sci USA,2000, 97: 1784–1789.
    14 Sakamoto J, Barr RL, Kavanagh KM, et al. Contribution of malonyl-CoA decarboxylase to the high fatty acid oxidation rates seen in the diabetic heart. Am J Physiol Heart Circ Physiol. 2000,278(4):H1196-204.
    15 Kurtz DM, Tian L, Gower BA, et al. Transgenic studies of fatty acid oxidation gene expression in nonobese diabetic mice. J Lipid Res, 2000,41(12):2063-70.
    16 Finck BN, Lehman JJ, Leone TC, et al. The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest, 2002,109(1):121-30.
    17 Finck BN, Han X, Courtois M, et al. A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proc Natl Acad Sci, 2003,100(3):1226-31.
    18 Watanabe K, Fujii H, Takahashi T, et al. Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor alpha associated with age-dependent cardiac toxicity. J Biol Chem, 2000,275(29):22293-9.
    19 Campbell FM, Kozak R, Wagner A, et al. A role for peroxisome proliferator-activated receptor alpha (PPARalpha ) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase. J Biol Chem, 2002, 277 (6):4098-103.
    20 Young ME, Goodwin GW, Ying J, et al. Regulation of cardiac and skeletal muscle malonyl-CoA decarboxylase by fatty acids. Am J Physiol Endocrinol Metab, 2001,280(3):E471-9.
    21 Luptak I, Balschi JA, Xing Y, et al. Decreased contractile and metabolic reserve in peroxisome proliferator-activated receptor-alpha-null hearts can be rescued by increasing glucose transport and utilization. Circulation, 2005,112(15):2339-46.
    22 Dewald O, Sharma S, Adrogue J, et al. Downregulation of peroxisome proliferator-activated receptor-alpha gene expression in a mouse model of ischemic cardiomyopathy is dependent on reactive oxygen species and prevents lipotoxicity. Circulation, 2005,112(3):407-15.
    23 Young ME, Laws FA, Goodwin GW, et al. Reactivation of peroxisome proliferator-activated receptor alpha is associated with contractile dysfunction in hypertrophied rat heart. J Biol Chem, 2001,276(48):44390-5.
    24 Itani SI, Ruderman NB, Schmieder F, etal. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C., and IkappaB-alpha. Diabetes,2002, 51: 2005–2011.
    25 Li M, Georgakopoulos D, Lu G, et al. p38 MAP kinase mediates inflammatory cytokine induction in cardiomyocytes and extracellular matrix remodeling in heart. Circulation, 2005,111(19):2494-502.
    26 Testa M, Yeh M, Lee P, et al. Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J Am Coll Cardiol, 1996,28(4):964-71.
    27 Sivasubramanian N, Coker ML, Kurrelmeyer KM, et al. Left ventricular remodeling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor. Circulation, 2001,104(7):826-31.
    28 Engel D, Peshock R, Armstong RC, et al. Cardiac myocyte apoptosis provokes adverse cardiac remodeling in transgenic mice with targeted TNF overexpression. Am J Physiol Heart Circ Physiol, 2004,287(3):H1303-11.
    29 Bryant D, Becker L, Richardson J, et al. Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-alpha. Circulation, 1998,97 (14):1375 -1381.
    30 Kubota T, McTiernan CF, Frye CS, et al. Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res, 1997,81(4):627-35.
    31 Bozkurt B, Kribbs SB, Clubb FJ Jr, et al. Pathophysiologically relevant concentrations of tumor necrosis factor-alpha promote progressive left ventricular dysfunction and remodeling in rats. Circulation, 1998,97(14):1382-91.
    32 Grigsby RJ, Dobrowsky RT. Inhibition of ceramide production reverses TNF-induced insulin resistance. Biochem Biophys Res Commun, 2001,287(5):1121-4.
    33 Lefer AM, Tsao P, Aoki N, et al. Mediation of cardioprotection by transforming growth factor-beta. Science, 1990,249(4964):61-4.
    34 Yamaoka M, Yamaguchi S, Okuyama M, et al. Anti-inflammatory cytokine profile in human heart failure: behavior of interleukin-10 in association with tumor necrosis factor-alpha. Jpn Circ J, 1999,63(12):951-6.
    35 Pinderski Oslund LJ, Hedrick CC, Olvera T, et al. Interleukin-10 blocks atherosclerotic events in vitro and in vivo. Arterioscler Thromb Vasc Biol, 1999,19(12):2847-53.
