睫状神经营养因子(CNTF)调节能量平衡的相关机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
睫状神经营养因子(CNTF)是一个天然产生的分子量大约为22kD的蛋白,属于白介素-6细胞因子家族。应用CNTF可引起动物的食欲下降和体重减轻,在遗传肥胖型小鼠(ob/ob,db/db)中CNTF可引起脂肪的优先减少。尤其引人注目的是,CNTF可纠正饮食诱导型的小鼠肥胖(DIO),这种类型的肥胖在人类中分布最广。因此,CNTF作为一种很有潜力的治疗肥胖症的药物而受到重视,但对其减肥机制的研究尚不够深入。
     肥胖的形成是一个复杂的过程,涉及多个系统、多种途径和多种细胞因子,但从生理学的角度讲,它是由于能量摄入与能量支出失衡造成的。因此,本论文的主要目标是从分子水平上研究CNTF对能量摄入和能量支出的影响,从而探讨CNTF调节能量平衡的相关作用机制。
     在能量支出方面,本论文选用小鼠棕色脂肪组织和骨骼肌(腓肠肌)为目标组织,用western blotting和RT-PCR的方法,从蛋白水平和mRNA水平来检测CNTF对这两个组织上的解偶联蛋白UCP1、UCP2和UCP3表达的影响。解偶联蛋白(UCP_s)是一类线粒体内膜蛋白,质子可通过其渗漏回基质,从而使氧化磷酸化和ATP的合成解偶联,能量遂以热量的形式散发掉。目前在哺乳动物中发现的解偶联蛋白主要有三种:UCP1、UCP2和UCP3。UCPI主要分布在棕色脂肪组织,UCP2分布广泛,UCP3主要分布在骨骼肌组织和棕色脂肪组织。棕色脂肪组织是啮齿类动物产热的主要位置。人类成年后棕色脂肪含量很少,而骨骼肌含量却很大。本研究先通过饲养实验考察CNTF对小鼠体重、摄食量和血糖的影响,从而确定CNTF的给药剂量。接下来western blotting实验的结果表明,CNTF腹腔给药6天实验组棕色脂肪组织UCP1蛋白水平与盐水处理组相比有明显增加(P<0.01)。RT-PCR实验的结果表明,CNTF外周急性给药(处理1小时)对棕色脂肪组织中UCP1、UCP2和UCP3的mRNA水平没有影响,但对腓肠肌UCP3的表达有上调作用(P<0.05);持续给药3天,对棕色脂肪组织中UCP1以及腓肠肌UCP3的表达有上调作用(P<0.05),但对棕色脂肪组织UCP2和UCP3的mRNA水平没有影响。这些实验结果表明,CNTF持续给药可以通过UCP1来诱导棕色脂肪组织产热;UCP2和UCP3对CNTF诱导的棕色脂肪的产热没有贡献;而无论急性或持续给药,CNTF都可以通过UCP3来诱导腓肠肌产热;类似实验结果尚未见报道。
     在能量摄入方面,本实验采用微透析和放射免疫相结合的方法,检测大鼠下丘脑室旁核(PVN)神经肽Y(NPY)含量的动态变化,以评估CNTF对下丘脑NPY分泌的影响。近年的研究认为下丘脑是调节食欲和能量平衡的重要脑区,其中由抑制摄食和刺激摄食的神经肽组成的网络发挥着重要调控作用。在这些神经肽中,NPY是已知的最有效的中枢食欲刺激物,向下丘脑相关区域注射NPY会引起强烈的摄食反应;当机体处于饥饿等负能量平衡状态中时,弓状核(ARC)中NPY表达水平上升,ARC和PVN等NPY释放位点的NPY水平增加,机体启动合适的行为(摄食增加)和代谢反应以恢复能量平衡。本实验的研究结果表明,CNTF侧脑室给药导致室旁核透析液中NPY含量的迅速下降,30分钟时降幅达到53%(P<0.01);随后透析液中NPY的水平缓慢上升,60、90、120分钟时分别为基线水平的58%、78%和85%(P<0.05);150分钟后,NPY水平恢复到基线水平(P>0.05)。本研究结果证明CNTF可直接影响下丘脑NPY分泌。
     综上所述,本研究发现CNTF可以诱导骨骼肌产热;CNTF诱导的棕色脂肪的产热中,只有UCP1有贡献,UCP2和UCP3对CNTF没有响应;CNTF可降低室旁核NPY的分泌。这些结果从分子水平揭示了CNTF调节能量平衡的相关机制,也为减肥药物的筛选方向和筛选平台的建立提供了新的思路。
Ciliary neurotrophic factor (CNTF) is a member of the cytokine family structurally related to leukemia inhibitory factor, IL-6 and other cytokines. Administration of CNTF can suppresses appetite and cause weight loss in animals just like leptin. It is found that CNTF can cause preferential loss of fat in genetically obese mice (ob/ob, db/db). Especially, CNTF is also effective in diet-induced obesity mice that are more representative of human obesity, and which are resistant to leptin. In this study, we investigated the related mechanism of CNTF regulating energy balance from energy expenditure and energy intake.
     Enhancing energy expenditure is an important way to loss weight. Recent years, uncoupling proteins (UCPs), expressed on the inner mitochondrial membrane, are thought to play a major role in energy expenditure. UCPs serve to uncouple respirations with ATP synthesis in mitochondrial. Accordingly, energy is wasted as heat. Three major uncoupling proteins have been identified in mammals—UCP1, exclusively in brown adipose tissue (BAT); UCP2, expressed ubiquitously; UCP3, predominantly in muscle and BAT. BAT is recognized as the primary site of thermogenesis in rodents, but adult humans, unlike rodents, do not have large, distinct depots of brown adipose, tissue. Skeletal muscle, on the other hand, represents up to 40% of total body weight and is endowed with significant mitochondrial capacity, causing many researchers to investigate its contribution to adaptive thermogenesis.
     Therefore, in our study we sought to assess whether CNTF could increase energy expenditure through enhancing UCPs level in mice BAT and gastrocnemius muscle. The results from western blotting showed that CNTF systemic administration increased mice UCP1 level of interscapular BAT. The UCP1 protein level of normal mice, intraperitoneally injected with CNTF (0.2μg/g/day) for 6 days, was more than twice that of saline-treated mice (230% vs control, P<0.01). The results from RT-PCR showed that CNTF acute treatment had no effects on the expression of UCPs in BAT, but it increased the expression of UCP3 in gastrocnemius (156% vs control, P<0.05). Intraperitoneal injection of 0.2mg/kg CNTF for 3 days elevated the expression of UCP1 in BAT (153% vs control, P<0.05) and UCP3 in gastrocnemius (154% vs control, P<0.05), but the mRNA level of UCP2 and UCP3 in BAT was not affected. These results suggestd CNTF increased thermogenic activity in gastrocnemius muscle by UCP3 and brown adipose tissue only by UCP1.
     As to energy intake, cumulative evidences show that a hypothalamic circuitry comprising of a number of orexigenic and anorectic neuropeptides is critical for food intake. Among this signals, neuropeptide Y (NPY) is the prime candidate to stimulate feeding. NPY is produced in the arcuate nucleus (ARC) and released in the paraventricular nucleus (PVN) and adjoining neural sites of the hypothalamus. A ligand-specific subunit of CNTF receptor complex (CNTFRα) has also been demonstrated expression in ARC and PVN.
     In this study we used radioimmunoassay-microdialysis procedure to measure the extracellular level of neuropeptide Y (NPY) in paraventricular nucleus (PVN) so that we could assess the effect of CNTF on secrete of NPY. The results showed NPY concentrations in PVN of freely moving rats rapidly decreased to the lowest point, 47% (P<0.01) of basal level, in 30 minutes after intracerebroventricular injection 5μg CNTF, and then increased slowly to 58% (P<0.05), 78% (P<0.05) and 85% (P<0.05) of basal level respectively at 60, 90 and 120 rain. It became no significant difference with basal level at 150 and 180 rain (P>0.05). This result was the direct evidence to illustrate CNTF could decrease NPY peptide level in PVN of freely moving rats.
     In the present study, firstly, we found that CNTF elevated the expression of UCP1 in BAT and UCP3 in gastrocnemius muscle. Secondly, our data also showed that direct evidence to illustrate CNTF could decrease extracellular NPY level in hypothalamus. These were contributed for developing the mechanism of CNTF to lose weight.
引文
Adler R, Landa KB, Manthorpe M and Varon S (1979) Chrolinergic neurotrophic factors: Intraocular distribution of soluble trophic activity for neurons. Science, 204: 1434-1436.
    
