基于SAGE技术的家蚕基因表达谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家蚕(Bombyx mori)是我国重要的经济昆虫,一生经历卵、幼虫、蛹和成虫四个发育时期,是完全变态型昆虫,它是研究昆虫变态发育的理想模式昆虫,也是鳞翅目昆虫的模式代表。研究家蚕生命过程中的各种基因及其表达特征是认识家蚕作为一种重要经济昆虫并对其进一步加以利用的重要前提。通过研究不但对昆虫变态发育研究有着重要影响,也能比较全面地认识家蚕生物学特性的分子调控机制,为提高蚕茧产量、改善蚕茧品质提供理论基础和技术支持,同时也有助于揭示更多鳞翅目昆虫的生命现象和本质。由于家蚕与鳞翅目昆虫高度同源性的特点,对家蚕的研究成果也可作为分子水平上认识重要鳞翅目害虫发生机理及寻求种类特异的防治靶点的数据来源。
     基因表达系列分析技术(Serial analysis of gene expression, SAGE)具有定量、高通量分析基因表达的特点,因此它能用于研究基因转录本在表达水平上发生的各种变化。它不仅能够提供简单生物个体或特殊类型的细胞和组织全基因表达图谱,寻找和证实一些差异表达基因;而且还可以利用SAGE方法获得新的基因标签,并进而筛选候选新基因;另外,标签序列对全基因组序列进行染色体基因注释也是SAGE研究的一个热点。本文开展了SAGE技术在家蚕功能基因研究中的应用,从以下四个方面入手并获得了相应的结果:
     第一,利用SAGE方法检测家蚕正常型和钴-60处理后辐射型胚胎之间的基因差异表达水平。同时构建了正常型和辐射型两个SAGE文库,分别得到了69100和57457个标签序列,其中特异标签序列分别为17718和15531个。对所构建的文库进行比较分析,总共发现了673个基因在表达水平上发生了显著的变化,它们必须同时符合P<0.01和相差3倍以上两个条件。其中292个基因经过辐射后,表达水平发生了下调,而381个基因经过辐射诱导后表达水平发生了上升。经过辐射后,细胞色素氧化酶,硫氧还原蛋白酶和一些核受体因子的基因表达水平受到了上调,而细胞骨架,表皮蛋白等相关基因的表达水平发生了下降,这些数据将为进一步了解家蚕胚胎发育和辐射诱变的分子机理提供了十分有效的证据。另外,通过GLGI(Generation of longer cDNA fragments for gene identification)技术,一方面验证了标签匹配的正确性,另一方面也能够获得大量的未知基因序列。通过对正常胚胎与辐射胚胎基因序列标签的分析也为进一步研究家蚕的基因表达特征建立了技术体系。
     第二,通过SAGE技术勾画了家蚕一个世代四个不同发育时期的基因表达谱,从而在转录本表达水平上,较为详尽的描述了家蚕的变态发育。经过分析这四个SAGE表达文库,总共得到了257964个SAGE标签,其中特异标签数目为39485个。依据标签检测到的次数分类,有14.1%的标签表达丰度≥5次,有24.2%的标签表达丰度在2-5次之间,而余下的61.7%为表达次数都为1次。这说明大量的转录本都处于一个低丰度表达的水平。经过和现有家蚕数据库中的基因序列比较分析,发现大约35%的SAGE标签能够匹配到已知基因序列。同时结果也显示,在不同的发育时期,有相当一部分基因在表达水平上发生了显著的差异,这类基因具有明显的时期表达特异性。SAGE标签序列结合GLGI技术,能够得到一批有重要意义的新基因序列,为下一步的功能研究奠定了基础。
     第三,对已经构建的家蚕四个不同发育时期的SAGE文库进行分析,发现有一批显著差异表达的标签,通过SGR的技术手段(综合了SAGE,GLGI和RACE三种方法)获得了相应的全长cDNA序列,其中一个标签序列TGTCGTCCTT,在蛹期具有很高的表达水平,它在卵、幼虫、蛹和成虫期的表达次数依次为:2,1,56和5,我们结合GLGI技术,得到了240个碱基长度的3’EST序列。为了进一步研究该基因的功能,依据3’EST序列设计引物,通过5’RACE的方法得到了该基因的全长cDNA序列。通过BLAST同源比较分析,该基因为家蚕鞣化激素Bursiconα亚基基因。接着利用实时定量荧光PCR技术深入研究了该基因在家蚕不同发育时期的基因表达水平,同时进行体外转录双链RNA,再将双链RNA显微注射到家蚕蛹并检查基因干涉RNAi后的效果,以便证实该基因的具体功能。结果表明,干涉后蛹期Bursicon基因的表达受到了显著影响,成虫期翅膀的伸展呈现非正常状态。进一步利用DD-RT-PCR方法进行研究,发现在Bursicon基因被干涉后,几个相关的基因表达丰度也相应地受到了不同程度的影响,其中包括一个和昆虫翅膀肌肉发育相关的海藻糖酶基因。以上的结果表明家蚕鞣化激素α亚基基因在成虫翅膀发育伸展过程中起到了极为重要的作用,而且这一作用可能是通过海藻糖酶基因参与调节而实现翅的鞣化。
     第四,2004年,中国科学家公布了6X基因组的家蚕全基因组框架图的测序结果,但是其测序结果还无法一一对应到相应的家蚕染色体上,同时也无法进行染色体的基因注释。在SAGE标签比对到的家蚕已知功能基因序列中,寻找CAPS分子标记位点,结合本课题组构建的SSR分子标记遗传连锁图,能够将基因定位到相应的染色体上。另外可将475个家蚕Scaffold序列精确定位到28条染色体上,然后结合获得的SAGE标签序列,对已经定位到染色体上的Scaffold序列进行了基因注释。总共注释基因1444个,其中特异基因909个,注释的基因组序列总长为15Mb,约为一个染色体的长度,同时也得到了这些功能基因在家蚕四个不同发育时期的表达丰度情况。
The domesticated silkworm, Bombyx mori, is one of the most important economic insects in China, India, and many other developing countries owing to its propagation on a large scale and its utilization in silk production. Silkworm is one member of the holometabolous class of insects, which possesses four distinguished developmental stages, i.e., egg, larva, pupa, and adult. It is an ideal model for studying metamorphosis. Genetically, silkworm is one of the best-studied lepidopteran insects because large number of mutants has been identified. Lepidoptera also include highly destructive agricultural pests that cause widespread economic damage to crops and trees. Consequently, information on silkworm gene expression adds to our understanding of silkworm metamorphosis and provides novel candidate targets for pest control.
     Serial analysis of gene expression (SAGE) is one of the most versatile methods for genome-level studies of gene expression. The SAGE technology samples short sequence tags (14-bases long) from mRNA transcripts found in the population of interest. Each tag contains sequence information that can identify, in basic local alignment search tool (BLAST) analysis, the transcript from which an individual tag has been derived. The frequency of each tag in the SAGE library is an accurate estimate of the abundance of its corresponding mRNA transcript. Numerous groups have successfully used this technique and have described the SAGE protocol in detail. SAGE analysis has been used to study gene expression in a wide range of organisms, including yeast, Arabidopsis thaliana, rice, mouse, and human. SAGE is particularly well suited to the different gene expression analysis of organisms whose genomes are not completely sequenced, since it does not require a hybridization probe for each transcript and provides quantitative information on gene expression that is not readily obtainable using other methods. Also SAGE is suited to do chromosome annotation and find novel genes. Our researches including the following aspects:
     Firstly,SAGE was used to examine the profile of expressed genes during embryonic development in the domesticated silkworm, B. mori, after irradiation with cobalt-60. A comparison of the SAGE sequence tags derived from irradiated embryos with those from normal embryos revealed 673 differentially expressed genes (p < 0.001 and at least 3 folds change). Of these, 292 genes were highly expressed in normal embryos and 381 genes were highly expressed in irradiated embryos. These results provide valuable information for understanding the mechanisms of radiation-induced changes in gene expression. In addition, we found that the generation of longer cDNA fragments from SAGE tags is an efficient way to identify genes, thereby facilitating the analysis of large numbers of unknown genes.