    36 Steiner G. A new perspective in the treatment of dyslipidemia : can fenofibrate offer unique benefits in the treatment of type 2 diabetes mellitus?. Treat Endocrinol, 2005,4(5):311-7.
    37 Verges B. Fenofibrate therapy and cardiovascular protection in diabetes: recommendations after FIELD. Curr Opin Lipidol, 2006,17(6):653-8.
    38 Ernesto L. Schiffrin, Farhad Amiri, et al. Peroxisome Proliferator-Activated Receptors Vascular and Cardiac Effects in Hypertension. Hypertension, 2003,42 (4):664-668.
    39 Semeniuk LM, Kryski AJ, and Severson DL. Echocardiographic assessment of cardiac function in diabetic db/db and transgenic db/db hGLUT4 mice. Am J Physiol Heart Circ Physio,2002, 283: H976–H982.
    1 Stanley WC, Lopaschuk GD, McCormack JG. Regulation of energy substrate metabolism in the diabetic heart. Cardiovasc Res, 1997,34(1):25-33.
    2 An D, Rodrigues B. Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol, 2006,291(4):H1489-506.
    3 Huss JM, Kelly DP. Nuclear receptor signaling and cardiac energetics. Circ Res, 2004,95(6):568-78.
    4 Severson DL. Diabetic cardiomyopathy: recent evidence from mouse models of type 1 and type 2 diabetes. Can J Physiol Pharmacol, 2004,82(10):813-23.
    5张峰,吕清江,李长运,等.牛磺酸对糖尿病心肌病大鼠的保护作用.临床心血管病杂志, 2005(1):25-28.
    6 Devereux RB, Roman MJ, Paranicas M, et al. Impact of diabetes on cardiac structure and function: the strong heart study. Circulation, 2000,101(19):2271-6.
    7 Tschope C, Walther T, Koniger J, et al. Prevention of cardiac fibrosis and left ventricular dysfunction in diabetic cardiomyopathy in rats by transgenic expression of the human tissue kallikrein gene. FASEB J, 2004,18(7):828-35.
    8 Bollano E, Omerovic E, Svensson H, et al. Cardiac remodeling rather than disturbed myocardial energy metabolism is associated with cardiac dysfunction in diabetic rats. Int J Cardiol, 2006,114(2). 195-201.
    9 Pinto YM, Pinto-Sietsma SJ, Philipp T, et al. Reduction in left ventricular messenger RNA for transforming growth factor beta(1) attenuates left ventricular fibrosis and improves survival without lowering blood pressure in the hypertensive TGR(mRen2)27 Rat. Hypertension, 2000,36(5):747-54.
    10 Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med, 2001,345(12):861-9.
    11 Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ, 1998(7160),317:703-13.
    12 Guo M, Wu MH, Korompai F, et al. Upregulation of PKC genes and isozymes in cardiovascular tissues during early stages of experimental diabetes. Physiol Genomics, 2003,12(2):139-46.
    13 Mizushige K, Yao L, Noma T, et al. Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulin-resistant prediabetic stage of a type II diabetic rat model. Circulation, 2000,101(8):899-907.
    14 Nicholas SB, Aguiniga E, Ren Y, et al. Plasminogen activator inhibitor-1 deficiency retards diabetic nephropathy. Kidney Int, 2005,67(4):1297-307.
    15 Janice M. Huss, Daniel P. Kelly. Nuclear Receptor Signaling and Cardiac Energetics. Circ Res, 2004,95(6):568-78.
    16 Carley AN, Severson DL. Fatty acid metabolism is enhanced in type 2 diabetic hearts. Biochim Biophys Acta, 2005,1734(2):112-26.
    17 Stanley WC, Chandler MP. Energy metabolism in the normal and failing heart: potential for therapeutic interventions. Heart Fail Rev, 2002,7(2):115-30.
    18 Stanley WC, Marzilli M. Metabolic therapy in the treatment of ischaemic heart disease: the pharmacology of trimetazidine. Fundam Clin Pharmacol, 2003,17(2):133-45.
    19 Fiordaliso F, Leri A, Cesselli D, et al. Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell death. Diabetes, 2001,50(10):2363-75.
    20 Marzilli M. Cardioprotective effects of trimetazidine: a review. Curr Med Res Opin, 2003,19(7):661-72.
    1 Wilson PW. Diabetes mellitus and coronary heart disease. Endocrinol Metab Clin North Am, 2001,30:857-81.
    2 Hamby RI, Zoneraich S, Sherman L. Diabetic cardiomyopathy. JAMA, 1974,229:1749-54.
    3 Mizushige K, Yao L, Noma T, et al. Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulin-resistant prediabetic stage of a type II diabetic rat model. Circulation, 2000,101:899-907.
