高离化态钨离子双电子复合过程的相对论理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双电子复合(DR)过程作为重要的电子-离子非弹性碰撞现象之一,是实验室高温等离子体和天体等离子体中影响等离子体电离平衡的一种很重要原子动力学过程,它对建立和维持等离子体的电离平衡以及对离子激发态布居起着主导作用。高精度的DR强度、截面以及速率系数是模拟和诊断各种天体等离子体及实验室等离子体和研制X射线激光的重要参数。
     在国际热核聚变实验反应堆(ITER)的设计中,偏滤器将完全采用钨材料。而在偏滤器等离子体的辐射冷却过程中,复合过程是高离化态钨离子辐射损失的重要原因。同时,钨还将用作等离子体诊断探针元素。因此,对钨离子双电子复合(DR)过程的研究有很重要的实际应用价值。
     本文利用相对论组态相互作用方法对等核系列钨离子的双电子复合过程进行了研究。对类铷W~(37+)离子的研究结果表明:在电子温度为1eV-5×10~4eV范围内,4p电子激发对DR速率系数的贡献最大,且4l壳层电子激发对DR速率系数的贡献在低温时,远大于3l壳层电子激发的贡献,随着温度的增加,3l壳层电子激发对DR速率系数的贡献逐渐增大,当电子温度到达650 eV时,3l壳层电子激发对DR速率系数的贡献达到总DR速率系数的12.5%。所以在温度较高的等离子体环境中,3l激发的贡献必须予以考虑。随着温度的增加,Δn= 2芯激发的DR速率系数逐渐增大,最大可以达到总DR速率系数的22%。
     对于W~(38+),W~(44+)和W~(46+)离子的研究结果表明:对于W~(46+)离子,在电子温度kT_e>5eV时,3d电子激发的贡献最大。对于W~(44+)离子,在中低温时4s电子激发的贡献最大,在较高温时3d电子激发的贡献最大。对于W~(38+)离子,4p电子激发的DR速率系数始终最大,在高温时3d电子激发的贡献接近4p电子激发的贡献。随着温度的增加,W~(38+),W~(44+)和W~(46+)离子芯激发的DR速率系数逐渐增大,最大分别可达到总DR速率系数的26%,22.5%和21%。
The knowledge of accurate dielectronic recombination (DR) rates of heavy ions is crucial for the study of ionization balance of highly ionized elements in hot plasmas. The process therefore plays an important role in the theoretical modeling of plasmas, whether in the laboratory or in astrophysical sources such as the solar corona. This knowledge is also essential for the research of X-ray lasers especially for calculating the populating and depopulating of lasing levels.
     Tungsten will be used for a certain plasma-facing components in the divertor region of the International Thermonuclear Experimental Reactor (ITER), and will also be used for the diagnostics of the erosion of heavy species into the plasma. For divertor plasma modeling and radiative cooling studies, accurate atomic data for highly ionized tungsten ions are essential, especially data on recombination processes that are a major source of radiation losses.
     We calculate the dielectronic recombination rate coefficients of W~(37+) ions by using the Flexible Atomic Code (FAC). The results are presented for total DR rate coefficients of the temperature from 1 to 5×10~4 eV. It shows that the contribution from 4p subshell excitation dominates in the whole energy region, it larger than 4d subshell excitation near one order of magnitude. DR rate coefficients from 4s, 4p and 4d subshell excitations increase with the decreasing electron temperature in the low temperature. The contribution from 3d shell excitation play an additional important role in the total DR rate coefficients at high temperature, and the relative contributions from 3s, 3p and 3d subshell excitations increase smoothly with the increasing temperature. The relative contribution from△n = 2 core excitation increases smoothly with increasing temperature and is about 20% at 5500 eV. The radiative recombination (RR) and three-body recombination (TBR) rate coefficients, which are also two important recombination processes in plasmas. The results show that the DR rate coefficients are great than the RR rate coefficients and TBR rate coefficients for the whole energy region. Clearly, DR is predominate the ionization balance.