    Anderson K. D., Panayotatos N., Corcoran T. L., Lindsay R. M. and Wiegand S. J. (1996) Ciliary neurotropic factor protects striatal output neurons in an animal model of Huntington's disease. Proc. Natl Acad. Sci. USA 93, 7346-7351.
    
    Arakawa Y, Sendtner M and Thoenen H. (1990) Survival effect of ciliary neurotrophic factor (CNTF) on chick embryonic motoneurons in culture: comparison with other neurotrophic factors and cytokines. J Neurosci Res, 10: 3507-3515.
    
    Ip NY, Li Y, van de Stadt I, Alderson RF and Lindsay RM. (1991) Ciliary neurotrophic factor enhances neuronal survival in embryonic rat hippocampal cultures. J Neurosci 11:3124-3134.
    
    Larkfors L, Lindsay RM and Alderson RF. (1994) Ciliary neurotrophic factor enhances the survival of Purkinje cells in vitro. Eur J Neurosci 6:1015-1025.
    
    Lambert, P. D., Anderson, K. D., Sleeman, M. W., Wong, V., Tan, J., Hijarunguru, A., Corcoran, T. L., Murray, J. D., Thabet, K. E., Yancopoulos, G. D., and Wiegand, S. J. (2001). Ciliary neurotrophic factor activates leptin-like pathways and reduces body fat, without cachexia or reboundweight gain, even in leptin-resistant obesity. Proc. Natl. Acad. Sci. USA 98, 4652-4657.
    
    Miller, R. G., Petajan, J. H., Bryan, W. W., Armon, C., Barohn, R. J., Goodpasture, J. C., Hoagland, R. J., Parry, G. J., Ross, M. A., and Stromatt, S. C. (1996). A placebo-controlled trial of recombinant human ciliary neurotrophic (rhCNTF) factor in amyotrophic lateral sclerosis. rhCNTF ALS Study Group. Ann. Neurol. 39, 256-260.
    
    Sendtner M, Schmalbruch H, Stockli KA, Kreutzberg GW and Thoenen H. (1992) Ciliary neurotrophic factor prevents degeneration of motor neurons in mouse mutant progressive motor neuronopathy. Nature 358: 502-504.
    Ahima RS, Saper CB, Flier JS, Elmquist JK. (2000). Leptin regulation of neuroendocrine systems. Front Neuroendocrinol 21:263- 307.
    
    Bado A., Levasseur S., Attoub S., Kermorgant S., Laigneau J.P., Bortoluzzi M.N., Moizo L., Lehy T., Guerre-Millo M., Le Marchand-Brustel Y., Lewin M.J., (1998). The stomach is a source of leptin, Nature 394:790 - 793.
    
    Banks WA, Kastin AJ, Hunag W, Jaspan JP, Maness LM. (1996). Leptin enters the brain by a saturable system independent of insulin. Peptides 17:305- 11.
    
    Banks WA (2004) The source of cerebral insulin. European Journal of Pharmacology 490: 5-12.
    
    Baskin D.G., Seeley R.J., Kuijper J.L., Lok S., Weigle D.S., Erickson J.C., Palmiter R.D., Schwartz M.W., (1998). Increased expression of mRNA for the long form of the leptin receptor in the hypothalamus is associated with leptin hypersensitivity and fasting, Diabetes 47: 538 - 543.
    
    Baskin DG, Schwartz MW, Seeley RJ, Woods SC, Porte D, Breininger JF, Jonak Z, Schaefer J, Krouse M, Burghdat C, Campfield LA, Burn P, Kochan JP. (1999). Leptin receptor long-form splice-variant protein expression in neuron cell bodies of the brain and co-localization with neuropeptide Y mNRA in the arcuate nucleus. J Histochem Cytochem 47:353-62.
    
    Billington CJ, Briggs JE, Grace M, Levine AS. (1991). Effects of intracerebroventricular injection of neuropeptide Y on energy metabolism. J Physiol 260:R321-7.
    
    Broberger C, Johansen J, Johasson C, Schalling M, Hokfelt T. (1998). Theneuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic and monosodium glutamate-treated mice. Proc Natl Acad Sci USA 95:15043-8.
    
    Caro J.F., Kolaczynski J.W., Nyce M.R., Ohannesian J.P., Opentanova I., Goldman W.H., Lynn R.B., Zhang P.L., Sinha M.K., Considine R.V., (1996). Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance, Lancet 348:159-161.
    
    Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, et al. (1996). Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84:491-5.
    
    Chua Jr SC, Chung WK, Wu-Peng XS, Zhang Y, Liu SM, Tartaglia L, et al. (1996). Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271:994-6.
    
    Coleman DL, (1978). Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice, Diabetologia 14:141 - 148.
    
    Cone RD, Cowley MA, Butler AA, Fan W, Marks DL & Low MJ (2001). The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. International Journal of Obesity and Related Metabolic Disorders 25 Suppl 5: S63-S67.
    
    Considine, R.V., Sinha M.K., Heiman M.L., Kriauciunas A., Stephens T.W., Nyce M.R., Ohannesian J.P., Marco C.C., Mckee L.J., Bauer T.L., et al., (1996a). Serum immunoreactive-leptin concentrations in normal-weight and obese humans, N. Engl. J. Med. 334:292 - 295.
    