    4 Garcia MJ, Thomas JD, Klein AL. New Doppler echocardiographic applications for the study of diastolic function. J Am Coll Cardiol, 1998,32:865-75.
    5 Bertoni AG, Tsai A, Kasper EK, et al. Diabetes and idiopathic cardiomyopathy: a nationwide case-control study. Diabetes Care, 2003,26:2791-5.
    6 Dent CL, Bowman AW, Scott MJ, et al. Echocardiographic characterization of fundamental mechanisms of abnormal diastolic filling in diabetic rats with a parameterized diastolic filling formalism. J Am Soc Echocardiogr, 2001,14:1166-72.
    7 Flarsheim CE, Grupp IL, Matlib MA. Mitochondrial dysfunction accompanies diastolic dysfunction in diabetic rat heart. Am J Physiol, 1996,271:H192-202.
    8 Poirier P, Bogaty P, Garneau C, et al. Diastolic dysfunction in normotensive men with well-controlled type 2 diabetes: importance of maneuvers in echocardiographic screening for preclinical diabetic cardiomyopathy. Diabetes Care, 2001,24:5-10.
    9 Schannwell CM, Schneppenheim M, Perings S, et al. Left ventricular diastolic dysfunction as an early manifestation of diabetic cardiomyopathy. Cardiology, 2002,98:33-9.
    10 Attali JR, Sachs RN, Valensi P, et al. Asymptomatic diabetic cardiomyopathy: a noninvasive study. Diabetes Res Clin Pract, 1988,4:183-90.
    11 Fang ZY, Najos-Valencia O, Leano R, et al. Patients with early diabetic heart disease demonstrate a normal myocardial response to dobutamine. J Am Coll Cardiol, 2003,42:446-53.
    12 Astorri E, Fiorina P, Contini GA, et al. Isolated and preclinical impairment of left ventricular filling in insulin-dependent and non-insulin-dependent diabetic patients.Clin Cardiol, 1997,20:536-40.
    13 Salazar J, Rivas A, Rodriguez M, et al. Left ventricular function determined by Doppler echocardiography in adolescents with type I (insulin-dependent) diabetes mellitus. Acta Cardiol, 1994,49:435-9.
    14 Aurigemma GP. Diastolic heart failure--a common and lethal condition by any name. N Engl J Med, 2006,355:308-10.
    15 Hayashi K, Okumura K, Matsui H, et al. Involvement of 1,2-diacylglycerol in improvement of heart function by etomoxir in diabetic rats. Life Sci, 2001,68:1515-26.
    16 Yoon YS, Uchida S, Masuo O, et al. Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circulation, 2005,111:2073-85.
    17 Coughlin SS, Tefft MC, Rice JC, et al. Epidemiology of idiopathic dilated cardiomyopathy in the elderly: pooled results from two case-control studies. Am J Epidemiol, 1996,143:881-8.
    18 Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol, 1974,34:29-34.
    19 Friedman NE, Levitsky LL, Edidin DV, et al. Echocardiographic evidence for impaired myocardial performance in children with type I diabetes mellitus. Am J Med, 1982,73:846-50.
    20 Mbanya JC, Sobngwi E, Mbanya DS, et al. Left ventricular mass and systolic function in African diabetic patients: association with microalbuminuria. Diabetes Metab, 2001,27:378-82.
    21 Fang ZY, Yuda S, Anderson V, et al. Echocardiographic detection of early diabetic myocardial disease. J Am Coll Cardiol, 2003,41:611-7.
    22 Borow KM, Jaspan JB, Williams KA, et al. Myocardial mechanics in young adult patients with diabetes mellitus: effects of altered load, inotropic state and dynamic exercise. J Am Coll Cardiol, 1990,15:1508-17.
    23 Howarth FC, Qureshi MA, White E, et al. Cardiac microtubules are more resistant tochemical depolymerisation in streptozotocin-induced diabetes in the rat. Pflugers Arch, 2002,444:432-7.
    24 Naito J, Koretsune Y, Sakamoto N, et al. Transmural heterogeneity of myocardial integrated backscatter in diabetic patients without overt cardiac disease. Diabetes Res Clin Pract, 2001,52:11-20.
    25 Warley A, Powell JM, Skepper JN. Capillary surface area is reduced and tissue thickness from capillaries to myocytes is increased in the left ventricle of streptozotocin-diabetic rats. Diabetologia, 1995,38:413-21.
