HDL和apoA-I模拟肽对脂肪细胞分泌功能的影响及其机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     动脉粥样硬化性疾病是严重危害人类健康的主要疾病。肥胖是冠心病的独立危险因素,而脂肪细胞的功能改变是引起肥胖的核心因素,因此,研究脂肪细胞的功能对于肥胖、冠心病的防治具有重要意义。脂肪细胞的功能越来越受到重视,并得到重新认识,目前认为脂肪细胞功能改变与动脉粥样硬化密切相关。
     脂肪组织是体内最大的能量储存器官,脂肪细胞的主要功能是以甘油三酯的形式储存过多的能量;此外,脂肪细胞还具有重要的内分泌功能,可以分泌一系列脂肪因子,其中很多与动脉粥样硬化的发病机制有关。脂肪组织可通过分泌各种促炎性的脂肪因子,进而引起全身的慢性炎症反应状态。脂联素是由脂肪组织特异性分泌的一种炎症相关性蛋白质,目前认为脂联素是胰岛素抵抗、糖尿病和动脉粥样硬化的保护性因子。炎性细胞因子肿瘤坏死因子-α(TNFα)水平升高与动脉粥样硬化的严重性密切相关,脂肪细胞是体内内源性TNFα的重要来源之一。单核细胞趋化蛋白-1(MCP-1)是单核细胞强有力的趋化因子,也是动脉粥样硬化反应的促发信号,脂肪细胞可在多种刺激物的诱导下产生MCP-1。
     脂多糖(LPS)是一种公认的炎症刺激物。低密度脂蛋白(LDL)经过氧化修饰后具有致动脉粥样硬化作用,而氧化型低密度脂蛋白(oxLDL)除了参与形成泡沫细胞外,还在局部慢性炎症反应中起一定的作用。与oxLDL相反,高密度脂蛋白(HDL)被认为具有抗动脉粥样硬化及心血管保护作用,但其具体机制尚不十分清楚。研究已经证实,HDL参与调节脂肪细胞内脂质代谢,但HDL对脂肪细胞炎症反应的调节尚未见报导。有研究提示,HDL的主要载脂蛋白之一载脂蛋白A-I(apoA-I)和apoA-I模拟肽是有效的抗炎剂并可能对动脉粥样硬化具有临床治疗潜能,但是apoA-I模拟肽对脂肪细胞是否也具有抗炎作用尚不为人所知。
     过氧化物酶体增殖物激活受体γ(PPARγ)是主要表达于脂肪组织的一种核受体。核因子κB(NF-κB)调控多种细胞因子的转录,参与了动脉粥样硬化发生发展的多个步骤,在动脉粥样硬化中起重要作用。CCAAT/增强子结合蛋白(C/EBPs)是NF-κB以外的另一类重要的细胞核转录调控因子。目前的研究显示,PPARγ、NF-κB或C/EBPs均不同程度地参与了某些细胞因子的转录调控,其可能也部分地参与调控脂肪细胞脂肪因子的转录与分泌,但具体作用及信号通道仍须进一步的研究。
     目的
     观察HDL和apoA-I模拟肽L-4F对炎症状态下3T3-L1脂肪细胞脂联素、TNFα及MCP-1的上清液浓度及其mRNA表达的影响,并探讨其可能的作用机制。
     方法
     3T3-L1脂肪细胞促分化成熟后,分成三组:(1)LPS刺激组:脂多糖(LPS)刺激脂肪细胞处于炎症状态,给予不同浓度的HDL(10-100μg/ml)和L-4F(1-50μg/ml)干预,收集细胞和培养上清液,测定细胞上清液脂联素浓度,脂肪细胞脂联素和PPARγmRNA表达水平,及NF-κB活性。(2)oxLDL刺激1小时组:oxLDL刺激脂肪细胞1小时,给予不同浓度的HDL(10-100μg/ml)和阿托伐他汀(0.1-10μM),及H-89(10μM)+HDL(100μg/ml)干预,收集细胞,测定脂肪细胞TNFα和PPARγmRNA表达水平,IκB蛋白浓度及NF-κB活性。(3)oxLDL刺激不同时间组:oxLDL分别刺激脂肪细胞1、6、12小时,给予不同浓度的HDL(10-100μg/ml)、L-4F(1-50μg/ml),H-89(10μM)及H-89+HDL(100μg/ml)或H-89(10μM)+L-4F(50μg/ml)干预,收集细胞,测定脂肪细胞MCP-1上清液中的浓度和mRNA表达水平,以及脂肪细胞核因子C/EBPα、β的蛋白表达水平;改良Boyden小室法检测不同干预组上清液对人外周血单核细胞趋化活性的影响。
     结果
     1.LPS刺激分化成熟的3T3-L1脂肪细胞使其脂联素分泌和mRNA表达水平分别下降44%和60%(P<0.05)。
     2.HDL和L-4F浓度依赖性上调炎症状态下3T3-L1脂肪细胞脂联素的分泌及表达。10、50和100μg/ml HDL分别使脂联素水平升高1倍、1.9倍和3.2倍(P<0.05),1、10、50μg/ml L-4F分别使脂联素水平升高1.2倍、2.9倍和3.4倍(P<0.05)。与LPS刺激组(0.36±0.05)比较,10、50、100μg/ml HDL分别使脂联素mRNA表达升高至0.72±0.13、1.05±0.15、1.51±0.11,而1、10、50μg/m L-4F分别使脂联素mRNA表达升高至0.79±0.12、1.40±0.18、1.58±0.10(P均<0.05)。
     3.PPAR7在分化成熟的3T3-L1脂肪细胞有较高水平的表达,与LPS刺激组比较,PPARγ表达在HDL和L-4F干预后明显升高(2.85±0.69 vs 0.38±0.19,2.92±0.96 vs 0.38±0.19;P<0.05),而NF-κB活性在HDL和L-4F干预后明显降低(0.48±0.09 vs 1.93±0.59,0.43±0.08 vs 1.93±0.59;P<0.05)。
     4.OxLDL(50μg/ml)刺激1小时使3T3-L1脂肪细胞TNFα分泌(2.98±1.10 pg/ml Vs 8.93±3.26 pg/ml,P<0.001)、mRNA表达(0.218±0.078 vs 0.633±0.157,P<0.001)及NF-κB活性(1.54±0.44 vs4.08±0.87,P<0.05)明显增强。
     5.阿托伐他汀浓度依赖性降低TNFα分泌及mRNA表达,抑制NF-κB活化,并增强PPARγmRNA表达。10μM阿托伐他汀使脂肪细胞oxLDL诱导的TNFαmRNA表达降低56.5%,NF-κB活性减少41.2%,而使PPARγmRNA表达增加至2.83倍。HDL也呈浓度依赖性抑制TNFα分泌及mRNA表达,NF-κB活化和IκB降解。与oxLDL刺激组比较,100μg/ml HDL使TNFαmRNA表达降低64.5%,NF-κB活性减少49%,并明显增加IκB蛋白水平,但对PPARγmRNA表达无影响。HDL的这些抗炎效应能被蛋白激酶A(PKA)抑制剂H-89部分抑制。
     6.OxLDL(50μg/ml)刺激12小时使脂肪细胞上清液中MCP-1的浓度和表达增加至2.13倍,并使得诱导的单核细胞移动距离明显增力口(69.88±8.19μm vs 136.75±8.03μm,P<0.001)。
     7.L-4F和HDL均以浓度依赖的方式减少脂肪细胞MCP-1的表达分泌,降低单核细胞趋化活性。50μg/ml L-4F和100μg/ml HDL分别使MCP-1的表达分泌降低91±6%和79±7%(P<0.001)。PKA抑制剂H-89(10μM)干预oxLDL刺激的脂肪细胞后MCP-1m RNA的表达也显著减少71±7%(P<0.001),但是,在100μg/ml HDL或50μg/ml L-4F作用的基础上,H-89(10μM)的孵育并未使得MCP-1mRNA的表达进一步降低(P>0.05)。
     8.50μg/ml oxLDL刺激对脂肪细胞C/EBPα的表达无明显影响,但增加C/EBPβ蛋白量,该作用呈时间依赖性;H-89、L-4F和HDL干预均降低脂肪细胞C/EBPβ的蛋白表达量。
     结论
     1.LPS和oxLDL均能诱导分化成熟的3T3-L1脂肪细胞产生炎症状态,使其表达和分泌脂联素水平下降,使TNFα及MCP-1的表达和分泌增强。
     2.HDL和L-4F能上调LPS刺激炎症状态下脂肪细胞脂联素的表达和分泌,PPARγ和NF-κB可能参与了HDL和L-4F上调脂联素的效应过程。
     3.阿托伐他汀通过NF-κB和PPARγ途径抑制oxLDL诱导的3T3-L1脂肪细胞TNFα分泌及mRNA表达。
     4.HDL能抑制oxLDL诱导的3T3-L1脂肪细胞TNFα分泌和mRNA表达,其抗炎作用强度与阿托伐他汀相似。PKA-IκB-NF-κB信号通路是其中作用途径之一,该效应不需要HDL与oxLDL的直接接触作用。
     5.OxLDL时间依赖性地诱导脂肪细胞C/EBPβ的蛋白表达。
     6.L-4F和HDL均以浓度依赖的方式对抗oxLDL对MCP-1的影响,cAMP/PKA-C/EBPβ信号通道可能是L-4F和HDL的作用途径之一。
Background
     Atherosclerosis diseases are the leading cause threatening humanhealth. Obesity is an independent risk factor for coronary heart disease(CHD). Since dysfunction of adipocytes plays a key role for obesity,studying function of adipocytes is of great significance for the preventionand treatment of obesity and CHD. Adipocyte functions have been furtherexplored and recognized recently. Dysfunctional adipocytes have beenthought to be in close relation with atherosclerosis.