    Considine R.V., Considine E.L., Williams C.J., Hyde T.M., Caro J.F., (1996b). The hypothalamic leptin receptor in humans: identification of incidental sequence polymorphisms and absence of the db/db mouse and fa/fa rat mutations, Diabetes 45:992 - 994
    
    Cusin I, Rohner-Jeanrenaud F, Stricker-Krongrad A, Jeanrenaud B. (1996). The weight-reducing effect of an intracerebroventricular bolus injection of leptin in genetically obese fa/fa rats. Reduced sensitivity compared with lean animals. Diabetes 45:1446-50.
    
    Elias CF, Lee C, Kelly J, Aschkenasi C, Ahima RS, Couceyro PR, Kuhar MJ, Saper CB, Elmquist JK. (1998). Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron 21: 1375- 85.
    
    Elmquist JK, Elias C, Saper C. (1999). From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22:221- 32.
    
    Erickson JC, Clegg KE, Palmiter RD. (1996). Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature 381:415-8.
    
    Farooqi I.S., Jebb S.A., Langmack G., Lawrence E., Cheetham C.H., Prentice A.M., Hughes I.A., Mccamish M.A., rahilly S.O, (1999). Effects of recombinant leptin therapy in a child with congenital leptin deficiency, N. Engl. J. Med. 341:879 - 884.
    
    Friedman J.M., Halaas J.L., (1998). Leptin and the regulation of body weight in mammals, Nature 395:763 - 770.
    
    Fuxe K, Tinner B, Caberlotto L, Bunnemann B, Agnati LF. (1997). NPY Yl receptor like immunoreactivity exists in a sub population of betaendorphin immunoreactive nerve cells in the arcuate nucleus: a double immunolabelling analysis in the rat. Neurosci Lett 225:49- 52.
    
    Ghilardi N., Skoda R.C., (1997). The leptin receptor activates janus kinase 2 and signals for proliferation in a factor-dependent cell line, Mol. Endocrinol. 11:393 - 399.
    
    Hahn T, Breininger J, Baskin D, Schwartz M. (1998). Coexpression of AGRP and NPY in fasting-activated hypothalamic neurons. Nat Neurosci., 1: 271-2.
    
    Heymsfield S.B., Greenberg A.S., Fujioka K., Dixon R.M., Kushner R., Hunt T., Lubina J.A., Patane J., Self B., Hunt P., Mccamish M., (1999). Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial, JAMA 282:1568-1575.
    
    Kalra SP, Dube MG, Kalra PS. (1988). Continuous intraventricular infusion of neuropeptide Y evokes episodic food intake in satiated female rats: effects of adrenalectomy and cholecystokinin. Peptides. 9(4):723-8.
    
    Kalra SP, Dube MG, Sahu A, Phelps CP, Kalra PS. (1991). Neuropeptide Y secretion increases in the paraventricular nucleus in association with increased appetite for food. Proc Natl Acad Sci USA 88:10931 -5.
    
    Kalra S.P., Dube M.G., Pu S., Xu B., Horvath T.L., Kalra P.S., (1999). Interacting appetite-regulating pathways in the hypothalamic regulation of body weight, Endocr. Rev. 2068 - 100.
    
    Korner J., Savontaus E., Chua S.C. Jr., Leibel R.L., Wardlaw S.L., (2001). Leptin regulation of Agrp and Npy mRNA in the rat hypothalamus, J. Neuroendocrinol. 13: 959 - 966.
    
    Kristensen P, Judge ME, Thim L, Ribel U, Christjansen KN, Wulff BS, Clausen JT, Jensen PB, Madsen OD, Vrang N, Larsen PJ, (1998). Hastrup S. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 393:72-6.
    
    Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JJ, et al. (1996). Abnormal splicing of the leptin receptor in diabetic mice. Nature 379:632- 5.
    
    Marsh DJ, Miura Y, Yagaloff KA, SchwartzMW, Barsh GS, Palmiter RD. (1999). Effects of neuropeptide Y deficiency on hypothalamic agoutirelated expression and responsiveness to melanocortin analogues. Brain Res 848:66- 77.
    
    Masuzaki H., Ogawa Y., Sagawa N., Hosoda K., Matsumoto T., Mise H., Nishimura H., Yoshimasa Y., Tanaka I., Mori T., Nakao K., (1997). Nonadipose tissue production of leptin: leptin as a novel placenta-derived hormone in humans, Nat. Med. 3:1029-1033.
    Mercer JG, Hoggard N, Williams LM, Lawrence CB, Hannah LT, Morgan PJ, Trayhurn P. (1996). Coexpression of leptin receptor and preproneuropeptide Y mRNA in ARC of mouse hypothalamus. J Neuroendocrinol 8:733-75.
    
    Mizuno T.M., Mobbs C.V., (1999). Hypothalamic agouti-related protein messenger ribonucleic acid is inhibited by leptin and stimulated by fasting, Endocrinology 140 814-817.
    
    Morash B., Li A., Murphy P.R., Wilkinson M., (1999). Leptin gene expression in the brain and pituitary gland, Endocrinology 140:5995 - 5998.
    
    Oilman MM,Wilson BD, Yang YK, Kerns JA, Chen Y, Gantz I, Barsh GS. (1997). Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278:135- 8.
    
    Popovic V., Damjanovic S., Dieguez C, Casanueva F.F., (2001). Leptin and the pituitary, Pituitary 4:7 - 14.
    
    Sahu A, Sninsky CA, Phelps CP, Dube MG, Kalra PS, Kalra SP. (1992). Neuropeptide Y release from the paraventricular nucleus increases in association with hyperphagia in streptozotocin-induced diabetic rats. Endocrinology 131:2979 -85.
    
    Sahu A., (1998). Evidence suggesting that galanin (GAL), melaninconcentrating hormone (MCH), neurotensin (NT), proopiomelanocortin (POMC) and neuropeptide Y (NPY) are targets of leptin signaling in the hypothalamus, Endocrinology 139:795 - 798.
    
    Sahu A, (2004). Leptin signaling in the hypothalamus: emphasis on energy homeostasis and leptin resistance. Frontiers in Neuroendocrinology 24: 225-253.
    
    Schwartz M.W., Seeley R.J., Campfield L.A., Burn P., Baskin D.G., (1996). Identification of targets of leptin action in rat hypothalamus, J. Clin. Invest. 98: 1101 - 1106.
    
    Schwartz M.W., Woods S.C., Porte Jr. D., Seeley R.J., Baskin D.G., (2000). Central nervous system control of food intake, Nature 404:661 - 671.
    
    Smith F.J., Campfield L.A., Moschera J.A., Bailon P.S., Burn P., (1996). Feeding inhibition by neuropeptide Y, Nature 382:307
    
    Stanley BG, Chin AS, Leibowitz SF. (1985a). Feeding and drinking elicited by central injection of neuropeptide Y: evidence for a hypothalamic site(s) of action. Brain Res Bull 14:521-4.
    
    Stanley BG, Leibowitz SF. (1985b). Neuropeptide Y injected in the paraventricular hypothalamus: a powerful stimulant of feeding behavior. Proc Natl Acad Sci USA 82:3940-3.
    