     Secondly,we used SAGE to derive profiles of expressed genes during the developmental life cycle of the silkworm, and to create a reference for understanding silkworm metamorphosis. We generated four SAGE libraries, one from each of the four developmental stages of the silkworm. In total we obtained 257,964 SAGE tags, of which 39,485 were unique tags. Sorted by copy number, 14.1% of the unique tags were detected at a median to high level (five or more copies), 24.2% at lower levels (two to four copies), and 61.7% as single copies. Using a basic local alignment search tool (BLAST) on the EST database, 35% of the tags matched known silkworm expressed sequence tags (ESTs). SAGE demonstrated that a number of the genes were up- or down- regulated during the four developmental phases of the egg, larva, pupa, and adult. Furthermore, we found that the generation of longer cDNA fragments from SAGE tags (GLGI) constituted the most efficient method for gene identification, which facilitated the analysis of a large number of unknown genes.
     Thirdly,basing on the different expression SAGE tag: TGTCGTCCTT, we cloned the full-length cDNA sequence of silkworm bursicon gene and then studied the role of the gene function in wing expansion. Its gene expression at different developmental stages has been investigated in the silkworm, B. mori. Bursicon gene was expressed at low levels in larvae, high levels in pupae, and low levels again in adults. Then, we injected the double-stranded bursicon RNA into B. mori pupae to test RNA interference. The level of bursicon mRNA was reduced significantly in pupae, and a deficit in wing expansion was observed in adults. In addition, the differential display reverse transcription polymerase chain reaction (DD-RT-PCR) was used to reveal differences in the expression of transcripts in response to the inhibition of bursicon. In conclusion, bursicon plays a key role in the stereotyped behavioral program involved in wing expansion.
     Fourthly, in 2004, the draft genome (-428.7 Mb) of the domesticated silkworm, B. mori has been sequenced by the whole-genome shotgun method and should provide important insights into the functional genomic research. However, this genomic data was short of detailed gene annotation, even the chromosome location. Basing on the published SSR linkage map, 475 scaffolds have been located in the 28 chromosomes. Combined with the SAGE tags, these scaffolds also have been annotated. There were 1444 transcripts have been found in the totally 15 Mb genome and the number of unique gene is 909. From the data, we also get the gene expression level in the silkworm development stages about the located genes.
引文
[1] Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF. Complementary DNA sequencing: expressed sequence tags and human genome project. Science 1991, 252: 1651-1656.
    [2] Jouannic S, Argout X, Lechauve F, Fizames C, Borgel A, Morcillo F, Aberlenc-Bertossi F, Duval Y, Tregear J. Analysis of expressed sequence tags from oil palm (Elaeis guineensis). FEBS Lett. 2005, 579: 2709-2714.
    [3] Stephen R. Expressed sequence tags: alternative or complement to whole genome sequences? Trends in Plant Science 2003, 8: 321-329.
    [4] Boguski MS, Lowe TM, Tolstoshev CM. dbEST--database for "expressed sequence tags" Nature Genetics 1993, 4: 332-333.
    [5] Ljunggren EL, Nilsson D, Mattsson JG. Expressed sequence tag analysis of Sarcoptes scabiei. Parasitology 2003, 127: 139-145.
    [6] Delseny M, Cooke R, Raynal M, Grellet F. The Arabidopsis thaliana cDNA sequencing projects. FEBS Lett. 1997, 405: 129-132.
    [7] Schuler GD, Boguski MS, Stewart EA, Stein LD, Gyapay G, Rice K, White RE, Rodriguez-Tome P, Aggarwal A, Bajorek E. A gene map of the human genome. Science 1996, 274: 540-546.
    [8] Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 1992, 257: 967 – 971.
    [9] Anyomi FM, Bior AD, Essenberg RC, Sauer JR. Gene expression in male tick salivary glands is affected by feeding in the presence of females. Arch. Insect. Biochem. Physiol. 2006, 63: 159-168.
    [10] Fujino M, Kawasaki M, Adachi K, Li XK. Differential-display analysis of gene expression in livers from normal and partially hepatectomized mice. Transplant Proc. 2006, 38: 2701-2704.
    [11] Lu Y, Wang SY, Lotz JM. The use of differential display to isolate viral genomic sequence for rapid development of PCR-based detection methods. A test case using Taura syndrome virus. J Virol Methods 2004, 121: 107-114.
    [12] Welss T, Papoutsaki M, Michel G, Reifenberger J, Chimenti S, Ruzicka T, Abts HF. Molecular basis of basal cell carcinoma: analysis of differential gene expression by differential display PCR and expression array. Int. J. Cancer 2003, 104: 66-72.
    [13] Anbalagan M, Yashwanth R, Jagannadha Rao A. DD-RT-PCR identifies 7-dehydrocholesterol reductase as a key marker of early Leydig cell steroidogenesis. Mol. Cell Endocrinol. 2004, 219: 37-45.
    [14] Frias-Lopez J, Bonheyo GT, Fouke BW. Identification of differential gene expression in bacteria associated with coral black band disease by using RNA-arbitrarily primed PCR. Appl. Environ. Microbiol. 2004, 70: 3687-3694.
    [15] Diachenko LB, Ledesma J, Chenchik AA, Siebert PD. Combining the technique of RNA fingerprinting and differential display to obtain differentially expressed mRNA. Biochem. Biophys. Res. Commun. 1996, 219: 824-828.
    [16] Smith NR, Aldersley M, Li A, High AS, Moynihan TP, Markham AF, Robinson PA. Automated differential display using a fluorescently labeled universal primer. Biotechniques 1997, 23: 274-279.
    [17] Bertioli DJ, Schlichter UH, Adams MJ, Burrows PR, Steinbiss HH, Antoniw JF. An analysis of differential display shows a strong bias towards high copy number mRNAs. Nucleic Acids Res. 1995, 23: 4520-4523.
    [18] Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. U S A. 1996, 93: 6025-6030.
    [19] Von Stein OD, Thies WG, Hofmann M. A high throughput screening for rarely transcribed differentially expressed genes. Nucleic Acids Res. 1997, 25: 2598-2602.
    [20] Breeze E, Wagstaff C, Harrison E, Bramke I, Rogers H, Stead A, Thomas B, Buchanan-Wollaston V. Gene expression patterns to define stages of post-harvest senescence in Alstroemeria petals. Plant Biotechnol. J. 2004, 2: 155-168.
    [21] Qiu J, Ni YH, Gong HX, Fei L, Pan XQ, Guo M, Chen RH, Guo XR. Identification of differentially expressed genes in omental adipose tissues of obese patients by suppression subtractive hybridization. Biochem. Biophys. Res. Commun. 2007, 352: 469-478.
    [22] Bulman S, Siemens J, Ridgway HJ, Eady C, Conner AJ. Identification of genes from the obligate intracellular plant pathogen, Plasmodiophora brassicae. FEMS. Microbiol. Lett. 2006, 264: 198-204.
    [23] Zeng F, Zhang X, Zhu L, Tu L, Guo X, Nie Y. Isolation and characterization of genes associated tocotton somatic embryogenesis by suppression subtractive hybridization and macroarray. Plant Mol. Biol. 2006, 60: 167-183.
    [24] Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression . Science 1995, 270:484-487.
    [25] Velculescu V E., Zhang L, Zhou W, Vogelstein J, Basrai MA, Bassett Jr DE, Hieter P, Vogelstein B, Kinzler KW. Characterization of the yeast transcriptome. Cell 1997, 88: 243-251.
    [26] Velculescu V E., Madden S L., Zhang L, Lash AE, Yu J, Rago C, Lal A, Wang CJ, Beaudry GA, Ciriello KM, et al. Analysis of human transcriptomes. Natural Genetics 1999, 23: 387-388.
    [27] Huang J, Miao X, Jin W, Couble P, Zhang Y, Liu W, Shen Y, Zhao G, Huang Y. Radiation-induced changes in gene expression in the silkworm revealed by serial analysis of gene expression (SAGE). Insect Mol. Biol. 2005, 14: 665-674.