    26 Seager MJ, Singal PK, Orchard R, et al. Cardiac cell damage: a primary myocardial disease in streptozotocin-induced chronic diabetes. Br J Exp Pathol, 1984,65:613-23.
    27 Eto M, Watanabe K, Sekiguchi M, et al. Metabolic and morphological changes of the heart in Chinese hamsters (CHAD strain) with spontaneous long-term diabetes. Diabetes Res Clin Pract, 1987,3:297-305.
    28 Regan TJ, Lyons MM, Ahmed SS, et al. Evidence for cardiomyopathy in familial diabetes mellitus. J Clin Invest, 1977,60:884-99.
    29 Nunoda S, Genda A, Sugihara N, et al. Quantitative approach to the histopathology of the biopsied right ventricular myocardium in patients with diabetes mellitus. Heart Vessels, 1985,1:43-7.
    30 Di Bello V, Talarico L, Picano E, et al. Increased echodensity of myocardial wall in the diabetic heart: an ultrasound tissue characterization study. J Am Coll Cardiol, 1995,25:1408-15.
    31 Picano E, Pelosi G, Marzilli M, et al. In vivo quantitative ultrasonic evaluation of myocardial fibrosis in humans. Circulation, 1990,81:58-64.
    32 Rodrigues B, Cam MC, McNeill JH. Metabolic disturbances in diabetic cardiomyopathy. Mol Cell Biochem, 1998,180:53-7.
    33 Garvey WT, Hardin D, Juhaszova M, et al. Effects of diabetes on myocardial glucose transport system in rats: implications for diabetic cardiomyopathy. Am J Physiol, 1993,264:H837-44.
    34 Rodrigues B, Cam MC, Kong J, et al. Strain differences in susceptibility to streptozotocin-induced diabetes: effects on hypertriglyceridemia and cardiomyopathy.Cardiovasc Res, 1997,34:199-205.
    35 Lopaschuk GD, Russell JC. Myocardial function and energy substrate metabolism in the insulin-resistant JCR:LA corpulent rat. J Appl Physiol, 1991,71:1302-8.
    36 Belke DD, Larsen TS, Gibbs EM, et al. Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. Am J Physiol Endocrinol Metab, 2000,279:E1104-13.
    37 Chatham JC, Seymour AM. Cardiac carbohydrate metabolism in Zucker diabetic fatty rats. Cardiovasc Res, 2002,55:104-12.
    38 Bell DS. Diabetic cardiomyopathy. Diabetes Care, 2003,26:2949-51.
    39 Young ME, McNulty P, Taegtmeyer H. Adaptation and maladaptation of the heart in diabetes: Part II: potential mechanisms. Circulation, 2002,105:1861-70.
    40 Finck BN, Han X, Courtois M, et al. A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proc Natl Acad Sci U S A, 2003,100:1226-31.
    41 de Windt LJ, Cox K, Hofstra L, et al. Molecular and genetic aspects of cardiac fatty acid homeostasis in health and disease. Eur Heart J, 2002,23:774-87.
    42 Malone JI, Schocken DD, Morrison AD, et al. Diabetic cardiomyopathy and carnitine deficiency. J Diabetes Complications, 1999,13:86-90.
    43 Malhotra A, Sanghi V. Regulation of contractile proteins in diabetic heart. Cardiovasc Res, 1997,34:34-40.
    44 Abe T, Ohga Y, Tabayashi N, et al. Left ventricular diastolic dysfunction in type 2 diabetes mellitus model rats. Am J Physiol Heart Circ Physiol, 2002,282:H138-48.
    45 Trost SU, Belke DD, Bluhm WF, et al. Overexpression of the sarcoplasmic reticulum Ca(2+)-ATPase improves myocardial contractility in diabetic cardiomyopathy. Diabetes, 2002,51:1166-71.
    46 Kita Y, Shimizu M, Sugihara N, et al. Correlation between histopathological changes and mechanical dysfunction in diabetic rat hearts. Diabetes Res Clin Pract, 1991,11:177-88.
    47 Cerutti F, Vigo A, Sacchetti C, et al. Evaluation of left ventricular diastolic function in insulin dependent diabetic children by M-mode and Doppler echocardiography.Panminerva Med, 1994,36:109-14.
    48 Garay-Sevilla ME, Nava LE, Malacara JM, et al. Advanced glycosylation end products (AGEs), insulin-like growth factor-1 (IGF-1) and IGF-binding protein-3 (IGFBP-3) in patients with type 2 diabetes mellitus. Diabetes Metab Res Rev, 2000,16:106-13.