    Stanley BG, Kyrkouli SE, Lampert S, Leibowitz SF. (1986). Neuropeptide Ychronically injected into the hypothalamus: a powerful neurochemical inducer of hyperphagia and obesity. Peptides 7:1189- 92.
    
    Stephens T.W., Basinski M., Bristow P.K., Bue-Valleskey J.M.,. Burgett S.G, Craft L., Hale J., Hoffmann J., Hsiung H.M., Kriauciunas A., MacKeller W., Rosteck P.R. Jr., Schoner B., Smith D., tinsley F.C., Zhang X.Y., Heiman M., (1995). The role of neuropeptide Y in the antiobesity action of the obese gene product, Nature 377: 530 -532.
    
    Takaya K, Ogawa Y, Hiraoka J, Hosoda K, Yamori Y, Nakao K, et al. (1996). Nonsense mutation of leptin receptor in the obese spontaneously hypertensive Koletsky rat. Nat Genet 14:130-1.
    
    Tartaglia L.A., Dembski M., Weng X., Deng N., Culpepper J., Devos R., Richards G.J., Campfield L.A., Clark F.T., Deeds J., Muir C, Sanker S., Moriarty A., Moore K.J., Smutko J.S., Mays, G.G. Woolf E.A., Monroe C.A., Tepper R.I., (1995). Identification and expression cloning of a leptin receptor, OB-R, Cell 83:1263 - 1271.
    
    Tang-Christensen M., Havel P.J., Jacobs R.R., Larsen P.J., Cameron J.L., (1999). Central administration of leptin inhibits food intake and activates the sympathetic nervous system in rhesus macaques, J. Clin. Endocrinol. Metab. 84:711 - 717.
    
    Tartaglia LA. (1997). The leptin receptor. J Biol Chem 272:6093- 6.
    
    Wang J, Leibowitz KL. (1997). Central insulin inhibits galanin and neuropeptide Y gene expression and peptide release in intact rats. Brain Res 777:231- 6.
    
    White DW, Wang D, Chua Jr SC, Morgenstern JP, Leibel RL, Baumann H, et al. (1997a). Constitutive and impaired signaling of leptin receptors containing the Gln!Pro extracellular domain fatty mutation. Proc Natl Acad Sci U S A 94:10657 -62.
    
    White D.W., Kuropatwinski K.K., Devos R., Baumann H., Tartaglia L.A., (1997b) Leptin receptor (OB-R) signaling. Cytoplasmic domain mutational analysis and evidence for receptor homooligomerization, J. Biol. Chem. 272:4065 - 4071.
    
    Widdowson PS, Upton R, Henderson L, Buckingham R, Wilson S, Williams G. (1997). Reciprocal regional changes in brain NPY receptor density during dietary restriction and dietary-induced obesity in the rat. Brain Res 774:1 - 10.
    
    Williams G, (2001). The hypothalamus and the control of energy homeostasis: Different circuits, different purposes. Physiology &-Behavior 74: 683— 701
    Zhang Y., Proenca R., Maffei M., Barone M., Leopold L., Friedman J.M., (1994). Positional cloning of the mouse obese gene and its human homologue, Nature 372: 425 - 432.
    
    Zhao A.Z., Shinohara M.M., Huang D., Shimizu M., Eldar-Finkelman H., Krebs E.G., Beavo J.A., Bornfeldt K.E., (2000). Leptin induces insulin-like signaling that antagonizes cAMP elevation by glucagon in hepatocytes, J. Biol. Chem. 275:11348 - 11354.
    Blanchette-Mackie EJ, Dwyer NK, Barber T, Coxey RA, Takeda T, Rondinone CM, Theodorakis JL, Greenberg AS, and Londos C. Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes. J Lipid Res 36: 1211-1226, 1995.
    
    Boss O, Samec S, Paoloni-Giacobino A, Rossier C, Dulloo A, Seydoux J, Muzzin P, Giacobino JP. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett. 408: 39-42, 1997.
    
    Champigny O, Ricquier D. Effects of fasting and refeeding on the level of uncoupling protein mRNA in rat brown adipose tissue: evidence for diet-induced and cold-induced responses. J Nutr. 120:1730-1736, 1990.
    
    Chaudhry A and Granneman JG. Differential regulation of functional responses by β-adrenergic receptor subtypes in brown adipocytes. Am J Physiol Regul Integr Comp Physiol 277: R147-R153, 1999.
    
    Clifford GM, Londos C, Kraemer FB, Vernon RG, and Yeaman SJ. Translocation of hormone-sensitive lipase and perilipin upon lipolytic stimulation of rat adipocytes. J Biol Chem 275: 5011-5015, 2000.
    
    Collins S, Kuhn CM, Petro AE, Swick AG, Chrunyk BA, Surwit RS. Role of leptin in fat regulation. Nature 380:677, 1996.
    
    Cusin I, Zakrzewska KE, Boss O, Muzzin P, Giacobino JP, Ricquier D, Jeanrenaud B, Rohner-Jeanrenaud F. Chronic central leptin infusion enhances insulin-stimulated glucose metabolism and favors the expression of uncoupling proteins. Diabetes 47: 1014-1019, 1998.
    
    Daikoku T, Shinohara Y, Shima A, Yamazaki N, and Terada H. Dramatic nhancement of the specific expression of the heart-type fatty acid binding protein in rat brown adipose tissue by cold exposure. FEBS Lett 410: 383-386, 1997.
    
    Elmquist JK, Elias CF & Saper CB. From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22: 221-232, 1999.
    
    Enerback S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, Kozak LP. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387: 90-94, 1997.
    
    Esterbauer H, Oberkofler H, Dallinger G, Breban D, Hell E, Krempler F, Patsch W. Uncoupling protein-3 gene expression: reduced skeletal muscle mRNA in obese humans during pronounced weight loss. Diabetologia. 42: 302-309, 1999.
    Fleury C, Neverova M, Collins S, Raimbault S, Champigny O, Levi-Meyrueis C, Bouillaud F, Seldin MF, Surwit RS, Ricquier D, Warden CH. Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat Genet. 15:269-272,1997.
    
    Fredriksson JM, Thonberg H, Ohlson KBE, Ohba K, Cannon B, and Nedergaard J. Analysis of inhibition by H89 of UCP1 gene expression and thermogenesis indicates protein kinase A mediation of β3-adrenergic signalling rather than β3-adrenoceptor antagonism by H89. Biochim Biophys Acta 1538: 206-217, 2001.
    
    Fredriksson JM and Nedergaard J. Norepinephrine specifically stimulates ribonucleotide reductase subunit R2 gene expression in proliferating brown adipocytes: mediation via a cAMP/PKA pathway involving src and Erk1/2 kinases. Exp Cell Res 274: 207-215, 2002.
    
    Gimeno RE, Dembski M, Weng X, Deng N, Shyjan AW, Gimeno CJ, Iris F, Ellis SJ, Woolf EA, Tartaglia LA. Cloning and characterization of an uncoupling protein homolog: a potential molecular mediator of human thermogenesis. Diabetes. 46: 900-906, 1997.
    