    [28] Huang J, Miao X, Jin W, Couble P, Mita K, Zhang Y, Liu W, Zhuang L, Shen Y, Keime C, et al. Serial analysis of gene expression in the silkworm, Bombyx mori. Genomics 2005, 86: 233-241.
    [29] Wang SM. Response: The new role of sage in gene discovery. TRENDS in Biotechnology 2003, 21: 58.
    [30] Pauws E, Moreno JC, Tijssen M, Baas F, de Vijlder JJ, Ris-Stalpers C. Serial analysis of gene expression as a tool to assess the human thyroid expression profile and to identify novel thyroidal genes. The Journal of Clinical Endocrinology & Metabolism 2000, 85: 1923-1927.
    [31] Boon K, Caron HN, Asperen RV, Valentijn L, Hermus MC, van Sluis P, Roobeek I, Weis I, Voute PA, Schwab M, et al. N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis. The EMBO Journal 2001, 20: 1383-1393.
    [32] Hough CD, Sherman-Baust CA, Pizer ES, Montz FJ, Im DD, Rosenshein NB, Cho KR, Riggins GJ, Morin PJ. Large-scale serial analysis of gene expression reveals genes differentially expressed in ovarian cancer. Cancer Research 2000, 60: 6281-6287.
    [33] Chen JJ, Rowley JD, Wang SM. Generation of longer cDNA fragments from serial analysis of gene expression tags for gene identification. Proc. Natl. Acad. Sci. U S A. 2000, 97: 349-353.
    [34] Matsumura H, Reich S, Ito A, Saitoh H, Kamoun S, Winter P, Kahl G, Reuter M, Kruger DH, Terauchi R. Gene expression analysis of plant host-pathogen interactions by SuperSAGE. Proc. Natl. Acad. Sci. U S A. 2003, 100: 15718-15723.
    [35] Wei CL, Ng P, Chiu KP, Wong CH, Ang CC, Lipovich L, Liu ET, Ruan Y. 5' Long serial analysis of gene expression (LongSAGE) and 3' LongSAGE for transcriptome characterization and genome annotation. Proc. Natl. Acad. Sci. U S A. 2004, 101: 11701-11706.
    [36] Ng P, Wei CL, Sung WK, Chiu KP, Lipovich L, Ang CC, Gupta S, Shahab A, Ridwan A, Wong CH, Liu ET, Ruan Y. Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation. Nat. Methods. 2005, 2: 105-111.
    [37] Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995, 270: 467-470.
    [38] Shalon D, Smith SJ, Brown PO. A DNA microarray system for analyzing complex DNA samplesusing two-color fluorescent probe hybridization. Genome Res. 1996, 6: 639-645.
    [39] Fiegler H, Redon R, Andrews D, Scott C, Andrews R, Carder C, Clark R, Dovey O, Ellis P, Feuk L, et al. Accurate and reliable high-throughput detection of copy number variation in the human genome. Genome Res. 2006, 16: 1566-1574.
    [40] Whitfield CW, Ben-Shahar Y, Brillet C, Leoncini I, Crauser D, Leconte Y, Rodriguez-Zas S, Robinson GE. Genomic dissection of behavioral maturation in the honey bee. Proc. Natl. Acad. Sci. U S A. 2006, 103: 16068-16075.
    [41] Crismani W, Baumann U, Sutton T, Shirley N, Webster T, Spangenberg G, Langridge P, Able JA. Microarray expression analysis of meiosis and microsporogenesis in hexaploid bread wheat. BMC Genomics 2006, 7: 267.
    [42] Lallier TE, Spencer A. Use of microarrays to find novel regulators of periodontal ligament fibroblast differentiation. Cell Tissue Res. 2007, 327: 93-109.
    [1] 黄健华 苗雪霞 黄勇平. 基因表达研究新方法 SAGE 和 GLGI 及其在家蚕功能基因组研究中的应用前景. 蚕业科学 2004, 30: 395-398.
    [2] Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression . Science 1995, 270:484-487.
    [3] 张群宇 刘耀光 梅曼彤. 基因表达系列分析(SAGE). 生命的化学 1999, 19: 184-186.
    [4] 杨惠敏 王根轩.一种新的分子武器----------SAGE. 生物技术 2001, 11: 35-37.
    [5] 史春梦 粟永萍.全基因组基因表达频谱研究的新方法----SAGE 和 IPGI. 生物工程进展 2001, 21: 65-67.
    [6] Velculescu VE., Zhang L, Zhou W, Vogelstein J, Basrai MA, Bassett Jr DE, Hieter P, Vogelstein B, Kinzler KW. Characterization of the yeast transcriptome. Cell 1997, 88: 243-251.
    [7] Velculescu VE., Madden SL., Zhang L, Lash AE, Yu J, Rago C, Lal A, Wang CJ, Beaudry GA, Ciriello KM, et al. Analysis of human transcriptomes. Natural Genetics 1999, 23: 387-388.
    [8] Wang SM. Response:The new role of sage in gene discovery. TRENDS in Biotechnology 2003, 21: 58.
    [9] Pauws E, Moreno JC, Tijssen M, Baas F, de Vijlder JJ, Ris-Stalpers C. Serial analysis of gene expression as a tool to assess the human thyroid expression profile and to identify novel thyroidal genes. The Journal of Clinical Endocrinology & Metabolism 2000, 85: 1923-1927.
    [10] Boon K, Caron HN, Asperen RV, Valentijn L, Hermus MC, van Sluis P, Roobeek I, Weis I, Voute PA, Schwab M, et al. N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis. The EMBO Journal 2001, 20: 1383-1393.
    [11] Hough CD, Sherman-Baust CA, Pizer ES, Montz FJ, Im DD, Rosenshein NB, Cho KR, Riggins GJ, Morin PJ. Large-scale serial analysis of gene expression reveals genes differentially expressed in ovarian cancer. Cancer Research 2000, 60: 6281-6287.
    [12] Datson NA, van der Perk-de Jong J, van den Berg MP, de Kloet ER, Vreugdenhil E. MicroSAGE: a modified procedure for serial analysis of gene expression in limited amounts of tissue. Nucleic Acids Res. 1999, 27: 1300-1307.
    [13] Peters DG, Kassam AB, Yonas H, O'Hare EH, Ferrell RE, Brufsky AM. Comprehensive transcript analysis in small quantities of mRNA by SAGE-lite. Nucleic Acids Res. 1999, 27: e39.
    [14] Virlon B, Cheval L, Buhler JM, Billon E, Doucet A, Elalouf JM. Serial microanalysis of renal transcriptomes. Proc. Natl. Acad. Sci. U S A. 1999, 96: 15286-15291.
    [15] Ye SQ, Zhang LQ, Zheng F, Virgil D, Kwiterovich PO. miniSAGE: gene expression profiling using serial analysis of gene expression from 1 microg total RNA. Anal. Biochem. 2000, 287: 144-152.
    [16] Powell J. Enhanced concatemer cloning-a modification to the SAGE (Serial Analysis of Gene Expression) technique. Nucleic Acids Res. 1998, 26: 3445-3446.
    [17] Lee S, Chen J, Zhou G, Wang SM. Generation of high-quantity and quality tag/ditag cDNAs for SAGE analysis. Biotechniques 2001, 31: 348-354.
    [18] Mathupala SP, Sloan AE. "In-gel" purified ditags direct synthesis of highly efficient SAGE Libraries. BMC Genomics 2002, 3: 20.
    [19] Kenzelmann M, Muhlemann K. Substantially enhanced cloning efficiency of SAGE (Serial Analysis of Gene Expression) by adding a heating step to the original protocol. Nucleic Acids Res. 1999, 27:917-918.
    [20] Wang SM. Understanding SAGE data. Trends Genet. 2006, Nov 15 (in press).
    [21] Porter DA, Krop IE, Nasser S, Sgroi D, Kaelin CM, Marks JR, Riggins G, Polyak K. A SAGE (serial analysis of gene expression) view of breast tumor progression. Cancer Res. 2001, 61: 5697-5702.