     Adipose tissue is the largest energy reservoir in the body. It storesexcess energy in form of triglyceride. Moreover, adipose tissue showsactive endocrine function that secrets various adipokines, many of whichmight play significant roles in atherogenesis. Adipose tissue may be asignificant contributor to increase systemic chronic inflammation throughsecreting a number of pro-inflammatory adipokines. Adiponectin, anadipose-specific secreted and inflammation-related protein, is a protectivefactor for insulin-resistance, diabetes and atherosclerosis. The elevatedlevel of tumor necrosis factor-α(TNFα), an inflammatory cytokine, isclosely associated with the severity of atherosclerosis. The adipose tissueis a significant source of endogenous TNFαproduction. Monocytechemoattractant protein-1 (MCP-1) is a potent chemotactic factor formonocytes and may serve as a signal that triggers inflammation ofatherosclerosis. Adipocytes may be induced to produce MCP-1 withseveral types of stimulators.
     Lipopolysaccharide (LPS) is an acknowledged inducer ofinflammation. Low-density lipoproteins (LDLs) are thought to becomeatherogenic after undergoing oxidative modifications. In addition to theirrole in foam cell formation, oxidized low-density lipoproteins (oxLDL) may participate in local chronic inflammatory response. High densitylipoproteins (HDLs), in contrast to LDLs, are antiatherogenic andcardioprotective, but the detailed molecular mechanisms remain poorlyunderstood. The effects that HDL regulates the intracellular lipidsmetabolism in adipocytes have been confirmed. However, the effects ofHDL on regulating adipocytes inflammation have not been investigatedso far. Apolipoprotein A-I (apoA-I), the main protein of HDL and apoA-Imimetic peptide are potent anti-inflammatory agents that may havetherapeutic potential. But whether apoA-I mimetic peptide showsanti-inflammatory effects in adipocytes is not understood.
     Peroxisome proliferator-activated receptorγ(PPARγ) is a nuclearreceptor which mainly be expressed in adipose tissue. Nuclear factor-κB(NF-κB) is a crucial transcription factor, which controls the transcriptionof many genes with an established role in atherosclerosis.CCAAT/enhancer binding proteins (C/EBPs) is another important kind ofnuclear transcription factor. It was shown that PPARγ、NF-κB andC/EBPs all participate in the transcription control of some cytokines. Andthey may have actions on the regulation of transcription and secretion ofadipokines at least in part, which need to be further studied.
     Objective
     The aim of this study was to evaluate the effect of HDL and L-4F,an apoA-I mimetic peptide, on the secretion and expression ofadiponectin, TNFαand MCP-1 in fully differentiated 3T3-L1adipocytes with inflammatory status, and to elucidate the possiblemechanisms,
     Methods
     Fully differentiated 3T3-L1 adipocytes were divided into threegroups: (1)LPS stimulated group: Fully differentiated 3T3-L1 adipocytes were incubated in the medium containing various concentrations of HDL(10-100μg/ml) or L-4F (1-50μg/ml) with 100μg/L LPS (n=3). Evaluatethe levels of adiponectin in supernatant, the mRNA expression ofadiponectin and PPARγ, and the activity of NF-κB. (2) OxLDLstimulated group (for 1h): Fully differentiated 3T3-L1 adipocytes wereincubated in the medium containing various concentrations of HDL (10-100μg/ml) or atorvastatin (0.1-10μM) with oxLDL (50μg/ml)stimulated for 1 hour, with/without H-89 (10μM) preincubated. TNFαand PPARy mRNA expression, NF-κB activity and IκB protein level wereevaluated. (3) OxLDL stimulated group (for 1h、6h、12h): Fullydifferentiated 3T3-L1 adipocytes were incubated in the mediumcontaining various concentrations of HDL (10-100μg/ml) or L-4F (10-100μg/ml) with oxLDL (50μg/ml) stimulated for 1h, 6h or 12h,with/without H-89 (10μM) preincubated. The concentrations of MCP-1in supernatant, the mRNA expression of MCP-1, the levels of C/EBPαand C/EBPβwere evaluated. The monocyte chemotaxis assay wasperformed by micropore filter method using a modified Boyden chamber.
     Results
     1. The secretion and mRNA expression of adiponectin decreased by44%and 60%after LPS stimulation in full differentiated 3T3-L1adipocytes (P<0.05).