    Gong DW, He Y, Reitman ML. Genomic organization and regulation by dietary fat of the uncoupling protein 3 and 2 genes. Biochem Biophys Res Commun. 256: 27-32, 1999.
    
    Guardiola-Diaz HM, Rehnmark S, Usuda N, Albrektsen T, Feltkamp D, Gustafsson JA, and Alexson SEH. Rat peroxisome proliferator-activated receptors and brown adipose tissue function during cold acclimatization. J Biol Chem 274: 23368-23377, 1999.
    
    Gullicksena PS, Flatta WP, Deanb RG, Hartzellb DL, Baile CA. Energy metabolism and expression of uncoupling proteins 1, 2, and 3 after 21 days of recovery from intracerebroventricular mouse leptin in rats. Physiol Behav 75: 473- 482, 2002.
    
    Haynes, W. G., Morgan, D. A., Walsh, S. A., Mark, A. L. & Sivitz, W. I. Receptor-mediated regional sympathetic nerve activation by leptin. J. Clin. Invest. 100: 270-278, 1997.
    
    Himms-Hagen J. Brown adipose tissue thermogenesis and obesity. Prog. Lipid Res. 28:67-115,1989.
    
    Landsberg L, Saville ME & Young JB. Sympathoadrenal system and regulation of thermogenesis. Am. J. Physiol. 247: E181-E189, 1984.
    
    Levine JA, Eberhardt NL & Jensen MD. Role of nonexercise activity thermogenesis in resistance to fat gain in humans. Science 283: 212-214, 1999.
    Lindquist JM, Fredriksson JM, Rehnmark S, Cannon B, and Nedergaard J. β3- and α1-adrenergic Erk1/2 activation is Src but not Gi-mediated in brown adipocytes. J Biol Chem 275: 22670-22677, 2000.
    
    Lowell BB, S-Susulic V , Hamann A, Lawitts JA., Himms-Hagen J , Boyer BB., Kozak LP., Flier JS., Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366:740-742,1993.
    
    Lowell BB and Spiegelman BM. Towards a molecular understanding of adaptive thermogenesis. Nature 404: 652-660, 2000.
    
    Margareto J, Marti A, Marti'nez JA. Changes in UCP mRNA expression levels in brown adipose tissue and skeletal muscle after feeding a high-energy diet and relationships with leptin, glucose and PPARg. J Nutri Biochem 12: 130-137, 2001.
    
    Martinez-Botas J, Anderson JB, Tessier D, Lapillonne A, Chang BH, Quast MJ, Gorenstein D, Chen KH, and Chan L. Absence of perilipin results in leanness and reverses obesity in Lepr (db/db) mice. Nat Genet 26: 474-479, 2000.
    
    Matsuda J, Hosoda K, Itoh H, Son C, Doi K, Tanaka T, Fukunaga Y, Inoue G, Nishimura H, Yoshimasa Y, Yamori Y, Nakao K. Cloning of rat uncoupling protein-3 and uncoupling protein-2 cDNAs: their gene expression in rats fed high-fat diet. FEBS Lett. 418: 200-204, 1997.
    
    Matthias A, Jacobsson A, Cannon B, and Nedergaard J. The bioenergetics of brown fat mitochondria from UCP1-ablated mice. UCP1 is not involved in fatty acid-induced de-energization. J Biol Chem 274: 28150-28160, 1999.
    
    Matthias A, Ohlson KEB, Fredriksson JM, Jacobsson A, Nedergaard J, and Cannon B. Thermogenic responses in brown-fat cells are fully UCP1-dependent: UCP2 or UCP3 do not substitute for UCP1 in adrenergically or fatty-acid induced thermogenesis. J Biol Chem 275: 25073-25081, 2000.
    
    Nedergaard J, Cannon B, and Lindberg O. Microcalorimetry of isolated mammalian cells. Nature 267: 518-520, 1977.
    
    Osuga J, Ishibashi S, Oka T, Yagyu H, Tozawa R, Fujimoto A, Shionoiri F, Yahagi N, Kraemer FB, Tsutsumi O, and Yamada N. Targeted disruption of hormone-sensitive lipase results in malesterility and adipocyte hypertrophy, but not in obesity. Proc Natl Acad Sci USA 97: 787-792, 2000.
    
    Pecqueur C, Alves-Guerra MC, Gelly C, Levi-Meyrueis C, Couplan E, Collins S, Ricquier D, Bouillaud F, Miroux B. Uncoupling protein 2, in vivo distribution, induction upon oxidative stress, and evidence for translational regulation. J Biol Chem. 276:8705-8712,2001.
    Satoh N, Ogawa Y, Katsuura G, Numata Y, Masuzaki H, Yoshimasa Y, Nakao K. Satiety effect and sympathetic activation of leptin are mediated by hypothalamic melanocortin system. Neurosci. Lett. 249:107-110, 1998.
    
    Scarpace PJ and Matheny M. Thermogenesis in brown adipose tissue with age: post-receptor activation by forskolin. Pfliigers Arch 431: 388-394, 1996.
    
    Scarpace PJ, Matheny M, Pollock BH & Turner N. Leptin increases uncoupling protein expression and energy expenditure. Am. J. Physiol. 273: E226-E230, 1997.
    
    Shih MF and Taberner PV. Selective activation of brown adipocyte hormone-sensitive lipase and cAMP production in the mouse by β3-adrenoceptor agonists. Biochem Pharmacol 50: 601-608,1995.
    
    Simonsen L, Bulow J, Madsen J & Christensen NJ. Thermogenic response to epinephrine in the forearm and abdominal subcutaneous adipose tissue. Am. J. Physiol. 263, E850-E855, 1992.
    
    Soeder KJ, Snedden SK, Cao W, Delia Rocca GJ, Daniel KW, Luttrell LM, and Collins S. The β3-adrenergic receptor activates mitogen-activated protein kinase in adipocytes through a Gi-dependent mechanism. J Biol Chem 274: 12017-12022, 1999.
    
    Surwit RS, Wang S, Petro AE, Sanchis D, Raimbault S, Ricquier D, Collins S. Diet-induced changes in uncoupling proteins in obesity-prone and obesity-resistant strains of mice. Proc Natl Acad Sci U S A. 95: 4061-4065, 1998.
    
    Thomas SA & Palmiter RD. Thermoregulatory and metabolic phenotypes of mice lacking noradrenaline and adrenaline. Nature 387: 94-97, 1997.
    
    Thonberg H, Lindgren EM, Nedergaard J, and Cannon B. As the proliferation promoter noradrenaline induces expression of ICER (induced cAMP early repressor) in proliferative brown adipocytes, ICER may not be a universal tumour suppressor. Biochem J 354: 169-177, 2001.
    
    Thonberg H, Nedergaard J, and Cannon B. A novel pathway for adrenergic stimulation of cAMP-response-element-binding protein (CREB) phosphorylation: mediation via α1-adrenoceptors and protein kinase C activation. Biochem J 364: 73-79, 2002.
    