    [22] Porter D, Weremowicz S, Chin K, Seth P, Keshaviah A, Lahti-Domenici J, Bae YK, Monitto CL, Merlos-Suarez A, Chan J, et al. A neural survival factor is a candidate oncogene in breast cancer. Proc. Natl. Acad. Sci. U S A. 2003, 100: 10931-10936.
    [23] Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH, Hamilton SR, Vogelstein B, Kinzler KW. Gene expression profiles in normal and cancer cells. Science 1997, 276: 1268-1272.
    [24] Saha S, Bardelli A, Buckhaults P, Velculescu VE, Rago C, St Croix B, Romans KE, Choti MA, Lengauer C, Kinzler KW, Vogelstein B. A phosphatase associated with metastasis of colorectal cancer. Science 2001, 294: 1343-1346.
    [25] Kondoh N, Wakatsuki T, Ryo A, Hada A, Aihara T, Horiuchi S, Goseki N, Matsubara O, Takenaka K, Shichita M, et al. Identification and characterization of genes associated with human hepatocellular carcinogenesis. Cancer Res. 1999, 59: 4990-4996.
    [26] Hibi K, Liu Q, Beaudry GA, Madden SL, Westra WH, Wehage SL, Yang SC, Heitmiller RF, Bertelsen AH, Sidransky D, Jen J. Serial analysis of gene expression in non-small cell lung cancer. Cancer Res. 1998, 58: 5690-5694.
    [27] Nacht M, Dracheva T, Gao Y, Fujii T, Chen Y, Player A, Akmaev V, Cook B, Dufault M, Zhang M, et al. Molecular characteristics of non-small cell lung cancer. Proc. Natl. Acad. Sci. U S A. 2001, 98: 15203-15208.
    [28] MacAulay C, Lonergan K, Chi B, Zuyderduyn S, Shein J, Tsao M, LeRiche J, Jones S, Marra M, Lam S, Lam WL. Serial analysis of gene expression profiles of developmental stages in non-small cell lung carcinoma. Chest 2004, 125: 97S.
    [29] Margulies EH, Kardia SL, Innis JW. A comparative molecular analysis of developing mouse forelimbs and hindlimbs using serial analysis of gene expression (SAGE). Genome Res. 2001, 11: 1686-1698.
    [30] Jasper H, Benes V, Atzberger A, Sauer S, Ansorge W, Bohmann D. A genomic switch at the transition from cell proliferation to terminal differentiation in the Drosophila eye. Dev. Cell. 2002, 3: 511-521.
    [31] Huang J, Miao X, Jin W, Couble P, Zhang Y, Liu W, Shen Y, Zhao G, Huang Y. Radiation-induced changes in gene expression in the silkworm revealed by serial analysis of gene expression (SAGE). Insect Mol. Biol. 2005, 14: 665-674.
    [32] Huang J, Miao X, Jin W, Couble P, Mita K, Zhang Y, Liu W, Zhuang L, Shen Y, Keime C, et al. Serial analysis of gene expression in the silkworm, Bombyx mori. Genomics 2005, 86: 233-241.
    [33] Van den Berg A, Van der Leij J, Poppema S. Serial analysis of gene expression: rapid RT-PCR analysis of unknown SAGE tags. Nucleic Acids Res. 1999, 27: e17.
    [34] Chen JJ, Rowley JD, Wang SM. Generation of longer cDNA fragments from serial analysis of gene expression tags for gene identification. Proc. Natl. Acad. Sci. U S A. 2000, 97: 349-353.
    [35] Yamamoto M, Wakatsuki T, Hada A, Ryo A. Use of serial analysis of gene expression (SAGE)technology. J. Immunol. Methods 2001, 250: 45-66.
    [36] Matsumura H, Reich S, Ito A, Saitoh H, Kamoun S, Winter P, Kahl G, Reuter M, Kruger DH, Terauchi R. Gene expression analysis of plant host-pathogen interactions by SuperSAGE. Proc. Natl. Acad. Sci. U S A. 2003, 100: 15718-15723.
    [37] Matsumura H, Bin Nasir KH, Yoshida K, Ito A, Kahl G, Kruger DH, Terauchi R. SuperSAGE array: the direct use of 26-base-pair transcript tags in oligonucleotide arrays. Nat. Methods 2006, 3: 469-474.
    [38] Wei CL, Ng P, Chiu KP, Wong CH, Ang CC, Lipovich L, Liu ET, Ruan Y. 5' Long serial analysis of gene expression (LongSAGE) and 3' LongSAGE for transcriptome characterization and genome annotation. Proc. Natl. Acad. Sci. U S A. 2004, 101: 11701-11706.
    [39] Ng P, Wei CL, Sung WK, Chiu KP, Lipovich L, Ang CC, Gupta S, Shahab A, Ridwan A, Wong CH, Liu ET, Ruan Y. Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation. Nat. Methods 2005, 2: 105-111.
    [40] Jung SH, Lee JY, Lee DH. Use of SAGE technology to reveal changes in gene expression in Arabidopsis leaves undergoing cold stress. Plant Mol. Biol. 2003, 52: 553-567.
    [1] Goldsmith MR. Genetics of the silkworm: revisiting the ancient model system. In: Molecular Model systems of the Lepidoptera (Goldsmith, M.R. and Wilkins, A.S. eds) 1995, p. 21-76. Cambridge University Press, New York.
    [2] Nagaraju J, Goldsmith MR. Silkworm genomics – progress and prospects. Current Science 2002, 83: 415-425.
    [3] Fujii H, Bonno Y, Kihara H, Kawaguchi Y. Linkage maps of Bombyx mori. In: Genetical stocks and mutations of Bombyx mori: Important genetic resources (Fujii, H.,ed.), 2001, 2nd edn, p. 54. Institute of Genetic Resources, Kyushu University, Fukoka, Japan.
    [4] Furusawa T, Kotani E, Ichida M, Sugimura Y, Yamanaka H, Takahashi S, Fukui M, Kogure K, Sakaguchi B, Fujii H, Ikenaga M, Watanabe T. Embryonic development in the eggs of the silkworm, Bombyx mori, exposed to the space environment. Biol. Sci. Space 2001, 15: S177-182.
    [5] Kotani E, Furusawa T, Nagaoka S, Nojima K, Fujii H, Sugimura Y, Ichida M, Suzuki E, Nagamatsu A, Todo T, Ikenaga M. Somatic mutation in larvae of the silkworm, Bombyx mori, induced by heavy ion irradiation to diapause eggs. J. Radiat. Res. 2002, 43: S193-198.
    [6] Iarygin DV, Klunova SM, Filippovich IB. A study of the complex of proteolytic enzymes and their protein inhibitors in embryogenesis of the silkworm. Ontogenez 2001, 32: 269-276.
    [7] Makka T, Seino A, Tomita S, Fujiwara H, Sonobe, H. A possible role of 20-hydroxyecdysone in embryonic development of the silkworm Bombyx mori. Arch. Insect Biochem. Physiol. 2002, 51: 111-120.
    [8] Yamahama Y, Uto N, Tamotsu S, Miyata T, Yamamoto Y, Watabe S, Takahashi SY. In vivo activation of pro-form Bombyx cysteine protease (BCP) in silkmoth eggs: localization of yolk proteins and BCP, and acidification of yolk granules. J. Insect Physiol. 2003, 49: 131-140.
    [9] Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science 1995, 270: 484-487.
    [10] Xia Q, Zhou Z, Lu C, Cheng D, Dai F, Li B, Zhao P, Zha X, Cheng T, Chai C, Pan G, Xu J, Liu C, Lin Y, Qian J, Hou Y, Wu Z, Li G, Pan M, Li C, Shen Y, Lan X, Yuan L, Li T, Xu H, Yang G, Wan Y, Zhu Y, Yu M, Shen W, Wu D, Xiang Z, Yu J, Wang J, Li R, Shi J, Li H, Li G, Su J, Wang X, Li G, Zhang Z, Wu Q, Li J, Zhang Q, Wei N, Xu J, Sun H, Dong L, Liu D, Zhao S, Zhao X, Meng Q, Lan F, Huang X, Li Y, Fang L, Li C, Li D, Sun Y, Zhang Z, Yang Z, Huang Y, Xi Y, Qi Q, He D, Huang H, Zhang X, Wang Z, Li W, Cao Y, Yu Y, Yu H, Li J, Ye J, Chen H, Zhou Y, Liu B, Wang J, Ye J, Ji H, Li S, Ni P, Zhang J, Zhang Y, Zheng H, Mao B, Wang W, Ye C, Li S, Wang J, Wong GK, Yang H. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 2004, 306: 1937-1940.