     2. HDL and L-4F dose-dependently increased adiponectin secretionand mRNA expression. Compared with LPS stimulation, treatment withHDL at 10, 50, 100μg/ml significantly enhanced adiponectin secretionabout 1, 1.9, 3.2-fold respectively (P<0.05), and treatment with apoA-Imimetic peptide at 1, 10, 50μg/ml significantly enhanced adiponectinsecretion about 1.2, 2.9, 3.4-fold respectively (P<0.05). Compared withLPS stimulated group (0.36±0.05), adiponectin mRNA expression increased to 0.72±0.13, 1.05±0.15 and 1.51±0.11 respectively by 10, 50and 100μg/ml HDL and to 0.79±0.12, 1.40±0.18 and 1.58±0.10respectively by 1, 10 and 50μg/ml L-4F (all P<0.05).
     3. PPARγpresents high level expression in fully differentiated3T3-L1 adipocytes. Compared with LPS stimulated group, HDL andL-4F significant enhanced PPARγmRNA expression (2.85±0.69 vs0.38±0.19, 2.92±0.96 vs 0.38±0.19; P<0.05) and the activity of NF-κBdecreased significantly after using HDL and L-4F (0.48±0.09 vs1.93±0.59, 0.43±0.08 vs 1.93±0.59; P<0.05).
     4. OxLDL stimulation for 1 hour induced a significant enhancementof TNFαsecretion (2.98±1.10 pg/ml vs 8.93±3.26 pg/ml, P<0.001),TNFαmRNA expression (0.218±0.078 vs 0.633±0.157, P<0.001) andNF-κB activity (1.54±0.44 vs 4.08±0.87, P<0.05) in 3T3-L1 adipocytes.
     5. Atorvastatin reduced TNFαsecretion and mRNA expression,inhibited NF-κB activation, and enhanced PPARγmRNA expression in adose-dependent manner. Treatment with atorvastatin at 10μMsignificantly suppressed TNFαmRNA expression by 56.5%, inhibitedNF-κB activation by 41.2%, and increased PPARy mRNA expression toabout 2.83-fold, as compared with oxLDL stimulated group. HDLdose-independently inhibited TNFαsecretion and mRNA expression,NF-κB activation and IκB degradation. Treatment with HDL at 100μg/mlsuppressed TNFαmRNA expression by 64.5%, inhibited NF-κBactivation by 49%, and stabilized IκB significantly, as compared withoxLDL stimulated group, but had no effect on PPARγmRNA expression.The anti-inflammatory effect of HDL could be partially abolished byPKA inhibitor H-89.
     6. OxLDL stimulation for 12 hours induced a significant increase ofMCP-1 secretion and expression to 2.13-fold in 3T3-L1 adipocytes. And the mean of migration distances of human peripheral blood monocyteinduced by oxLDL was significantly longer than that of the randommigration group (69.88±8.19μm vs 136.75±8.03μm, P<0.001).
     7. L-4F and HDL decreased MCP-1 secretion and expression in adose-dependent manner as well as reduced the chemotactic activity ofmonocyte. 50μg/ml L-4F and 100μg/ml HDL decreased MCP-1secretion and expression by 91±6%and 79±7%respectively (P<0.001).PKA inhibitor H-89 (10μM) significantly reduced oxLDL-inducedMCP-1 expression by 71±7%(P<0.001), but no further decreasingoccurred when H-89 (10μM) adding with the existing of L-4F(50μg/ml)or HDL(100μg/ml) (P>0.05).
     8. OxLDL (50μg/ml) stimulation had no marked influence onC/EBPαexpression, but increased C/EBPβlevel in a time-dependentmanner. H-89, HDL and L-4F all attenuated oxLDL-induced C/EBPβlevel in 3T3-L1 adipocytes.
     Conclusions
     1. Full differentiated 3T3-L1 adipocytes would be induced to be ininflammatory status after LPS or oxLDL stimulation, which showed thatadiponectin secretion and expression decreased and TNF a and MCP-1secretion and expression increased.
     2. HDL and L-4F could upregulate the secretion and mRNAexpression of adiponectin in 3T3-L1 adipocytes in inflammatory status.PPARγand NF-κB pathway may participate in the process.
     3. Atorvastatin inhibited TNFαsecretion and mRNA expression inoxLDL-stimulated 3T3-L1 adipocytes by NF-κB and PPAR7 signalingpathways.
     4. HDL could suppress TNFαsecretion and mRNA expression inoxLDL-stimulated 3T3-L1 adipocytes by PKA-IκBα-NF-κB signaling pathway, without any contact between HDL and oxLDL. The intensity ofanti-inflammatory effect of HDL was similar to that of atorvastatin.
     5. OxLDL induced C/EBPβexpression in a time-dependentmanner.
     6. L-4F and HDL dose-dependently counterbalanced the influence ofoxLDL on MCP-1. The cAMP/PICA-C/EBPβsignaling pathway mayparticipate in the process.
引文
[1] Okamoto Y, Artia Y, Nishida M, et al. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation. 2002;106:2767-70
    