    49 Frustaci A, Kajstura J, Chimenti C, et al. Myocardial cell death in human diabetes. Circ Res, 2000,87:1123-32.
    50 Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation, 1991,83:1849-65.
    51 Haunstetter A, Izumo S. Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ Res, 1998,82:1111-29.
    52 Fiordaliso F, Leri A, Cesselli D, et al. Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell death. Diabetes, 2001,50:2363-75.
    53 Cai L, Li W, Wang G, et al. Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes, 2002,51:1938-48.
    54 Liu Tj, Lai Hc, Wu W, et al. Developing a strategy to define the effects of insulin-like growth factor-1 on gene expression profile in cardiomyocytes. Circ Res, 2001,88:1231-8.
    55 Bojestig M, Nystrom FH, Arnqvist HJ, et al. The renin-angiotensin-aldosterone system is suppressed in adults with Type 1 diabetes. J Renin Angiotensin Aldosterone Syst: JRAAS, 2000,1:353-6.
    56 Lijnen PJ, Petrov VV, Fagard RH. Induction of cardiac fibrosis by angiotensin II. Methods Find Exp Clin Pharmacol, 2000,22:709-23.
    57 Kajstura J, Fiordaliso F, Andreoli AM, et al. IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. Diabetes, 2001,50:1414-24.
    58 Grigsby RJ, Dobrowsky RT. Inhibition of ceramide production reverses TNF-induced insulin resistance. Biochem Biophys Res Commun, 2001,287:1121-4.
    59 Song W, Lu X, Feng Q. Tumor necrosis factor-alpha induces apoptosis via induciblenitric oxide synthase in neonatal mouse cardiomyocytes. Cardiovasc Res, 2000,45:595-602.
    60 Sivasubramanian N, Coker ML, Kurrelmeyer KM, et al. Left ventricular remodeling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor. Circulation, 2001,104:826-31.
    61张峰,吕清江,李长运,等.牛磺酸对糖尿病心肌病大鼠的保护作用.临床心血管病杂志, 2005(1):25-28.
    62 Mihm MJ, Seifert JL, Coyle CM, et al. Diabetes related cardiomyopathy time dependent echocardiographic evaluation in an experimental rat model. Life Sci, 2001,69:527-42.
    63 Joffe II, Travers KE, Perreault-Micale CL, et al. Abnormal cardiac function in the streptozotocin-induced non-insulin-dependent diabetic rat: noninvasive assessment with doppler echocardiography and contribution of the nitric oxide pathway. J Am Coll Cardiol ,1999,34:2111-9.
    64 Zoneraich S. Small-vessel disease, coronary artery vasodilator reserve, and diabetic cardiomyopathy. Chest, 1988,94:5-7.
    65 Miric G, Dallemagne C, Endre Z, et al. Reversal of cardiac and renal fibrosis by pirfenidone and spironolactone in streptozotocin-diabetic rats. Br J Pharmacol, 2001,133:687-94.
    66 Sonnenblick EH, Fein F, Capasso JM, et al. Microvascular spasm as a cause of cardiomyopathies and the calcium-blocking agent verapamil as potential primary therapy. Am J Cardiol, 1985,55:179B-184B.
    67 Factor SM, Minase T, Cho S, et al. Coronary microvascular abnormalities in the hypertensive-diabetic rat. A primary cause of cardiomyopathy? Am J Pathol, 1984,116:9-20.
    68 Fischer VW, Barner HB, Leskiw ML. Capillary basal laminar thichness in diabetic human myocardium. Diabetes, 1979,28:713-9.
    69 Sunni S, Bishop SP, Kent SP, et al. Diabetic cardiomyopathy. A morphological study of intramyocardial arteries. Arch Pathol Lab Med, 1986,110:375-81.
    70 Sutherland CG, Fisher BM, Frier BM, et al. Endomyocardial biopsy pathology ininsulin-dependent diabetic patients with abnormal ventricular function. Histopathology, 1989,14:593-602.
    71 Stein PK, Kleiger RE. Insights from the study of heart rate variability. Annu Rev Med, 1999,50:249-61.
    72 Hartmann F, Ziegler S, Nekolla S, et al. Regional patterns of myocardial sympathetic denervation in dilated cardiomyopathy: an analysis using carbon-11 hydroxyephedrine and positron emission tomography. Heart, 1999,81:262-70.
    73 Miyanaga H, Yoneyama S, Kamitani T, et al. Clinical usefulness of 123I-metaiodobenzylguanidine myocardial scintigraphy in diabetic patients with cardiac sympathetic nerve dysfunction. Jpn Circ J, 1995,59:599-607.