    [11] Mita K, Kasahara M, Sasaki S, Nagayasu Y, Yamada T, Kanamori H, Namiki N, Kitagawa M, Yamashita H, Yasukochi Y, Kadono-Okuda K, Yamamoto K, Ajimura M, Ravikumar G, Shimomura M, Nagamura Y, Shin-I T, Abe H, Shimada T, Morishita S, Sasaki T. The genome sequence of silkworm, Bombyx mori. DNA Res. 2004, 11: 27-35.
    [12] Munasinghe A, Patankar S, Cook BP, Madden SL, Martin RK, Kyle DE, Shoaibi A, Cummings LM, Wirth DF. Serial analysis of gene expression (SAGE) in Plasmodium falciparum: application of the technique to A-T rich genomes. Mol. Biochem. Parasitol. 2001, 113: 23-34.
    [13] Chen JJ, Rowley JD, Wang SM. Generation of longer cDNA fragments from serial analysis of gene expression tags for gene identification. Proc. Natl. Acad. Sci. U S A. 2000, 97: 349-353.
    [14] Chen JJ, Lee S, Zhou G, Wang, SM. High-throughput GLGI procedure for converting a large number of serial analysis of gene expression tag sequences into 3' complementary DNAs. Genes Chromosomes Cancer 2002, 33: 252-261.
    [15] Mita K, Morimyo M, Okano K, Koike Y, Nohata J, Kawasaki H, Kadono-Okuda K, Yamamoto K, Suzuki MG, Shimada T, Goldsmith MR, Maeda S. The construction of an EST database for Bombyx mori and its application. Proc. Natl. Acad. Sci. U S A. 2003, 100: 14121-14126.
    [16] Cheng TC, Xia QY, Qian JF, Liu C, Lin Y, Zha XF, Xiang ZH. Mining single nucleotide polymorphisms from EST data of silkworm, Bombyx mori, inbred strain Dazao. Insect Biochem. Mol. Biol. 2004, 34: 523-530.
    [17] Lee S, Zhou G, Clark T, Chen J, Rowley JD, Wang SM. The pattern of gene expression in human CD15+ myeloid progenitor cells. Proc. Natl. Acad. Sci. U S A. 2001, 98: 3340-3345.
    [18] Blair SS. Developmental biology: boundary lines. Nature 2003, 424: 379-381.
    [19] Murakami A. Radiation-induced recessive visible mutations of oocytes during meiosis in the silkworm. Genetics 1971, 67: 109-120.
    [20] Chaudhry MA, Chodosh LA, McKenna WG, Muschel RJ. Gene expression profile of human cells irradiated in G1 and G2 phases of cell cycle. Cancer Lett. 2003, 195: 221-233.
    [1] Nagaraju J, Goldsmith MR. Silkworm genomics – progress and prospects. Current Science 2002, 83:415-425.
    [2] Mita K, Morimyo M, Okano K, Koike Y, Nohata J, Kawasaki H, Okuda KK, Yamamoto K, Suzuki MG, Shimada T. The construction of an EST database for Bombyx mori and its application. Proc.Natl.Acad.Sci. USA 2003, 100: 14121-14126.
    [3] Vleculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science 1995,270: 484-487.
    [4] Munasinghe A, Patankar S, Cook BP, Madden SL, Martin RK, Kyle DE, Shoaibi A, Cummings LM, Wirth DF. Serial analysis of gene expression (SAGE) in Plasmodium falciparum: application of the technique to A-T rich genomes. Mol. Biochem. Parasitol. 2001, 113: 23-34.
    [5] Madden SL, Galella EA, Zhu J, Bertelsen AH, Beaudry GA. SAGE transcript profiles for p53-dependent growth regulation. Oncogene 1997, 15: 1079-1085.
    [6] Powell J. Enhanced concatemer cloning-a modification to the SAGE (Serial Analysis of Gene Expression) technique. Nucleic Acids Res. 1998, 26: 3445-3446.
    [7] Kenzelmann M, Muhlemann K. Substantially enhanced cloning efficiency of SAGE (Serial Analysis of Gene Expression) by adding a heating step to the original protocol. Nucleic Acids Res. 1999, 27: 917-918.
    [8] Mathupala SP, Sloan AE. “In-gel” purified ditags direct synthesis of highly efficient SAGE libraries. BMC Genomics 2002, 3: 20.
    [9] Velculescu VE, Zhang L, Zhou W, Vogelstein J, Basrai MA, Bassett DE, Hieter P, Vogelstein B, Kinzler KW. Characterization of the yeast transcriptome. Cell 1997, 88: 243-251.
    [10] Lee JY, Lee DH. Use of serial analysis of gene expression technology to reveal changes in gene expression in Arabidopsis pollen undergoing cold stress. Plant Physiol. 2003, 132: 517-529.
    [11] Matsumura H, Nirasawa S, Terauchi R. Technical advance: transcript profiling in rice (Oryza sativa L.) seedlings using serial analysis of gene expression (SAGE). Plant J. 1999, 20: 719-726.
    [12] Divina P, Forejt J. The Mouse SAGE Site: database of public mouse SAGE libraries. Nucleic Acids Res. 2004, 32: D482-D483.
    [13] Virlon B, Cheval L, Buhler JM, Billon E, Doucet A, Elalouf JM. Serial microanalysis of renal transcriptomes. Proc.Natl.Acad.Sci. USA 1999, 96: 15286-15291.
    [14] Lal A, Lash AE, Altschul SF, Velculescu V, Zhang L, McLendon RE, Marra MA, Prange C, Morin PJ, Polyak.A public database for gene expression in human cancers. Cancer Res. 1999, 59: 5403-5407.
    [15] Saha S, Sparks AB, Rago C, Akmaev V, Wang CJ, Vogelstein B, Kinzler KW, Velculescu VE. Using the transcriptome to annotate the genome. Nat Biotechnol. 2002, 20: 508-512.
    [16] Chen JJ, Rowley JD, Wang SM. Generation of longer cDNA fragments from serial analysis of gene expression tags for gene identification. Proc Natl Acad Sci U S A. 2000, 97: 349-353.
    [17] Lee S, Zhou G, Clark T, Chen J, Rowley JD, Wang SM. The pattern of gene expression in human CD15+ myeloid progenitor cells. Proc Natl Acad Sci U S A. 2001, 98: 3340-3345.
    [18] Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH, Hamilton SR, Vogelstein B, Kinzler KW. Gene expression profiles in normal and cancer cells. Science 1997, 276: 1268-1272.
    [19] Hammersley JM, Handscomb DC. Monte Carlo Methods: Wiley, New York, 1964.
    [20] Chen J, Lee S, Zhou G, Wang SM. High-throughput GLGI procedure for converting a large number of serial analysis of gene expression tag sequences into 3' complementary DNAs. Genes Chromosomes Cancer 2002, 33: 252-261.
    [21] Lee S, Clark T, Chen J, Zhou G, Scott LR, Rowley JD, Wang SM. Correct identification of genes fromserial analysis of gene expression tag sequences. Genomics 2002, 79: 598-602.
    [22] Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF. The genome sequence of Drosophila melanogaster. Science 2000, 287: 2185-2195.
    [23] Kamimura M, Takahashi M, Tomita S, Fujiwara H, Kiuchi M. Expression of ecdysone receptor isoforms and trehalase in the anterior silk gland of Bombyx mori during an extra larval molt and precocious pupation induced by 20-hydroxyecdysone administration. Arch. Insect. Biochem. Physiol. 1999, 41: 79-88.
    [24] Kim MG, Shin SW, Bae KS, Kim SC, Park HY. Molecular cloning of chitinase cDNAs from the silkworm, Bombyx mori and the fall webworm, Hyphantria cunea. Insect Biochem Mol Biol.1998, 28: 163-171.