    [2] Kumada M, Kihara S, Sumitsuji S, et al. Association of hypoadiponectinemia with coronary artery disease in men. Arterioscler Thromb Vasc Biol. 2003;23:85-9
    
    [3] Pischon T, Girman CJ, Hotamisliqil GS, et al. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA. 2004;291:1730-7
    
    [4] Sakuta H, Suzuku T, Yasuda H, et al. Adiponectin levels and cardiovascular risk factors in Japanese men with type 2 diabetes. Endocr J. 2005;52:241-4
    
    [5] Sampietro T, Bigazzi F, Dal Pino B, et al. Increased plasma C-reactive protein in familial hypoalphalipoproteinemia: a proinflammatory condition? Circulation. 2002;105:ll-14.
    
    [6] Nissen SE, Tsunoda T, Tuzcu EM, et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA. 2003;290:2292-300
    
    [7] Kovanen PT, Pentikainen MO. Ciuculating lipoproteins as proinflammatory and anti-inflammatory particles in atherogenesis. Curr Opin Lipidol. 2003;14:411-9
    
    [8] Beltowsi J, Wojcicka G, Jamroz A. Leptin decreases plasma paraoxonase 1 (PON1) activity and induces oxidative stress: the possible novel mechanism for proatherogenic effect of chronic hyperleptinemia. Atherosclerosis. 2003;170:21-9
    
    [9] Zietz B, Herfarth H, Paul G, et al. Adiponectin represents an independent cardiovascular risk factor predicting serum HDL-cholesterol levels in type 2 diabetes. FEBS Lett. 2003;545:103-4
    
    [10] Navab M, Anantharamaiah GM, Reddy ST, et al. Oral D-4F causes formation of pre- β high-density lipoprotein and improves high-density lipoprotein-mediated cholesterol efflux and reverse cholesterol transport from macrophages in apoE-null mice. Circulation. 2004;109:3215-20.
    
    [11] Navab M, Anantharamaiah GM, Hama S, et al. Oral administration of an apo A-I mimetic peptide synthesized from D-amino acids dramatically reduces atherosclerosis in mice independent of plasma cholesterol. Circulation. 2002;105:290-2.
    
    [12] Van Lenten BJ, Wagner AC, Anantharamaiah GM, et al. Influenza infection promotes macrophage traffic into arteries of mice that is prevented by D-4F, an apolipoprotein A-I mimetic peptide. Circulation. 2002;106:1127-32.
    
    [13] Ntambi JM, Kim YC. Adipocyte differentiation and gene expression. J Nutr. 2000; 130: 3122S-3126S.
    
    [14] Zhang HH, Kumar S, Barnett AH, et al. Ceiling culture of mature human adipocytes: use in studies of adipocyte functions. J Endocrinol. 2000; 164:119-28.
    
    [15] Ferroni P, Basili S, Falco A, et al. Inflammation, insulin resistancs , and obesity. Curr Atheroscler Rep. 2004;6:424-31
    
    [16] Brennan ML, Penn MS, Van Lente F et al. Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med. 2003;349:1595-604
    
    [17] Matsuzawa Y, Funahashi T, Kihara S et al. Adiponectin and metabolic symdrome. Arteioscler Thromb Vasc Biol. 2004;24:29-33
    
    [18] Bastard JP, Maachi M, Laqathu C et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. 2006;17:4-12
    
    [19] Ouchi N, Kihara S, Funahashi T, et al. Obesity, adiponectin and vascular inflammatory disease. Curr Opin Lipidol. 2003;14:561-6
    
    [20] Maeda N, Takahashi M, Funahashi T et al. PPAR Y ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes. 2001;50:2094-9
    
    [21] Nissen SE, Tsunoda T, Tuzcu EM et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA. 2003;290:2292-300
    
    [22] Kovanen PT, Pentikainen MO. Ciuculating lipoproteins as proinflammatory and anti-inflammatory particles in atherogenesis. Curr Opin Lipidol. 2003;14:411-9
    
    [23] Beltowsi J, Wojcicka G, Jamroz A. Leptin decreases plasma paraoxonase 1 (PON1) activity and induces oxidative stress: the possible novel mechanism for proatherogenic effect of chronic hyperleptinemia. Atherosclerosis. 2003;170:21-9
    
    [24] Zietz B, Herfarth H, Paul G et al. Adiponectin represents an independent cardiovascular risk factor predicting serum HDL-cholesterol levels in type 2 diabetes. FEBS Lett. 2003;545:103-4
    
    [25] Ansell BJ, Navab M, Hama S et al. Inflammatory/anti-inflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation. 2003;108:2751-6
    
    [26] Navab M, Anantharamaiah GM, Reddy ST et al. Oral D-4F causes formation of pre- β high-density lipoprotein and improves high-density lipoprotein-mediated cholesterol efflux and reverse cholesterol transport from macrophages in apolipoprotein E-null mice. Circulation. 2004;109:3215-20
    
    [27] Navab M, Anantharamaiah GM, Reddy ST et al. Apolipoprotein A-I mimetic peptides[J]. Arterioscler Thromb Vasc Biol. 2005;25:1325-31
    
    [28] Shah PK, Kaul S, Nilsson J, et al. Exploiting the vascular protective effects of high density lipoprotein and its apolipoproteins: an idea whose time for testing is coming, part I. Circulation. 2001;104:2376 -2383
    
    [29] Pajkrt D, Doran JE, Koster F, et al. Anti-inflammatory effects of reconstituted highdensity lipoprotein during human endotoxemia. J Exp Med. 1996;184: 1601-1608.
    
    [30] Wu A, Hinds CJ, Thiemermann C. High density lipoproteins in sepsis and septic shock: metabolism, actions, and therapeutic applications. Shock. 2004;21:210 -221.
    
    [31] Massamiri T, Tobias PS, Curtiss LK. Structural determinants for the interaction of lipopolysaccharide binding protein with purified high density lipoproteins: role of apolipoprotein A-I. J Lipid Res. 1997;38: 516-525.
    
    [32] Parker TS, Levine DM, Chang JCC, Laxer J, Coffin CC, Rubin AL. Reconstituted high-density lipoprotein neutralizes gram-negative bacterial lipopolysaccharides in human whole blood. Infect Immun. 1995;63: 253-258.
    