    74 Stevens MJ, Dayanikli F, Raffel DM, et al. Scintigraphic assessment of regionalized defects in myocardial sympathetic innervation and blood flow regulation in diabetic patients with autonomic neuropathy. J Am Coll Cardiol, 1998,31:1575-84.
    75 Felten SY, Peterson RG, Shea PA, et al. Effects of streptozotocin diabetes on the noradrenergic innervation of the rat heart: a longitudinal histofluorescence and neurochemical study. Brain Res Bull, 1982,8:593-607.
    76 Uekita K, Tobise K, Onodera S. Enhancement of the cardiac beta-adrenergic system at an early diabetic state in spontaneously diabetic Chinese hamsters. Jpn Circ J, 1997,61:64-73.
    77 Pietrzyk Z, Vogel S, Dietze GJ, et al. Augmented sympathetic response to bradykinin in the diabetic heart before autonomic denervation. Hypertension, 2000,36:208-14.
    78 Manzella D, Barbieri M, Rizzo MR, et al. Role of free fatty acids on cardiac autonomic nervous system in noninsulin-dependent diabetic patients: effects of metabolic control. J Clin Endocrinol Metab, 2001,86:2769-74.
    79 Kondo K, Matsubara T, Nakamura J, et al. Characteristic patterns of circadian variation in plasma catecholamine levels, blood pressure and heart rate variability in Type 2 diabetic patients. Diabet Med, 2002,19:359-65.
    80 Ahlborg G, Lundberg JM. Exercise-induced changes in neuropeptide Y, noradrenaline and endothelin-1 levels in young people with type I diabetes. Clin Physiol, 1996,16:645-55.
    81 Singh K, Xiao L, Remondino A, et al. Adrenergic regulation of cardiac myocyte apoptosis. J Cell Physiol, 2001,189:257-65.
    82 Rajan SK, Gokhale SM. Cardiovascular function in patients with insulin-dependent diabetes mellitus: a study using noninvasive methods. Ann N Y Acad Sci, 2002,958:425-30.
    83 Scognamiglio R, Avogaro A, Casara D, et al. Myocardial dysfunction and adrenergic cardiac innervation in patients with insulin-dependent diabetes mellitus. J Am Coll Cardiol, 1998,31:404-12.
    84 Haffner SM. Pre-diabetes, insulin resistance, inflammation and CVD risk. Diabetes Res Clin Pract, 2003,61 Suppl 1:S9-S18.
    85 Nakano S, Kitazawa M, Ito T, et al. Insulin resistant state in type 2 diabetes is related to advanced autonomic neuropathy. Clin Exp Hypertens, 2003,25:155-67.
    86 Aso Y, Fujiwara Y, Tayama K, et al. Relationship between plasma soluble thrombomodulin levels and insulin resistance syndrome in type 2 diabetes: a comparison with von Willebrand factor. Exp Clin Endocrinol Diabetes, 2001,109:210-6.
    87 Galderisi M, Paolisso G, Tagliamonte MR, et al. Is insulin action a determinant of left ventricular relaxation in uncomplicated essential hypertension? J Hypertens, 1997,15:745-50.
    88 Hintz KK, Aberle NS, Ren J. Insulin resistance induces hyperleptinemia, cardiac contractile dysfunction but not cardiac leptin resistance in ventricular myocytes. Int J Obes Relat Metab Disord 2003,27:1196-203.
    89 Hirayama H, Sugano M, Abe N, et al. Troglitazone, an antidiabetic drug, improves left ventricular mass and diastolic function in normotensive diabetic patients. Int J Cardiol, 2001,77:75-9.
    90 Rutter MK, Parise H, Benjamin EJ, et al. Impact of glucose intolerance and insulin resistance on cardiac structure and function: sex-related differences in the Framingham Heart Study. Circulation, 2003,107:448-54.
    91 Brands MW, Fitzgerald SM. Blood pressure control early in diabetes: a balance between angiotensin II and nitric oxide. Clin Exp Pharmacol Physiol, 2002,29:127-31.
    92 Li C, Cao L, Zeng Q, et al. Taurine may prevent diabetic rats from developing cardiomyopathy also by downregulating angiotensin II type2 receptor expression. Cardiovasc Drugs Ther, 2005,19:105-12.
    93 Stanley WC, Chandler MP. Energy metabolism in the normal and failing heart: potential for therapeutic interventions. Heart Fail Rev, 2002,7:115-30.