    [25] Kramer KJ, Corpuz L, Choi HK, Muthukrishnan S. Sequence of a cDNA and expression of the gene encoding epidermal and gut chitinases of Manduca sexta. Insect Biochem Mol Biol. 1993, 23: 691-701.
    [26] Luque T, Okano K, O'Reilly DR. Characterization of a novel silkworm (Bombyx mori) phenol UDP-glucosyltransferase. Eur. J. Biochem. 2002, 269: 819-825.
    [27] Hachouf-Gheras S, Besson MT, Bosquet G. Identification and developmental expression of a Bombyx mori alpha-tubulin gene. Gene 1998, 208: 89-94.
    [28] Moto K, Yoshiga T, Yamamoto M, Takahashi S, Okano K, Ando T, Nakata T, Matsumoto S. Pheromone gland-specific fatty-acyl reductase of the silkmoth, Bombyx mori. Proc Natl Acad Sci USA. 2003, 100: 9156-9161.
    [29] Shiomi K, Niimi T, Sato Y, Imai K, Yamashita O. A hydrophobic peptide (VAP-peptide) of the silkworm, Bombyx mori: a unique role for adult activity proposed from gene expression and production at the terminal phase of metamorphosis. Insect Biochem. Mol. Biol. 1998, 28: 671-676.
    [30] Yu SX, Kawasaki H. Isolation and expression of cathepsin B cDNA in hemocytes during metamorphosis of Bombyx mori. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2001, 130: 393-399.
    [31] Matsunami K, Kokubo H, Ohno K, Suzuki Y. Expression pattern analysis of SGF-3/POU-M1 in relation to sericin-1 gene expression in the silk gland. Dev. Growth Differ. 1998, 40: 591-597.
    [1] Huang J, Miao X, Jin W, Couble P, Mita K, Zhang Y, Liu W, Zhuang L, Shen Y, Keime C, Gandrillon O, Brouilly P, Briolay J, Zhao G, Huang Y. Serial analysis of gene expression in the silkworm, Bombyx mori. Genomics 2005, 86: 233-241.
    [2] 谢馥交, 卢向阳. 克隆全长 cDNA 的方法及其在兽药研究中的应用. 中国兽药杂 2006, 40: 39-43.
    [3] Maruyama K, Sugano S. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 1994, 138(1-2): 171-174.
    [4] Edery I, Chu LL, Sonenberg N, Pelletier J. An efficient strategy to isolate full-length cDNAs based on an mRNA cap retention procedure (CAPture). Mol. Cell Biol. 1995, 15(6): 3363-3371.
    [5] Carninci P, Westover A, Nishiyama Y, Ohsumi T, Itoh M, Nagaoka S, Sasaki N, Okazaki Y, Muramatsu M, Schneider C, Hayashizaki Y. High efficiency selection of full-length cDNA by improved biotinylated cap trapper. DNA Res. 1997, 4(1): 61-66.
    [6] Spirin KS, Ljubimov AV, Castellon R, Wiedoeft O, Marano M, Sheppard D, Kenney MC, Brown DJ. Analysis of gene expression in human bullous keratopathy corneas containing limiting amounts of RNA. Invest Ophthalmol Vis Sci. 1999, 40(13): 3108-3115.
    [7] Frohman MA, Dush MK, Martin GR. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988, 85(23): 8998-9002.
    [8] Gill RW, Sanseau P. Rapid in silico cloning of genes using expressed sequence tags (ESTs). Biotechnol. Annu. Rev. 2000, 5: 25-44.
    [9] Vleculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science 1995, 270: 484-487.
    [10] Chen JJ, Rowley JD, Wang SM. Generation of longer cDNA fragments from serial analysis of gene expression tags for gene identification. Proc Natl Acad Sci U S A. 2000, 97: 349-353.
    [11] Brian CS. Revolutions in rapid amplification of cDNA ends: new strategies for polymerase chain reaction cloning of full-length cDNA ends. Analytical Biochemistry 1995, 227: 255-273.
    [12] Tsuzuki S, Iwami M, Sakurai S. Ecdysteroid-inducible genes in the programmed cell death during insect metamorphosis. Insect Biochemistry and Molecular Biology 2001, 31: 321-331.
    [13] Shinoda T, Itoyama K. Juvenile hormone acid methyltransferase: A key regulatory enzyme for insect metamorphosis. Proc Natl Acad Sci U S A. 2003, 100: 11986-11991.
    [14] Terashima J, Yasuhara N, Iwami M, Sakurai S, Sakurai S. Programmed cell death triggered by insect steroid hormone, 20-hydroxyecdysone, in the anterior silk gland of the silkworm, Bombyx mori. Dev.Genes. Evol. 2000, 210: 545-558.
    [15] Vermunt AM, Kamimura M, Hirai M, Kiuchi M, Shiotsuki T. The juvenile hormone binding protein of silkworm haemolymph: gene and functional analysis. Insect Molecular Biology 2001, 10(2): 147-154.
    [16] Takahashi M, Kikuchi K, Tomita S, Imanishi S, Nakahara Y, Kiuchi M, Kamimura M. Transient in vivo reporter gene assay for ecdysteroid action in the Bombyx mori silk gland. Comparative Biochemistry and Physiology 2003, 135: 431-437.
    [17] Mao M, Yu M, Tong JH, Ye J, Zhu J, Huang QH, Fu G, Yu L, Zhao SY, Waxman S, Lanotte M, Wang ZY, Tan JZ, Chan SJ, Chen Z. RIG-E, a human homolog of the murine Ly-6 family, is induced by retinoic acid during the differentiation of acute promyelocytic leukemia cell. Proc Natl Acad Sci U S A. 1996, 93(12): 5910-5915
    [1] Fraenkel G, Hsiao C. Hormonal and nervous control of tanning in the fly. Science 1962, 138: 27-29.
    [2] Fraenkel G, Hsiao C. Tanning in the adult fly: A new function of neurosecretion in the brain. Science 1963, 141: 1057-1058.
    [3] Fraenkel G, Hsiao C, Seligman M. Properties of bursicon: An insect protein hormone that controls cuticular tanning. Science 1966, 151: 91-93.
    [4] Luo CW, Dewey EM, Sudo S, Ewer J, Hsu SY, Honegger HW, Hsueh AJ. Bursicon, the insect cuticle-hardening hormone, is a heterodimeric cysteine knot protein that activates G protein-coupled receptor DLGR2. Proc Natl Acad Sci U S A. 2005, 102: 2820-2825.
    [5] Mendive FM, Van Loy T, Claeysen S, Poels J, Williamson M, Hauser F, Grimmelikhuijzen CJ, Vassart G, Vanden Broeck J. Drosophila molting neurohormone bursicon is a heterodimer and the natural agonist of the orphan receptor DLGR2. FEBS Lett. 2005, 579: 2171-2176.
    [6] Dewey EM, McNabb SL, Ewer J, Kuo GR, Takanishi CL, Truman JW, Honegger HW. Identification of the gene encoding bursicon, an insect neuropeptide responsible for cuticle sclerotization and wing spreading. Curr. Biol. 2004, 14: 1208-1213.
    [7] Kostron B, Marquardt K, Kaltenhauser U, Honegger HW. Bursicon, the cuticle sclerotizing hormone—comparison of its molecular mass in different insects. J. Insect Physiol.1995, 41: 1045-1053.
    [8] Horodyski FM, Riddiford LM, Truman JW. Isolation and expression of the eclosion hormone gene from the tobacco hornworm, Manduca sexta. Proc. Natl. Acad. Sci. USA 1989, 86: 8123-8127.
    [9] Zitnan D, Kingan TG, Hermesman JL, Adams ME. Identification of ecdysis-triggering hormone from an epitracheal endocrine system. Science 1996, 271: 88-91.
    [10]Baker JD, McNabb SL, Truman JW. The hormonal coordination of behavior and physiology at adult ecdysis in Drosophila melanogaster. J. Exp. Biol. 1999, 202: 3037-3048.