    [33] Gupta H, Dai L, Datta G, et al. Inhibition of lipopolysaccharide-induced inflammatory responses by an apolipoprotein AI mimetic peptide. Circ Res. 2005;97:236-243
    
    [34] David SA. Towards a rational development of anti-endotoxin agents: novel approaches to sequestration of bacterial endotoxins with small molecules. J Mol Recognit. 2001;14:370-387.
    
    [35] Choi KC, Rvu OH, Lee KW et al. Effect of PPAR-alpha and -gamma agonist on the expression of visfatin, adiponectin, and TNF-alpha in visceral fat of OLETF rats. Biochem Biophys Res Commun. 2005;336:747-53
    
    [36] Lappas M, Yee K, Permezel M, et al. Lipopolysaccharide and TNF-alpha activate the nuclear factor kappa B pathway in the human placental JEG-3 cells. Placenta. 2006;27:568-75
    
    [37] Lappas M, Yee K, Permezel M, et al. Sulfasalazine and BAY 11-7082 interfere with the nuclear factor-kappa B and I kappa B kinase pathway to regulate the release of proinflammatpry cytokines from human adipose tissue and skeletal muscle in vitro. Endocrinology. 2005; 146:1491-7
    
    [38] Hakala JK, Lindstedt KA, Kovanen PT, et al. Low-density lipoprotein modified by macrophage-derived lysosomal hydrolases induces expression and secretion of IL-8 via p38 MAPK and NF-kappaB by human monocyte-derived macrophages. Arterioscler Thromb Vasc Biol. 2006;26:2504-9
    
    [39] Robbesyn F, Garcia V, Auqe N, et al. HDL counterbalance the proinflammatory effect of oxidized LDL by inhibiting intracellular reactive oxygen species rise, proteasome activation, and subsequent NF-kappaB activation in smooth muscle cells. FASEB J. 2003;17:743-5
    
    [40] Lappas M, Yee K, Permezel M et al. Lipopolysaccharide and TNF-alpha activate the nuclear factor kappa B pathway in the human placental JEG-3 cells. Placenta. 2006;27:568-75
    
    [41] Lappas M, Yee K, Permezel M et al. Sulfasalazine and BAY 11-7082 interfere with the nuclear factor-kappa B and I kappa B kinase pathway to regulate the release of proinflammatory cytokines from human adipose tissue and skeletal muscle in vitro. Endocrinology. 2005;146:1491-7
    
    [42] Hetzel M, Walcher D, Grub M et al. Inhibition of MMP-9 expression by PPARgamma activators in human bronchial epithelial cells. Thorax. 2003;58:778-83.
    
    [43] Nikolaus M, Francois M, Alain S et al. Peroxisome proliferator-activated receptor-γactivators inhibit IFN-γ-induced expression of the T cell-active CXC chemokines IP-10, Mig, and I-TAC in human endothelial cells. J Immunol. 2000;164:6503-8
    [1] Plutzky J. Inflammatory pathways in atherosclerosis and acute coronary syndromes. Am J Cardiol. 2001;88:10K-15K
    
    [2] Rodriguez-Maldonado E, Hernandez-Rebollar AE, Lopez-Marure R, et al. Role of tumor necrosis factor alpha in atherosclerosis. Arch Cardiol Mex. 2001;71:241-9
    
    [3] Mizia-Stec K, Zahorska-Markiewica B, Mandecki T, et al. Hyperlipidaemias and serum cytokines in patients with coronary artery disease. Acta Cardiol. 2003;58:9-15 [4] Cesari M, Penninx BW, Newman AB, et al. Inflammatory markers and onset of cardiovascular events: results from the Health ABC study. Circulation. 2003;108:2317-22
    
    [5] Rus HG, Niculescu F, Vlaicu R. Tumor necrosis factor-alpha in human arterial wall with atherosclerosis. Atherosclerosis. 1991;89:247-54
    
    [6] Lei X, Buja LM. Detection and localization of tumor necrosis factor-alpha in WHHL rabbit arteries. Atherosclerosis. 1996;125:81-9
    
    [7] Axelsson J, Heimburger O, Lindholm B, et al. Adipose tissue and its relation to inflammation: the role of adipokines. J Ren Nutr. 2005;15:131-6
    
    [8] Sewter CP, Digby JE, Blows F, et al. Regulation of tumour necrosis factor-alpha release from human adipose tissue in vitro. J Endorinol. 1999;163:33-8
    
    [9] Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259:87
    
    [10] Hotamisligil GS, Spiegelman BM. Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes. 1994;43:1271-8
    
    [11] Brown MS, Goldstein JL. Lipoprotein metabolism in the macrophage: implication for cholesterol deposition in atherosclerosis. Annu Rev Biochem. 1983;52:223-61.
    
    [12] Lusis AJ. Atherosclerosis. Nature. 2000;407:233-41.
    
    [13] Ross R. Atherosclerosis - an inflammatory disease. N Engl J Med. 1999;340:115-26.
    
    [14] Steinberg D, Parthasarathy S, Carew TE, et al. Beyond cholesterol. Modifications of LDL that increase its atherogenicity. N Engl J Med. 1989; 320(14):915-24
    
    [15] Chisolm GM 3rd, Chai Y. Regulation of cell growth by oxidized LDL. Free Radic Biol Med. 2000;28:1697-1707
    [16] Libby P. Managing the risk of atherosclerosis: the role of high-density lipoprotein. Am J Cardiol. 2001; 88:3N-8N
    
    [17] Davignon J. Beneficial cardiovascular pleiotropic effects of statins. Circulation. 2004;109(23 Suppl):III39-43
    
    [18] Zhao SP, Wu ZH, Wu J, et al. Effect of atorvastatin on tumor necrosis factor α serum concentration and mRNA expression of adipose in hypercholesterolemic rabbits. J Cardiovasc Pharmacol. 2005;46:185-9
    
    [19] Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med. 1999;340:115-126
    
    [20] Yudkin JS, Stehouwer CD, Emeis JJ, et al. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potent role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol. 1999;19:972-8
    
    [21] Bullo M, Garcia-Lorda P, Megias I, et al. Systemic inflammation, adipose tissue tumor necrosis factor, and leptin expression. Obes Res. 2003;11:525-31
    