    Unelius L, Bronnikov G, Mohell N, and Nedergaard J. Physiological desensitization of β3 adrenergic responsiveness in brown fat cells. Involvement of a post-receptor mechanism. Am J Physiol Cell Physiol 265: C1340-C1348,1993.
    Vidal-Puig A, Solanes G, Grujic D, Flier JS, Lowell BB. UCP3: an uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue. Biochem Biophys Res Commun. 235: 79-82, 1997.
    
    Vidal-Puig A, Rosenbaum M, Considine RC, Leibel RL, Dohm GL, Lowell BB. Effects of obesity and stable weight reduction on UCP2 and UCP3 gene expression in humans. Obes Res. 7:133-140, 1999.
    
    Wang SP, Laurin N, Himms-Hagen J, Rudnicki MA, Levy E, Robert MF, Pan L, Oligny L, and Mitchell GA. The adipose tissue phenotype of hormone-sensitive lipase deficiency in mice. Obesity Res 9: 119-128, 2001.
    
    Zhao J, Cannon B, and Nedergaard J. α1-Adrenergic stimulation potentiates the thermogenic action of β3-adrenoceptor-generated cAMP in brown fat cells. J Biol Chem 272: 32847-32856, 1997.
    Adler, R. (1993). Ciliary neurotrophic factor as an injury factor. Curr. Opin. Neurobio.13, 785-789.
    
    Alderson, R. F., Pearsall, D., Lindsay, R. M., and Wong, V. (1999). Characterizationof receptors for ciliary neurotrophic factor on rat hippocampal astrocytes. Brain Res. 818,236-251.
    
    Baumann, H., Morella, K. K., White, D. W., Dembski, M., Bailon, P. S., Kim, H., Lai, C. F., and Tartaglia, L. A. (1996). The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors. Proc. Natl. Acad. Sc.i USA 93, 8374-8378.
    
    Bjorbaek, C., Elmquist, J. K., El-Haschimi, K., Kelly, J., Ahima, R. S., Hileman, S., and Flier, J. S. (1999). Activation of SOCS-3 messenger ribonucleic acid in the hypothalamus by ciliary neurotrophic factor. Endocrinology 140, 2035-2043.
    
    Bonni, A., Frank, D. A., Schindler, C, and Greenberg, M. E. (1993). Characterization of a pathway for ciliary neurotrophic factor signaling to the nucleus. Science 262, 1575-1579.
    
    Boulton, T. G., Stahl, N., and Yancopoulos, G. D. (1994). Ciliary neurotrophic factor/leukemia inhibitory factor/interleukin 6/oncostatin M family of cytokines induces tyrosine phosphorylation of a common set of proteins overlapping those induced by other cytokines and growth factors. J. Biol. Chem. 269, 11648-11655.
    
    Carpenter, L. R., Farruggella, T. J., Symes, A., Karow, M. L., Yancopoulos, G. D., and Stahl, N. (1998). Enhancing leptin response by preventing SH2-containing phosphatase 2 interaction with Ob receptor. Proc. Natl. Acad. Sci. USA 95, 6061-6066.
    
    Davis, S., Aldrich, T. H., Valenzuela, D. M., Wong, V. V., Furth, M. E., Squinto, S. P., and Yancopoulos, G. D. (1991). The receptor for ciliary neurotrophic factor. Science 253, 59-63.
    
    Davis, S., Aldrich, T. H., Ip, N. Y., Stahl, N., Scherer, S., Farruggella, T., DiStefano, P. S., Curtis, R., Panayotatos, N., and Gascan, H. (1993a). Released form of CNTF receptor alpha component as a soluble mediator of CNTF responses. Science 259, 1736-1739.
    
    Davis, S., Aldrich, T. H., Stahl, N., Pan, L., Taga, T., Kishimoto, T., Ip, N. Y., and Yancopoulos, G. D. (1993b). LIFR beta and gpl30 as heterodimerizing signal transducers of the tripartite CNTF receptor. Science 260, 1805-1808.
    
    DeChiara, T. M., Vejsada, R., Poueymirou, W. T., Acheson, A., Suri, C, Conover, J. C., Friedman, B., McClain, J., Pan, L., and Stahl, N. (1995). Mice lacking the CNTF receptor, unlike mice lacking CNTF, exhibit profound motor neuron deficits at birth. Cell 83, 313-322.
    
    De Serio, A., Graziani, R., Laufer, R., Ciliberto, G., and Paonessa, G. (1995). In vitro binding of ciliary neurotrophic factor to its receptors: evidence for the formation of an IL-6-type hexameric complex. J. Mol. Biol. 254, 795-800.
    
    Gearing, D. P., Ziegler, S. F., Comeau, M. R., Friend, D., Thoma, B., Cosman, D., Park, L., and Mosley, B. (1994). Proliferative responses and binding properties of hematopoietic cells transfected with low-affinity receptors for leukemia inhibitory factor, oncostatin M, and ciliary neurotrophic factor. Proc. Natl. Acad. Sci. USA 91, 1119-1123.
    
    Ghilardi, N., Ziegler, S., Wiestner, A., Stoffel, R., Heim, M. H., and Skoda, R. C. (1996). Defective STAT signaling by the leptin receptor in diabetic mice. Proc. Natl. Acad. Sci. USA 93, 6231-6235.
    
    Gloaguen, I., Costa, P., Demartis, A., Lazzaro, D., Di Marco, A., Graziani, R., Paonessa, G., Chen, F., Rosenblum, C. I., Van der Ploeg, L. H., Cortese, R., Ciliberto, G., and Laufer, R. (1997). Ciliary neurotrophic factor corrects obesity and diabetes associated with leptin deficiency and resistance. Proc. Natl. Acad. Sci. USA 94, 6456-6461.
    
    Halvorsen, S. W., Malek, R., Wang, X., and Jiang, N. (1996). Ciliary neurotrophic factor regulates nicotinic acetylcholine receptors on human neuroblastoma cells. Neuropharmacology 35, 257-265.
    
    Henderson, J. T., Mullen, B. J., and Roder, J. C. (1996). Physiological effects of CNTF-induced wasting. Cytokine 8, 784-793.
    
    Helgren, M. E., Squinto, S. P., Davis, H. L., Parry, D. J., Boulton, T. G., Heck, C. S., Zhu, Y., Yancopoulos, G. D., Lindsay, R. M., and DiStefano, P. S. (1994). Trophic effect of ciliary neurotrophic factor on denervated skeletal muscle. Cell 76, 493-504.
    
    Huber, J., Dittrich, F., and Phelan, P. (1993). Characterisation of high-affinity and low-affinity receptors for ciliary neurotrophic factor. Eur. J. Biochem. 218, 1031-1039.
    
    Inoue, M., Nakayama, C, Kikuchi, K., Kimura, T., Ishige, Y., Ito, A., Kanaoka, M., and Noguchi, H, (1995). D1 cap region involved in the receptor recognition and neural cell survival activity of human ciliary neurotrophic factor. Proc. Natl. Acad. Sci. USA 92, 8579-8583.
    