    [11]Fuse M, Truman JW. Modulation of ecdysis in the moth Manduca sexta: The roles of the suboesophageal and thoracic ganglia. J. Exp. Biol. 2002, 205: 1047-1058.
    [12]Park JH, Schroeder AJ, Helfrich-Forster C, Jackson FR, Ewer J. Targeted ablation of CCAP neuropeptide containing neurons of Drosophila causes specific defects in execution and circadian timing of ecdysis behavior. Development 2003, 130: 2645-2656.
    [13]Park Y, Filippov V, Gill SS, Adams ME. Deletion of the ecdysis-triggering hormone gene leads to lethal ecdysis deficiency. Development 2002, 129: 493-503.
    [14]Clark AC, del Campo ML, Ewer J. Neuroendocrine control of larval ecdysis behavior in Drosophila: Complex regulation by partially redundant neuropeptides. J. Neurosci. 2004, 24: 4283-4292.
    [15]Baker JD, Truman JW. Mutations in the Drosophila glycoprotein hormone receptor, rickets, eliminate neuropeptide-induced tanning and selectively block a stereotyped behavioral program. J. Exp. Biol. 2002, 205: 2555-2565.
    [16]Fire A, Xu SQ, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391: 806-811.
    [17]Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21-23 nucleotide intervals. Cell 2000, 101: 25-33.
    [18]Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001, 409: 363-366.
    [19]Aljamali MN, Bior AD, Sauer JR, Essenberg RC. RNA interference in ticks: a study using histamine binding protein dsRNA in the female tick Amblyomma americanum. Insect Mol. Biol. 2003, 12: 299-305.
    [20]Narasimhan S, Montgomery RR, DePonte K, Tschudi C, Marcantonio N, Anderson JF, Sauer JR, Cappello M, Kantor FS, Fikrig E. Disruption of Ixodes scapularis anticoagulation by using RNA interference. Proc Natl Acad Sci U S A. 2004, 101: 1141-1146.
    [21]Tabunoki H, Higurashi S, Ninagi Q, Fujii H, Banno Y, Nozaki M, Kitajima M, Miura N, Atsumi S, Tsuchida K, Maekawa H, Sato R. A carotenoid-binding protein (CBP) plays a crucial role in cocoon pigmentation of silkworm (Bombyx mori) larvae. FEBS Lett. 2004, 567: 175-178.
    [22]Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 1992, 257: 967-971.
    [23]Seligman LM, Doy EA, Crossley AC. Hormonal control of morphogenetic cell death of the wing hypodermis in Lucilia cuprina. Tissue Cell 1975, 7: 281-296.
    [24]Kimura K, Kodama A, Hayasaka Y, Ohta T. Activation of the cAMP/PKA signaling pathway is required for post-ecdysial cell death in wing epidermal cells of Drosophila melanogaster. Development 2004, 131: 1597-1606.
    [25]Johnson SA, Milner MJ. The final stages of wing development in Drosophila melanogaster. Tissue Cell 1987, 19: 505-513.
    [26] Becker A, Schloder P, Steele JE, Wegener G. The regulation of trehalose metabolism in insects. Experientia 1996, 52: 433-439.
    [27] Candy DJ. The control of muscle trehalase activity during locust flight. Biochem. Soc. Trans. 1974, 2: 1107-1109.
    [28] Wegener G, Tschiedel V, Schloder P, Ando O. The toxic and lethal effects of the trehalase inhibitor trehazolin in locusts are caused by hypoglycaemia. J. Exp. Biol. 2003, 206: 1233-1240.
    [29] Knuesel I, Murao S, Shin T, Amachi T, Kayser H. Comparative studies of suidatrestin, a specific inhibitor of trehalases. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1998, 120(4): 639-646.
    [1] Botstein D, White RL, Skolnick M, Davis RW. Construction of genetic linkage map in man using restriction length polymorphisms. Am.. J. Hum. Genet. 1980, 32: 314-331.
    [2] Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Res. 1995, 23:4407–4414.
    [3] Williams JGK, Hanafey MK, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990, 18: 6531–6535.
    [4] Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 1989, 17: 6463–6471.
    [5] Konieczny A, Frederick MA. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. The Plant Journal 1993, 4(2): 403-410.
    [6] Baumbusch LO, Sundal IK, Hughes DW, Galau GA, Jakobsen KS. Efficient protocols for CAPs-based mapping in Arabidopsis. Plant Molecular Biology Reporter 2001, 19(3):137-149.
    [7] Neff MM, Neff JD, Chory J, Pepper AE. dCAPs, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. The Plant Journal 1998, 14(3):387-392.
    [8] Scott DM, Amasino RM. A robust method for detecting single-nucletide changes as polymorphic markers by PCR. The Plant Journal 1998, 14(3):381-385.
    [9] Barth S, Melchinger AE, Lubberstedt T. Genetic diversity in Arabidopsis thaliana L. Heynh. investigated by cleaved amplified polymorphic sequence (CAPS) and inter-simple sequence repeat (ISSR) markers. Molecular Ecology 2002, 11(3):495-505.
    [10] Kaundun SS, Matsumoto S. Development of CAPS markers based on three key genes of the phenylpropanoid pathway in tea, Camellia sinensis (L.) O. Kuntze, and differentiation between assamica and sinensis varieties. Theor. Appl. Genet. 2003, 106(3):375-383.
    [11] Yu BL, Huang ZF, Zhou WJ, Zhang WJ. The creation of chromosome-specific CAPs and ASA markers of barley. Acta Genetica Sinica 2001, 28(6):550-555.
    [12] Miao XX, Xu SJ, Li MH, Li MW, Huang JH, Dai FY, Marino SW, Mills DR, Zheng PY, Mita K, Jia SH, Xu AY, Zhang Y, Liu WB, Xiang H, Guo QH, Kong XY, Lin HX, Shi YZ, Yasukochi Y, Sugasaki T, Shimada T, Nagaraju J, Xiang ZH, Wang SY, Goldsmith MR, Lu C, Zhao GP, Huang YP. Simple Sequence Repeat-Based Consensus Linkage Map of the Silkworm Genome. Proceedings of the National Academy of Sciences USA. 2005, 102(45):16303-16308.
    [13] Yasukochi Y. A dense genetic map of the silkworm, Bombyx mori, covering all chromosomes based on 1018 molecular markers. Genetics 1998, 150(4):1513-1525.
    [14] Li B, Lu C, Zhou ZY, Xiang ZH. Construction of silkworm RAPD molecular linkage map. Acta Genetica Sinica 2000, 27(2): 127-132.
    [15] Tan YD, Wan C, Zhu Y, Lu C, Xiang Z, Deng HW. An amplified fragment length polymorphism map of the silkworm. Genetics 2001, 157(3):1277-1284.
    [16] Chatterjee SN, Pradeep AR. Molecular markers (RAPD) associated with growth, yield and origin of the silkworm, Bombyx mori L. in India. Genetika 2003, 39(12):1612-1624.
    [17] Chatterjee SN, Mohandas TP. Identification of ISSR markers associated with productivity traits in silkworm, Bombyx mori L. Genome 2003, 46(3):438-447.
    [18] Nagaraju J, Reddy KD, Nagaraja GM, Sethuraman BN. Comparison of multilocus RFLPs andPCR-based marker systems for genetic analysis of the silkworm, Bombyx mori. Heredity 2001, 86(Pt 5):588-597.
    [19] Liu C, Chen Y, Gui M, Zhang C. Studies on the Mechanism of Variations of Hybrids of Domesticated Silkworm and Eri Silkworm-RAPD Analysis of Genome. Hereditas 1998, 20(2):5-8.
    [20] Yeh FC, Young RC, Timothy B, Boyle TBJ, Ye ZH, Mao JX. POPGENE, the user-friendly shareware for population genetics analysis. Molecular Biology and Biotechnology Center, University of Albert, Canada. 1997.
    [21]Sneath PHA, Sokal RR. In Numerical Taxonomy, W.H. Freeman and Company, San Francisco, California, USA, 1973, p. 230-234.
    [22] Smith JSC, Chin ECL, Shu H, An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparison with data from RFLPs and pedigree. Theoretical and applied genetics 1997, 95:163-173.