    [22] Zhao SP, Wu J. Fenofibrate reduces tumor-necrosis factor alpha serum concentration and adipocyte secretion of hypercholesterolemic rabbits. Clin Chim Acta. 2004;347:145-50
    
    [23] Barath P, Cao J, Forrester JS. Low density lipoprotein activates monocytes to express tumor necrosis factor. FEBS Lett. 1990;277:180-4
    
    [24] Grip O, Janciauskiene S, Lindqren S. Atorvastatin activates PPAR-gamma and attenuates the inflammatory response in human monocytes. Inflamm Res. 2002;51: 58-62
    
    [25] Zelvyte I, Dominaitiene R, Crisby M, et al. Modulation of inflammatory mediators and PPARgamma and NFkappaB expression by pravastatin in response to lipoproteins in human monocytes in vitro. Pharmacol Res. 2002;45:147-54
    
    [26] Planavila A, Sanchez RM, Merlos M, et al. Atorvastatin prevents peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) downregulation in lipopolysaccharide-stimulated H9c2 cells. Biochim Biophys Acta. 2005;1736:120-7
    
    [27] Coll T, Jove M, Rodriquez-Calvo R, et al. Palmitate-mediated downregulation of peroxisome proliferator-activated receptor-gamma coactivator lalpha in skeletal muscle cells involves MEK1/2 and nuclear factor-kappaB activation. Diabetes. 2006;55:2779-87
    [28] Janssen-Heininger YM, Poynter ME, Baeuerle PA. Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappaB. Free Radic Biol Med. 2000;28:1317-27
    
    [29] Bourcier T, Sukhova G, Libby P. The nuclear factor kappa-B signaling pathway participates in dysregulation of vascular smooth muscle cells in vitro and in human atherosclerosis. J Biol Chem. 1997;272:15817-24
    
    [30] Ouchi N, Kihara S, Arita Y, et al. Adiponectin, an adipocyte-derived plasmaprotein, inhibits endothelial NF-κB signaling through a cAMP-dependent pathway. Circulation. 2000; 102:1296-301
    
    [31] Zhao SP, Wu J, Zhang DQ, et al. Fenofibrate enhances CD36 mediated endocytic uptake and degradation of oxidized low density lipoprotein in adipocytes from hypercholesterolemia rabbit. Atherosclerosis. 2004;177:255-62
    [1] Ashida N, Arai H, Yamasaki M, et al. Distinct signaling pathways foe MCP-1 dependent integrin activation and chemotaxis. J Biol Chem. 2001;276:16555-60
    
    [2] Boring L, Gosling J, Cleary M, et al. Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature. 1998;394:894-7
    
    [3] Gu L, Okada Y, Clinton SK, et al. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell. 1998;2:275-81
    
    [4] Linton MF, Fazio S. Macrophages, inflammation, and atherosclerosis. Int J Obes Relat Metab Disord. 2003; 27 Suppl 3:S35-40.
    
    [5] Kamei N, Tobe K, Suzuki R, et al. Overexpression of Monocyte Chemoattractant Protein-1 in Adipose Tissues Causes Macrophage Recruitment and Insulin Resistance. J Biol Chem. 2006;281:26602-14
    
    [6] Kanda H, Tateya S, Tamori Y, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006;116:1494-505
    
    [7] Weisberg SP, Hunter D, Huber R, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest. 2006;116:115-24.
    
    [8] Yu R, Kim CS, Kwon BS, et al. Mesenteric adipose tissue-derived monocyte chemoattractant protein-1 plays a crucial role in adipose tissue macrophage migration and activation in obese mice. Obesity (Silver Spring). 2006;14:1353-62
    
    [9] Steinberg D, Parthasarathy S, Carew TE, et al. Beyond cholesterol. Modifications of LDL that increase its atherogenicity. N Engl J Med. 1989; 320:915-24
    
    [10] Chisolm GM 3rd, Chai Y. Regulation of cell growth by oxidized LDL. Free Radic Biol Med. 2000;28:1697-1707
    
    [11] Libby P. Managing the risk of atherosclerosis: the role of high-density lipoprotein. Am J Cardiol. 2001; 88:3N-8N
    
    [12] Hartman HB, Hu X, Tyler KX, et al. Mechanisms regulating adipocyte expression of resistin. J Biol Chem. 2002;277:19754-61
    
    [13] Seo JB, Noh MJ, Yoo EJ, et al. Functional characterization of the human resistin promoter with adipocyte determination- and defferentiation-dependent factor 1/sterol regulatory element binding protein 1c and CCAAT enhancer binding protein- α . Mol Endocrinol. 2003;17:1522-33
    
    [14] Miyaoka Y, Tanaka M, Naiki T, et al. Oncostatin M inhibits adipogenesis through the RAS/ERK and STAT5 signaling pathways. J Biol Chem. 2006;281:37913-20
    
    [15] Venteclef N, Smith JC, Goodwin B, et al. Liver receptor homolog 1 is a negative regulator of the hepatic acute-phase response. Mol Cell Biol. 2006;26:6799-807
    
    [16] Resch U, Winsauer G, Hofer-Warbinek R, et al. X-linked inhibitor of apoptosis protein regulates human interleukin-6 in umbilical vein endothelial cells via stimulation of the nuclear factor-kappaB and MAP kinase signaling pathways. Pharmacol Rep. 2006;58 Suppl:111-7
    
    [17] Lekstrom-Himes J, Xanthopoulos, KG. Biological role of CCAAT/enhancer-binding protein family of transcription factors. J Biol Chem. 1998;273:28545-8
    
    [18] Woo HM, Kang JH, Kawada T, et al. Active spice-derived components can inhibit inflammatory responses of adipose tissue in obesity by suppressing inflammatory actions of macrophages and release of monocyte chemoattractant protein-1 from adipocytes. Life Sci. 2007;80:926-31
    
    [19] Nissen SE, Tsunoda T, Tuzcu EM et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA. 2003;290:2292-300
    
    [20] Kovanen PT, Pentikainen MO. Ciuculating lipoproteins as proinflammatory and anti-inflammatory particles in atherogenesis. Curr Opin Lipidol. 2003;14:411-9
    
    [21] Beltowsi J, Wojcicka G, Jamroz A. Leptin decreases plasma paraoxonase 1 (PON1) activity and induces oxidative stress: the possible novel mechanism for proatherogenic effect of chronic hyperleptinemia. Atherosclerosis. 2003;170:21-9
    