    Ip, N. Y., Nye, S. H., Boulton, T. G., Davis, S., Taga, T., Li, Y., Birren, S. J., Yasukawa, K., Kishimoto, T., and Anderson, D. J. (1992). CNTF and LIF act on neuronal cells via shared signaling pathways that involve the IL-6 signal transducing receptor component gp130. Cell 69, 1121-1132.
    
    Kallen, K. J., Grotzinger, J., Lelievre, E., Vollmer, P., Aasland, D., Renne, C, Mullberg, J., Myer, z. B. K., Gascan, H., and Rose-John, S. (1999). Receptor recognition sites of cytokines are organized as exchangeable modules. Transfer of the leukemia inhibitory factor receptor-binding site from ciliary neurotrophic factor to interleukin-6. J. Biol. Chem. 274, 11859-11867.
    
    Kalra SP. Circumventing leptin resistance for weight control. Proc Natl Acad Sci USA.2001;98:4279-4281.
    
    Kishimoto, T., Taga, T., and Akira, S. (1994). Cytokine signal transduction. Cell 76, 253-262.
    
    Kumar, G., Gupta, S., Wang, S., and Nel, A. E. (1994). Involvement of Janus kinases, p52shc, Raf-1, and MEK-1 in the IL-6-induced mitogen-activated protein kinase cascade of a growth-responsive B cell line. J. Immunol. 153, 4436-4447.
    
    Lambert, P. D., Anderson, K. D., Sleeman, M. W., Wong, V., Tan, J., Hijarunguru, A., Corcoran, T. L., Murray, J. D., Thabet, K. E., Yancopoulos, G. D., and Wiegand, S. J. (2001). Ciliary neurotrophic factor activates leptin-like pathways and reduces body fat, without cachexia or rebound weight gain, even in leptin-resistant obesity. Proc. Natl. Acad. Sci. USA 98, 4652-4657.
    
    Larkfors, L., Lindsay, R. M., and Alderson, R. F. (1994). Ciliary neurotrophic factor enhances the survival of Purkinje cells in vitro. Eur. J. Neurosci. 6, 1015-1025.
    
    Leung, D. W., Parent, A. S., Cachianes, G., Esch, F., Coulombe, J. N., Nikolics, K., Eckenstein, F. P., and Nishi, R. (1992). Cloning, expression during development, and evidence for release of a trophic factor for ciliary ganglion neurons. Neuron 8, 1045-1053.
    
    Martin D, Merkel E, Tucker KK, et al. Cachectic effect of ciliary neurotrophic factor on innervated skeletal muscle. Am J Physiol. 1996; 271: R1422-1428.
    
    Masu, Y., Wolf, E., Holtmann, B., Sendtner, M., Brem, G., and Thoenen, H. (1993). Disruption of the CNTF gene results in motor neuron degeneration. Nature 365, 27-32.
    
    McDonald, N. Q., Panayotatos, N., and Hendrickson, W. A. (1995). Crystal structure of dimeric human ciliary neurotrophic factor determined by MAD phasing. EMBO J 14, 2689-2699.
    
    Miller, R. G., Petajan, J. H., Bryan, W. W., Armon, C., Barohn, R. J., Goodpasture, J. C., Hoagland, R. J., Parry, G. J., Ross, M. A., and Stromatt, S. C. (1996). A placebo-controlled trial of recombinant human ciliary neurotrophic (rhCNTF) factor in amyotrophic lateral sclerosis. rhCNTF ALS Study Group. Ann. Neurol. 39,256-260.
    Monville, C., Coulpier, M., Conti, L., De-Fraja, C, Dreyfus, P., Fages, C, Riche, D., Tardy, M., Cattaneo, E., and Peschanski, M. (2001). Ciliary neurotrophic factor may activate mature astrocytes via binding with the leukemia inhibitory factor receptor. Mol. Cell. Neurosci. (2001) 17, 373-384.
    Pan, W., Kastin, A. J., Maness, L. M., and Brennan, J. M. (1999). Saturable entry of ciliary neurotrophic factor into brain. Neurosci. Lett. 263, 69-71.
    Panayotatos, N., Radziejewska, E., Acheson, A., Somogyi, R., Thadani, A., Hendrickson, W. A., and McDonald, N. Q. (1995). Localization of functional receptor epitopes on the structure of ciliary neurotrophic factor indicates a conserved, function-related epitope topography among helical cytokines. J. Biol. Chem. 270, 14007-14014.
    Pennica, D., Shaw, K. J., Swanson, T. A., Moore, M. W., Shelton, D. L., Zioncheck, K. A., Rosenthal, A., Taga, T., Paoni, N. F., and Wood, W. I. (1995). Cardiotrophin-1. Biological activities and binding to the leukemia inhibitory factor receptor/gp130 signaling complex. J. Biol. Chem. 270,10915-10922.
    Pu, S., Dhillon, H., Moldawer, L. L., Kalra, P. S., and Kalra, S. P. (2000). Neuropeptide Y counteracts the anorectic and weight reducing effects of ciliary neurotropic factor. J. Neuroendocrinol. 12, 827-832.
    