    94 Schiffrin EL. Peroxisome proliferator-activated receptors and cardiovascular remodeling. Am J Physiol Heart Circ Physiol, 2005,288:H1037-43.
    1. Schiffrin EL. Peroxisome proliferator-activated receptors and cardiovascular remodeling. Am J Physiol Heart Circ Physiol, 2005,288:H1037-43.
    2. Kelly DP. PPARs of the heart: three is a crowd. Circ Res, 2003,92:482-4.
    3. Bhavani Prasad Kota1, Tom Hsun-Wei Huang1, Basil D Roufogalis. An overview on biological mechanisms of PPARs. Pharmacological Research, 2005,51:85-94.
    4. Depre C, Shipley GL, Chen W, Han Q, Doenst T, Moore ML,Stepkowski S, Davies PJA, Taegtmeyer H. Unloaded heart in vivo replicates fetal gene expression of cardiac hypertrophy. Nat Med, 1998:1269-1275.
    5. Severson DL. Diabetic cardiomyopathy: recent evidence from mouse models of type 1 and type 2 diabetes. Can J Physiol Pharmacol, 2004,82:813-23.
    6. Finck BN, Lehman JJ, Leone TC, et al. The cardiac phenotype induced by PPARalpha over expression mimics that caused by diabetes mellitus. J Clin Invest, 2002,109:121-30.
    7. Escher P, Braissant O, Basu-Modak S, Michalik L, Wahli W, Desvergne B. Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology, 2001,142:4195-4202.
    8. Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology, 1996,137:354-366.
    9. Disch DL, Rader TA, Cresci S, Leone TC, Barger PM, Vega R, Wood PA, Kelly DP. Transcriptional control of a nuclear gene encoding a mitochondrial fatty acid oxidation enzyme in transgenic mice: role for nuclear receptors in cardiac and brown adipose expression. Mol Cell Biol, 1996:4043-4051.
    10. Aoyama T, Peters JM, Iritani N, et al. Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (PPARalpha). J Biol Chem, 1998,273:5678-84.
    11. Leone TC, Weinheimer CJ, Kelly DP. A critical role for the peroxisome proliferator-activated receptor alpha in the cellular fasting response: The PPAR_-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci, 1999,96:7473-7478.
    12. Barak Y, Nelson MC, Ong ES, et al. PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell, 1999,4:585-95.
    13. Norris AW, Chen L, Fisher SJ, Szanto I, Ristow M, Jozsi AC, Hirshman MF, Rosen ED, Goodyear LJ, Gonzalez FJ, Spiegelman BM, Kahn CR. Muscle-specific PPAR_-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones. J Clin Invest, 2004,112:608-618.
    14. Hevener AL, He W, Barak Y, et al. Muscle-specific Pparg deletion causes insulin resistance. Nat Med, 2003,9:1491-7.
    15. Maeda N, Shimomura I, Kishida K, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med, 2002,8:731-7.
    16. Gilde AJ, van der Lee KA, Willemsen PH, et al. Peroxisome proliferator-activated receptor (PPAR) alpha and PPARbeta/delta, but not PPARgamma, modulate the expression of genes involved in cardiac lipid metabolism. Circ Res, 2003,92:518-24.
    17. Sakai S, Miyauchi T, Irukayama-Tomobe Y, et al. Peroxisome proliferator-activated receptor-gamma activators inhibit endothelin-1-related cardiac hypertrophy in rats. Clin Sci, 2002,103 Suppl 48:16S-20S.
    18. Shiomi T, Tsutsui H, Hayashidani S, et al. Pioglitazone, a peroxisome proliferator-activated receptor-gamma agonist, attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation, 2002,106:3126-32.
    19. Lee CH, Kang K, Mehl IR, et al. Peroxisome proliferator-activated receptor delta promotes very low-density lipoprotein-derived fatty acid catabolism in the macrophage. Proc Natl Acad Sci U S A, 2006,103:2434-9.
    20. Peters JM, Lee SS, Li W, et al. Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor beta(delta). Mol Cell Biol, 2000,20:5119-28.
    21. Barak Y, Liao D, He W, et al. Effects of peroxisome proliferator-activated receptor delta on placentation, adiposity, and colorectal cancer. Proc Natl Acad Sci U S A, 2002,99:303-8.
    22. Cheng L, Ding G, Qin Q, et al. Peroxisome proliferator-activated receptor delta activates fatty acid oxidation in cultured neonatal and adult cardiomyocytes. Biochem Biophys Res Commun, 2004,313:277-86.