    [22] Zietz B, Herfarth H, Paul G et al. Adiponectin represents an independent cardiovascular risk factor predicting serum HDL-cholesterol levels in type 2 diabetes. FEBS Lett. 2003;545:103-4
    
    [23] Navab M, Berliner JA, Subbanagounder G, et al. HDL and the inflammatory response induced by LDL-derived oxidized phospholipids. Arterioscler Thromb Vasc Biol. 2001;21:481-8
    
    [24] Bobbesyn F, Garcia V, Auge N, et al. HDL counterbalance the proinflammatory effect of oxidized LDL by inhibiting intracellular reactive oxygen species rise, proteasome activation, and subsequent NF-κB activation in smooth muscle cells. FASEB J. 2003;17:743-5
    
    [25] Bobbesyn F, Auge N, Vindis C, et al. High-density lipoproteins prevent the oxidized low-density lipoprotein-induced endothelial growth factor receptor activation and subsequent matrix metalloproteinase-2 upregulation. Arterioscler Thromb Vasc Biol. 2005;25:1206-12
    
    [26] Navab M, Anantharamaiah GM, Reddy ST, et al. Apolipoprotein A-I mimetic peptide. Arterioscler Thromb Vasc Biol. 2005;25:1325-31
    
    [27] Navab M, Anantharamaiah GM, Reddy ST, et al. Apolipoprotein A-I mimetic peptides and their role in atherosclerosis prevention. Nat Clin Pract Cardiovasc Med. 2006;3:540-7
    
    [28] Choy L, Derynck R. Transforming growth factor-beta inhibits adipocyte differentiation by Smad3 interacting with CCAAT/enhancer-binding protein (C/EBP) and repressing C/EBP transactivation function. J Biol Chem. 2003;278:9609-19
    
    [29] Vogel CF, Sciullo E, Park S, et al. Dioxin increases C/EBPbeta transcription by activating cAMP/protein kinase A. J Biol Chem. 2004;279:8886-94
    [1] Badimon JJ, Badimon L, Fuster V. Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit. J Clin Invest. 1990; 85:1234-41
    [2] Plump AS, Scott CJ Breslow JL. Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci USA. 1994; 91:9607-11
    [3] Chiesa G, Sirtori CR. Use of recombinant apolipoproteins in vascular diseases: the case of apoA-I. Curr Opin Investig Drugs. 2002;3:420-6
    [4] Nanjee MN, Doran JE, Lerch PG, et al. Acute effects of intravenous infusion of apoA-I/phosphatidylcholine discs on plasma lipoproteins in humans. Arterioscler Thromb Vasc Biol. 1999; 19:979-89
    [5] Nanjee MN, Cooke CJ, Garvin R, et al. Intravenous apoA-I/lecithin discs increase pre-β-HDL concentration in tissue fluid and stimulate reverse cholesterol transport in humans. J Lipid Res. 2001; 42:1586-93
    [6] Kujiraoka T, Nanjee MN, Oka T, et al. Effects of intravenous apolipoprotein A-I/phosphatidylcholine discs on LCAT, PLTP, and CETP in plasma and peripheral lymph in humans. Arterioscler Thromb Vasc Biol. 2003; 23:1653-9
    
    [7] Nissen SE, Tsunoda T, Tuzcu EM, et al. Effect of recombinant apoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA. 2003; 290: 2292-300
    
    [8] Rader DJ. High-density lipoproteins as an emerging therapeutic target for atherosclerosis. JAMA. 2003; 290: 2322-4
    
    [9] Zhang Y, Zanotti I, Reilly MP, et al. Overexpression of apolipoprotein A-I promotes reverse transport of cholesterol from macrophages to feces in vivo. Circulation. 2003; 108: 661-3
    
    [10] Barter PJ, Nicholls S, Rye KA, et al. Anti-inflammatory properties of HDL. Circ Res. 2004; 95: 764-72
    
    [11] Navab M, Hama SY, Cooke CJ, et al. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: step 1. J Lipid Res. 2000; 41:1481-94
    
    [12] Navab M, Hama SY, Anantharamaiah GM, et al. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: steps 2 and 3. J Lipid Res. 2000; 41:1495-508
    
    [13] Navab M, Anantharamaiah GM, Reddy ST, et al. The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J Lipid Res. 2004; 45: 993-1007
    
    [14] Navab M, Hama-Levy S, Van Lenten BJ, et al. Mildly oxidized LDL induces an increased apolipoprotein J/paraoxonase ratio. J Clin Invest. 1997; 99: 2005-19
    
    [15] Navab M, Anantharamaiah GM, Reddy ST, et al. An oral apoJ peptide renders HDL anti-inflammatory in mice and monkeys and dramatically reduces atherosclerosis in apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol. 2005; 25:1932-7
    
    [16] Ansell BJ, Navab M, Hama S, et al. Inflammatory/anti-inflammatory properties of high-density lipoprotein distinguish patients from control subjects better than highdensity lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation. 2003; 108: 2751-6
    
    [17] Berliner JA, Watson AD. A role for oxidized phospholipids in atherosclerosis. N Engl J Med. 2005; 353: 9-11
    
    [18] Tsimikas S, Brilakis ES, Miller ER, et al. Oxidized phospholipids Lp(a) lipoprotein, and coronary artery disease. N Engl J Med. 2005; 353: 46-57
    
    [19] Lusis AJ, Fogelman AM, Fonarow GC. Genetic basis of atherosclerosis: part I. Circulation. 2004; 110:1868-73
    
    [20] Anantharamaiah GM, Jones JL, Brouillette CG, et al. Studies of synthetic peptide analogs of amphipathic helix: structure of complexes with dimyristoyl phosphatidylcholine. J Biol Chem. 1985; 260:10248-55
    
    [21] Anantharamaiah GM. Synthetic peptide analogs of apolipoproteins. Methods Enzymol.1986; 128: 627-47
    
    [22] Yancey PG, Bielicki JK, Johnson WJ, et al. Efflux of cellular cholesterol and phospholipid to lipid-free apolipoproteins and class A amphipathic peptides. Biochemistry. 1995; 34: 7955-65
    
    [23] Venkatachalapathi YV, Phillips MC, Epand RM, et al. Effect of end group blockage on the properties of a class A amphipathic helical peptide. Proteins. 1993; 15:349-59
    