    [23] Shi J, Heckel DG, Goldsmith, MR. A genetic linkage map for the domesticated silkworm, Bombyx mori, based on restriction fragment length polymorphisms. Genet. Res. 1995, 66:109-126.
    [24] Obe H, Sugasaki T. Kanehara, M. Identification and genetic mapping of RAPD markers linked to the densonucleosis refractoriness gene, nsd-2, in the silkworm. Genes Genet. Syst. 2000, 75:93-96.
    [25] Li MW, Yao Q, Hou CX, Lu C, Chen, KP. Studies on RAPD markers linked the densonucleosis reeractoriness gene, nsd-Z in silkworm, Bombyx mori L. Sericologia, 2001, 41:409-415.
    [26] Yao Q, Li MW, Wang Y, Wang WB, Lu J, Dong Y, Chen KP. Screening of molecular markers for NPV resistance in Bombyx mori L. J. Appl. Ent. 2003, 127:134–136.
    [27] 陈克平, 姚勤. 家蚕耐氟性 RAPD 分子标记研究. 农业生物技术学报 2001, 9(2),136-138.
    [28] Chatterjee SN, Mohandas TP. Identification of ISSR markers associated with productivity traits in silkworm, Bombyx mori L. Genome 2003, 46(3):438-447.
    [29] Lu C, Li B, Zhao A, Xiang Z. QTL mapping of economically important traits in Silkworm (Bombyx mori). Science in China Series C-Life Sciences 2004, 47(5):477-484.
    [30] 鲁成, 余红仕, 向仲怀.基于 RAPD 分析的中国野桑蚕和家蚕遗传多样性和系统发育关系研究.昆虫学报 2002, 45:198-203.
    [31] 鲁成, 余红仕.中国野桑蚕和家蚕的分子系统学研究.中国农业科学 2002, 35:94-101.
    [32] Nagaraju J, Reddy KD, Nagaraja GM, Sethuraman BN. Comparison of multilocus RFLPs and PCR-based marker systems for genetic analysis of the silkworm. Heredity 2001, 86:588-597.
    [33] 夏庆友, 周泽扬, 鲁成, 向仲怀. 家蚕不同地理品种分子形态学研究. 昆虫学报 1998, 41:32-40.
    [34] Ueda H, Hyodo A, Takei F, Sasaki H, Ohshima Y, Shimura K. Sequence polymorphisms in the 5'-upstream region of the fibroin H-chain gene in the silkworm, Bombyx mori. Gene 1984, 28:241-248.
    [35] Shimada T, Hasegawa T, Matsumoto K, Agui N, Kobayashi M. Polymorphism and linkage analysis of the prothoracicotropic hormone gene in the silkmoth, Bombyx mori. Genet Res. 1994, 63:189-195.
    [36] Pinyarat W, Shimada T, Xu WH, Sato Y, Yamashita O, Kobayashi M. Linkage analysis of the gene encoding precursor protein of diapause hormone and pheromone biosynthesis-activating neuropeptide in the silkmoth, Bombyx mori. Genet Res. 1995, 65:105-111.
    [1] 向仲怀主编,《中国蚕种学》,四川科学技术出版社,1995.
    [2] Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P. Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol. 2000, 18(1):81-84.
    [3] Tomita M, Munetsuna H, Sato T, Adachi T, Hino R, Hayashi M, Shimizu K, Nakamura N, Tamura T, Yoshizato K. Transgenic silkworms produce recombinant human type III procollagen in cocoons. NatBiotechnol. 2003, 21(1):52-56.
    [4] Goldsmith MR et al. Genetics of the silkworm: revisiting an ancient model system. In: Molecular Model Systems in the Lepidoptera.(eds.: M. R. Goldsmith, and A. S. Wilkins), Cambridge Univ. Press, New York. 1995. pp: 21-76.
    [5] Fujii H, Banno Y, Doira H, Kihara H, Kawaguchi Y. Genetical stocks and mutations of Bombyx mori: important genetic resources (second edition). Faculty of Agriculture, Kyushu University. 1998.
    [6] Promboon A, Shimada T, Fujiwara H et al. Linkage map of RAPDs in the silkworm, Bombyx mori. Genet. Res. Camb. 1995, 66:1-7.
    [7] Shi J, Heckel DG, Goldsmith MR. A genetic linkage map for the domesticated silkworm, Bombyx mori, based on RFLPs. Genet. Res. Camb. 1995, 66:109-126.
    [8] Yasukochi Y. A dense genetic map of the silkworm, Bombyx mori, covering all chromosomes based on 1018 molecular markers. Genetics. 1998,150(4):1513-25.
    [9] Tan YD, Wan C, Zhu Y, Lu C, Xiang Z, Deng HW. An amplified fragment length polymorphism map of the silkworm. Genetics. 2001,157(3):1277-1284.
    [10] Miao XX, Xub SJ, Li MH, Li MW, Huang JH, Dai FY, Marino SW, Mills DR, Zeng P, Mita K, Jia SH, Zhang Y, Liu WB, Xiang H, Guo QH, Xu AY, Kong XY, Lin HX, Shi YZ, Lu G, Zhang X, Huang W, Yasukochi Y, Sugasaki T, Shimada T, Nagaraju J, Xiang ZH, Wang SY, Goldsmith MR, Lu C, Zhao GP, Huang YP. Simple sequence repeat-based consensus linkage map of Bombyx mori. Proc Natl Acad Sci U S A. 2005, 102(45):16303-16308.
    [11] Xia Q, Zhou Z, Lu C, Cheng D, Dai F, Li B, Zhao P, Zha X, Cheng T, Chai C, Pan G, Xu J, Liu C, Lin Y, Qian J, Hou Y, Wu Z, Li G, Pan M, Li C, Shen Y, Lan X, Yuan L, Li T, Xu H, Yang G, Wan Y, Zhu Y, Yu M, Shen W, Wu D, Xiang Z, Yu J, Wang J, Li R, Shi J, Li H, Li G, Su J, Wang X, Li G, Zhang Z, Wu Q, Li J, Zhang Q, Wei N, Xu J, Sun H, Dong L, Liu D, Zhao S, Zhao X, Meng Q, Lan F, Huang X, Li Y, Fang L, Li C, Li D, Sun Y, Zhang Z, Yang Z, Huang Y, Xi Y, Qi Q, He D, Huang H, Zhang X, Wang Z, Li W, Cao Y, Yu Y, Yu H, Li J, Ye J, Chen H, Zhou Y, Liu B, Wang J, Ye J, Ji H, Li S, Ni P, Zhang J, Zhang Y, Zheng H, Mao B, Wang W, Ye C, Li S, Wang J, Wong GK, Yang H; Biology Analysis Group. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science. 2004, 306(5703):1937-1940.
    [12] Mita K, Kasahara M, Sasaki S, Nagayasu Y, Yamada T, Kanamori H, Namiki N, Kitagawa M, Yamashita H, Yasukochi Y, Kadono-Okuda K, Yamamoto K, Ajimura M, Ravikumar G, Shimomura M, Nagamura Y, Shin-I T, Abe H, Shimada T, Morishita S, Sasaki T. The genome sequence of silkworm, Bombyx mori. DNA Res. 2004, 11: 27-35.
    [13] Huang J, Miao X, Jin W, Couble P, Mita K, Zhang Y, Liu W, Zhuang L, Shen Y, Keime C, et al. Serial analysis of gene expression in the silkworm, Bombyx mori. Genomics 2005, 86: 233-241.
    [14] Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science 1995, 270:484-487.
    [15] Velculescu VE., Madden SL., Zhang L, Lash AE, Yu J, Rago C, Lal A, Wang CJ, Beaudry GA, Ciriello KM, et al. Analysis of human transcriptomes. Natural Genetics 1999, 23: 387-388.
    [16] Velculescu VE, Zhang L, Zhou W, Vogelstein J, Basrai MA, Bassett Jr DE, Hieter P, Vogelstein B, Kinzler KW. Characterization of the yeast transcriptome. Cell 1997, 88: 243-251.
    [17] Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF. The genome sequence of Drosophila melanogaster. Science 2000, 287: 2185-2195.