    Reiness, C. G., Seppa, M. J., Dion, D. M., Sweeney, S., Foster, D. N., and Nishi, R. (2001). Chick ciliary neurotrophic factor is secreted via a nonclassical pathway. Mol. Cell Neurosci. 17, 931-944.
    Sendtner, M., Arakawa, Y., Stockli, K. A., Kreutzberg, G. W., and Thoenen, H. (1991). Effect of ciliary neurotrophic factor (CNTF) on motoneuron survival. J. Cell. Sci. 15, Suppl. 103-109.
    Sleeman, M. W., Anderson, K. D., Lambert, P. D., Yancopoulos, G. D., and Wiegand, S. J. (2000). The ciliary neurotrophic factor and its receptor, CNTFR alpha. Pharm. Acta Helv. 74, 265-272.
    Stahl, N., Boulton, T. G., Farruggella, T., Ip, N. Y., Davis, S., Witthuhn, B. A., Quelle, F. W., Silvennoinen, O., Barbieri, G., and Pellegrini, S. (1994). Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components. Science 263, 92-95.
    Stahl, N. and Yancopoulos, G. D. (1994). The tripartite CNTF receptor complex: activation and signaling involves components shared with other cytokines. J. Neurobiol. 25, 1454-1466.
    Vaisse, C, Halaas, J. L., Horvath, C. M., Darnell, J. E. J., Stoffel, M., and Friedman, J. M. (1996). Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat. Genet.14, 95-97.
    Wegenka, U. M., Buschmann, J., Lutticken, C, Heinrich, P. C, and Horn, F. (1993). Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level. Mol. Cell Biol. 13, 276-288.
    Xu, B., Dube, M. G, Kalra, P. S., Farmerie, W. G, Kaibara, A., Moldawer, L. L., Martin, D., and Kalra, S. P. (1998). Anorectic effects of the cytokine, ciliary neurotropic factor, are mediated by hypothalamic neuropeptide Y: comparison with leptin. Endocrinology 139, 466-473.
    ALS CNTF Treatment Study Group (1996). A double-blind placebo-controlled clinical trial of subcutaneous recombinant human ciliary neurotrophic factor (rHCNTF) in amyotrophic lateral sclerosis. Neurology 46, 1244-1249.
    Collins S, Kuhn CM, Petro AE, Swick AG, Chrunyk BA, Surwit RS. (1996). Role of leptin in fat regulation. Nature 380:677,
    Commins, S. P., Watson, P. M., Padgett, M. A., Dudley,A., Argyropoulos, G., and Gettys, T. W., (1999). Induction of Uncoupling Protein Expression in Brown and White Adipose Tissue by Leptin. Endocrinology 140, 292-300.
    Gloaguen, I., Costa, P., Demartis, A., Lazzaro, D., Di Marco, A., Graziani, R., Paonessa, G., Chen, F., Rosenblum, C. I., Van der Ploeg, L. H., Cortese, R., Ciliberto, G., and Laufer, R. (1997). Ciliary neurotrophic factor corrects obesity and diabetes associated with leptin deficiency and resistance. Proc. Natl. Acad. Sci. USA 94, 6456-6461.
    Gullicksen, P.S, Flatt,W.P., Dean, R.G., Hartzell, D.L., Baile, C.A., (2002).Energy metabolism and expression of uncoupling proteins 1,2, and 3 after 21 days of recovery from intracerebroventricular mouse leptin in rats. Physiology & Behavior 75,473-482.
    Haynes WG, Morgan DA, Walsh SA, Mark AL, and Sivitz WI. (1997).
    Receptor-mediated Regional Sympathetic Nerve Activation by Leptin. J. Clin. Invest. 100, 270-278.
    Lambert, P. D., Anderson, K. D., Sleeman, M. W., Wong, V., Tan, J., Hijarunguru, A., Corcoran, T. L., Murray, J. D., Thabet, K. E., Yancopoulos, G. D., and Wiegand, S. J. (2001). Ciliary neurotrophic factor activates leptin-like pathways and reduces body fat, without cachexia or rebound weight gain, even in leptin-resistant obesity. Proc. Natl. Acad. Sci. USA 98, 4652-4657.
    Sleeman, M. W., Anderson, K. D., Lambert, P. D., Yancopoulos, G. D., and Wiegand, S. J. (2000). The ciliary neurotrophic factor and its receptor, CNTFR alpha. Pharm. ActaHelv. 74,265-272.
    Bluher S, Moschos S, J. Bullen Jr., E. Kokkotou, E. Maratos-Flier, S.J. Wiegand, M.W. Sleeman, and C.S. Mantzoros, Ciliary neurotrophic factorAxl5 alters energy homeostasis, decreases body weight, and improves metabolic control in diet-induced obese and UCP1-DTA mice, Diabetes 53 (2004) 2787-2796.
    Go'mez-Ambrosia J, Fru¨hbeckb G and Marti'neza JA, (1999). Leptin, but not a b3-adrenergic agonist, upregulates muscle uncoupling protein-3 messenger RNA expression: short-term thermogenic interactions. CMLS, Cell. Mol. Life Sci. 55: 992-997.
    Savontaus E, Rouru J, Boss O, Huupponen R and Koulu M (1998). Differential regulation of uncoupling proteins by chronic treatments with b3-adrenergic agonist BRL 35135 and metformin in obese fa:fa Zucker rats. Biochem. Biophys. Res. Commun. 246: 899-904.
    Scarpace PJ, Matheny M, Moore RL and Kumar MV, (2000). Modulation of uncoupling protein 2 and uncoupling protein 3: regulation by denervation, leptin and retinoic acid treatment. Journal of Endocrinology 164: 331-337.
    包新民,舒斯云,1991. 大鼠脑立体定位图谱,人民卫生出版社,北京。
    Akiyama T, Yamazaki T, Ninomiya I, (1991). In vivo monitoring of myocardial interstitial norepinephrine by dialysis technique, Am J Physiol, 261: H1643-H1647.
    Cowley MA, Pronchuk N, Fan W, et al, (1999). Integration of NPY, AGRP, and Melanocortin Signals in the Hypothalamic Paraventricular Nucleus:Evidence of a Cellular Basis for the Adipostat, Neuron, 24:155-163.
    Gloaguen I, Costa P, Demartis A, Lazzaro D, Marco AD, Graziani R, Paonessa G, Chen F, Rosenblum CI, et al., (1997). Ciliary neurotrophic factor corrects obesity and diabetes associated with leptin deficiency and resistance, Proc. Natl. Acad. Sci. USA 94:6456-6461.
    Kalra SP, Dube MG, Sahu A, et al, (1991). Neuropeptide Y secretion increases in the paraventricular nucleus in association with increased appetite for food, Proc Natl Acad Sci USA, 88:10931-10935.
    Kendrick KM, (1990). Microdialysis measurement of in vivo neuropeptide release, J Neurosci Methods, 34:35-46.
    Lee MY, Hofmann HD, Kirsch M, (1997). Expression of ciliary neurotropic factor receptor- alpha messenger RNA in neonatal and adult rat brain: an in situ hybridization study, Neuroscience 77:233-246.
    MacLennan AJ, Vinson EN, Marks L, McLaurin DL, Pfeifer M, Lee N, (1996). Immunohistochemical localization of ciliary neurotrophic factor receptor alpha expression in the rat nervous system, J. Neurosci. 16:621-630.
    Mertes P, Beck B, Jaboin Y, et al, (1993). Microdialysis in the estimation of interstitial myocardial neuropeptide Y release, Regul Pept, 49:81-90.
    Mertes PM, el-Abbassi K, Jaboin Y, et al, (1996). Consequences of Coronary Occlusion on Changes in Regional Interstitial Myocardial Neuropeptide Y and Norepinephrine Concentrations, J Mol Cell Cardiol, 28:1995-2004.
    Pu S, Dhillon H, Moldawer LL, Kalra PS, Kalra SP, (2000). Neuropeptide Y counteracts the anorectic and weight reducing effects of ciliary neurotropic factor, J Neuroendocrinol, 12:827-832.
    
    Sahu A, (2004). Leptin signaling in the hypothalamus: emphasis on energy homeostasis and leptin resistance. Frontiers in Neuroendocrinology 24: 225-253.
    Stricker-Krongrad A, Barbanel G, Beck B, Burlet A, Nicolas JP, Burlet C, (1993). K(+)-stimulated neuropeptide Y release into the paraventricular nucleus and relation to feeding behavior in free-moving rats, Neuropeptides 24:307-312.
    Xu B, Dube MG, Kalra PS, Farmerie WG, et al, (1998). Anorectic effects of the cytokine, ciliary neurotropic factor, are mediated by hypothalamic neuropeptide Y: comparison with leptin, Endocrinology, 139:466-473.
    Ziotopoulou M, Erani DM, Hileman SM, Bj(?)rb(?)k C, and Mantzoros CS, (2000). Unlike Leptin, Ciliary Neurotrophic Factor Does Not Reverse the Starvation-Induced Changes of Serum Corticosterone and Hypothalamic Neuropeptide Levels but Induces Expression of Hypotlialamic Inhibitors of Leptin Signaling. Diabetes 49:1890-1896.