    [24] Datta G, Chaddha M, Hama S, et al. Effects of increasing hydrophobicity on the physical-chemical and biological properties of a class A amphipathic helical peptide. J Lipid Res. 2001; 42:1096-104
    
    [25] Navab M, Anantharamaiah GM, Reddy ST, et al. Apolipoprotein A-I mimetic peptides. Arterioscler Thromb Vasc Biol. 2005; 25:1325-31
    
    [26] Reddy ST, Anantharamaiah GM, Navab M, et al. Oral amphipathic peptides as therapeutic agents. Expert Opin Investig Drugs. 2006; 15:13-21
    
    [27] Tang C, Vaughan AM, Anantharamaiah GM, et al. Janus kinase 2 modulates the lipid-removing but not protein-stabilizing interactions of amphipathic helices with ABCA1. J Lipid Res. 2006; 47:107-14
    
    [28] Navab M, Berliner JA, Subbanagounder G, et al. HDL and the inflammatory response induced by LDL-derived oxidized phospholipids. Arterioscler Thromb Vasc Biol. 2001; 21: 481-8
    
    [29] Forte TM, Subbanagounder G, Berliner JA, et al. Altered activities of antiatherogenic enzymes LCAT, paraoxonase, and platelet activating factor acetylhydrolase in atherosclerosissusceptible mice. J Lipid Res. 2002; 43: 477-85
    
    [30] Van Lenten BJ, Navab M, Shih D, et al. The role of high-density lipoproteins inoxidation and inflammation. Trends Cardiovasc Med. 2001; 11:155-61
    
    [31] Fogelman AM. When good cholesterol goes bad. Nat Med. 2004; 10: 902-3
    
    [32] Navab M, Anantharamaiah GM, Fogelman AM. The role of high-density lipoprotein in inflammation. Trends Cardiovasc Med. 2005; 15:158-61
    
    [33] Navab M, Anantharamaiah GM, Reddy ST, et al. The double jeopardy of HDL. Ann Med. 2005; 37: 173-8
    
    [34] Nicholls SJ, Zheng L, Hazen SL. Formation of dysfunctional high-density lipoprotein by myeloperoxidase. Trends Cardiovasc Med. 2005; 15: 212-9
    
    [35] Ansell BJ, Watson KE, Fogelman AM, et al. High-density lipoprotein function recent advances. J Am Coll Cardiol. 2005; 46:1792-8
    
    [36] Moore RE, Navab M, Millar JS, et al. Increased atherosclerosis in mice lacking apolipoprotein A-I attributable to both impaired reverse cholesterol transport and increased inflammation. Circ Res. 2005; 97: 763-71
    
    [37] Navab M, Anantharamaiah GM, Hama S, et al. Oral administration of an apoA-I mimetic peptide synthesized from D-amino acids dramatically reduces atherosclerosis in mice independent of plasma cholesterol. Circulation. 2002; 105: 290-2
    
    [38] Van Lenten BJ, Wagner AC, Nayak DP, et al. High-density lipoprotein loses its anti-inflammatory properties during acute influenza A infection. Circulation. 2001; 103: 2283-8
    
    [39] Van Lenten BJ, Wagner AC, Anantharamaiah GM, et al. Influenza infection promotes macrophage traffic into arteries of mice that is prevented by D-4F, an apolipoprotein A-I mimetic peptide. Circulation. 2002; 106:1127-32
    
    [40] Van Lenten BJ, Wagner AC, Navab M, et al. D-4F, an apolipoprotein A-I mimetic peptide, inhibits the inflammatory response induced by influenza A infection of human type II pneumocytes. Circulation. 2004; 110: 3252-8
    
    [41] Srinivas RV, Birkedal B, Owens RJ, et al. Antiviral effects of apolipoprotein A-I and its synthetic amphipathic peptide analogs. Virology. 1990; 176: 48-57
    
    [42] Navab M, Anantharamaiah GM, Reddy ST, et al. Oral D-4F causes formation of pre- β high-density lipoprotein and improves highdensity lipoprotein-mediated cholesterol efflux and reverse cholesterol transport from macrophages in apolipoprotein E-null mice. Circulation. 2004; 109: 3215-20
    
    [43] Li X, Chyu KY, Faria Neto JR, et al. Differential effects of apolipoprotein A-I mimetic peptide on evolving and established atherosclerosis in apolipoprotein E-null mice. Circulation. 2004; 110:1701-5
    
    [44] Shah PK, Chyu KY. Apolipoprotein A-I mimetic peptides: potential role in atherosclerosis management. Trends Cardiovasc Med. 2005; 15: 291-6
    [45] Navab M, Anantharamaiah GM, Hama S, et al. D-4F and statins synergize to render HDL anti-inflammatory in mice and monkeys and cause lesion regression in old apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol. 2005; 25:1426-32
    
    [46] Ou Z, Ou J, Ackerman AW, et al. L-4F, an apolipoprotein mimetic, restores nitric oxide and superoxide anion balance in low-density lipoprotein-treated endothelial cells. Circulation. 2003; 107:1520-4
    
    [47] Ou J, Ou Z, Jones DW, et al. L-4F, an apolipoprotein A-I mimetic, dramatically improves vasodilation in hypercholesterolemia and sickle cell disease. Circulation. 2003; 107: 2337-41
    
    [48] Ou J, Wang J, Xu H, et al. Effects of D-4F on vasodilation and vessel wall thickness in hypercholesterolemic LDL receptor-null and LDL receptor/apolipoprotein A-I double-knockout mice on Western diet. Circ Res.2005; 97: 1190-7
    
    [49] Navab M, Anantharamaiah GM, Fogelman AM. An apolipoprotein A-I mimetic works best in the presence of apolipoprotein A-I. Circ Res. 2005; 97:1085-6
    
    [50] Kruger AL, Peterson S, Turkseven S, et al. D-4F induces heme oxygenase-1 and extracellular superoxide dismutase, decreases endothelial cell sloughing, and improves vascular reactivity in rat model of diabetes. Circulation.2005;111: 3126-34
    
    [51] Duffy D, Rader DJ. Drugs in development: targeting high-density lipoprotein metabolism and reverse cholesterol transport. Curr Opin Cardiol.2005; 20: 301-6
    
    [52] Linsel-Nitschke P, Tall AR. HDL as a target in the treatment of atherosclerotic cardiovascular disease. Nat Rev Drug Discov.2005; 4:193-205