    23. DeLuca JG, Doebber TW, Kelly LJ, et al. Evidence for peroxisome proliferator -activated receptor alpha-independent peroxisome proliferation: effects of PPAR gamma/delta-specific agonists in PPARalpha-null mice. Mol Pharmacol, 2000,58:470-6.
    24. Finck BN, Han X, Courtois M, et al. A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proc Natl Acad Sci , 2003,100:1226-31.
    25. Devereux RB, Roman MJ, Paranicas M, et al. Impact of diabetes on cardiac structure and function: the strong heart study. Circulation JT - Circulation, 2000,101:2271-6.
    26. Christoffersen C, Bollano E, Lindegaard MLS, Bartels ED, Goetze JP, Andersen CB, Nielsen LB. Cardiac lipid accumulation associated with diastolic dysfunction in obese mice. Endocrinology, 2003,144:3483-3490.
    27. Zhou YT, Grayburn P, Karim A, et al. Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci U S A, 2000,97:1784-9.
    28. Patti ME, Butte AJ, Crunkhorn S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A, 2003,100:8466-71.
    29. Mootha VK, Lindgren CM, Eriksson KF, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet, 2003,34:267-73.
    30. The need for a large-scale trial of fibrate therapy in diabetes: the rationale and design of the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. [ISRCTN64783481]. Cardiovasc Diabetol, 2004,3:9.
    31. Marx N, Duez H, Fruchart JC, et al. Peroxisome proliferator-activated receptors and atherogenesis: regulators of gene expression in vascular cells. Circ Res, 2004,94:1168-78.
    32. Barger PM, Brandt JM, Leone TC, et al. Deactivation of peroxisome proliferators–activated receptor-alpha during cardiac hypertrophic growth. J Clin Invest, 2000,105:1723-30.
    33. Takano H, Nagai T, Asakawa M, et al. Peroxisome proliferator-activated receptor activators inhibit lipopolysaccharide-induced tumor necrosis factor-alpha expression inneonatal rat cardiac myocytes. Circ Res, 2000,87:596-602.
    34. Ogata T, Miyauchi T, Sakai S, et al. Stimulation of peroxisome-proliferator-activated receptor alpha (PPAR alpha) attenuates cardiac fibrosis and endothelin-1 production in pressure-overloaded rat hearts. Clin Sci (Lond), 2002,103 Suppl 48:284S-288S.
    35. Maruyama S, Kato K, Kodama M, et al. Fenofibrate, a peroxisome proliferator -activated receptor alpha activator, suppresses experimental autoimmune myocarditis by stimulating the interleukin-10 pathway in rats. J Atheroscler Thromb, 2002,9:87-92.
    36. Diep QN, Benkirane K, Amiri F, et al. PPAR alpha activator fenofibrate inhibits myocardial inflammation and fibrosis in angiotensin II-infused rats. J Mol Cell Cardiol, 2004,36:295-304.
    37. Yamamoto K, Ohki R, Lee RT, et al. Peroxisome proliferator-activated receptor gamma activators inhibit cardiac hypertrophy in cardiac myocytes. Circulation, 2001,104:1670-5.
    38. Asakawa M, Takano H, Nagai T, et al. Peroxisome proliferator-activated receptor gamma plays a critical role in inhibition of cardiac hypertrophy in vitro and in vivo. Circulation, 2002,105:1240-6.
    39. Tsuji T, Mizushige K, Noma T, et al. Pioglitazone improves left ventricular diastolic function and decreases collagen accumulation in prediabetic stage of a type II diabetic rat. J Cardiovasc Pharmacol, 2001,38:868-74.
    40. Yue Tl TL, Chen J, Bao W, et al. In vivo myocardial protection from ischemia/reperfusion injury by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Circulation, 2001,104:2588-94.
    41. Gandhi GY, Swiglo BA. Rosiglitazone reduced type 2 diabetes but increased heart failure in patients with impaired glycemic control. ACP J Club, 2007,146:8.
    42. Ricote M, Li AC, Willson TM, et al. The peroxisome proliferator-activated receptor gamma is a negative regulator of macrophage activation. Nature, 1998,391:79-82.
    43. Diep QN, Amiri F, Benkirane K, et al. Long-term effects of the PPAR gamma activator pioglitazone on cardiac inflammation in stroke-prone spontaneously hypertensive rats. Can J Physiol Pharmacol, 2004,82:976-85.
    44. Buse JB. Glitazones and heart failure: critical appraisal for the clinician. Circulation, 2003,108:e57.