     Detailed calculations of DR rate coefficients of W~(46+), W~(44+) and W~(38+) ions by using the Flexible Atomic Code (FAC). For W~(46+) ions, when electron temperature kT_e>5 eV, the contribution from 3d subshell excitation dominates. And for W~(44+) ions, the contribution from 4s subshell excitation dominates at low electron temperature and 3d subshell excitation dominates at higher electron temperature. For W~(38+) ions, the contribution from 4p subshell excitation dominates in the whole energy region, and 3d shell excitation play an additional important role in the total DR rate coefficients at high temperature. The relative contribution from△n = 2 core excitation is about 26%,22.5% and 21% at 50000 eV, respectively.
引文
[1] M. J. Seaton and P. J. Storey Atomic Processes and Applications (Amsterdam:North Holland Publishing Company) p133 (1976)
    [2] Y. Hahn Advances in Atomic and Molecular Physics (New York :Academic Press) p123 (1985)
    [3] S. H. Glenzer, W. Rozmus, B. J. MacGowan, et al. Thomson Scattering from High- Z Laser-Produced Plasmas Phys . Rev. Lett . 82 97 (1999)
    [4] J. B. A. Mitchell, C. T. Ng, J. L. Forand et al. Dielectronic-Recombination cross-section measurements for C+ ions, Phys. Rev. Lett. 50, 335 (1983).
    [5] P. F. Dittner, S. Datz, P. D. Miller et al., Cross sections for dielectronic recombination of B2+ and C3+ via 2s-2p excitation, Phys. Rev. Lett. 51, 31 (1983).
    [6] R. E. Marrs, M. A. Levine, D. A. Knapp et al. Electronic and atomic collisions. Elsevier, 209 (1988).
    [7] D. A. Knapp, R. E. Marrs, M. A. Levine et al. Dielectronic recombination of heliumlike nickel, Phys. Rev. Lett. 62, 2104 (1989).
    [8] D. A. Knapp, P. Beiersdorfer, M. H. Chen et al. Observation of interference between dielectronic recombination and radiative recombination in highly charged uranium ions, Phys. Rev. Lett. 74, 54 (1995).
    [9] C. Brandau, C. Kozhuharov, A. Müller et al. First dielectronic recombination measurements with H-like uranium GSI Scientific Report, GSI2005-1 201 (2005).
    [10] A.J. González Martínez, Quantum interference in the dielectronic recombination of heavy highly charged ions, Ph.D. dissertation, Ruperto-Carola University of Heidelberg (2005).
    [11] A. J. González Martínez, J. R. Crespo López-Urrutia, J. Braun et al. State-selective quantum interference observed in the recombination of highly charged Hg75+…78+ mercury ions in an electron beam ion trap, Phys. Rev. Lett. 94, 203201 (2005).
    [12] H. Watanabe, H. Tobiyama, A. P. Kavanagh et al. Dielectronic recombination of He-like to C-like iodine ions, Phys. Rev. A 75, 012702 (2007).
    [13] W. D. Chen, W. Hu, Y. Q. Fu et al. Study of the first intershell (KLL) dielectronic recombination resonances for Be-, B-, and C-like xenon, Phys. Plasm. 14, 103302 (2007).
    [14] H. S. W. Massey and D. R. Bates The properties of neutral and ionized atomic oxygen and their influence on the upper atmosphere, Rep. Prog. Phys. 9, 62 (1942)
    [15] A. Burgess, Delectronic Recombination and the Temperature of the Solar Corona, Astrophys. J. 139, 776(1964); A General Formula for the Estimation of Dielectronic Recombination Co-Efficients in Low-Density Plasmas, Astrophys. 141, 1589 (1965)
    [16]M. Y. Song and T. Kato, Dielectronic Recombination of Xe10+ Ions and Satellite Line of Xe9+ Ions, NIFS-DATA 94, 1(2005)
    [17] U. I. Safronova, R. Bista, R. Bruch and Yu Ralchenko, Dielectronic recombination of the Xe8+ ion and satellite lines of the Xe7+ ion, J. Phys. B: At. Mol. Opt. Phys. 42 015001 (2009)
    [18] C. P. Ballance,S. D. Loch,M. S. Pindzola,et al. , Dielectronic recombination of W35+, J. Phys. B: At. Mol. Opt. Phys. 43 205201 (2010)
    [19] M. F. Gu The flexible atomic code Can. J. Phys. 86, 675 (2008)
    [1] L.V. Chernysheva, V.L. Yakhontov, Two-program package to calculate the ground and excited state wave functions in the Hartree—Fock—Dirac approximation, Comput. Phys. Commun. 83, 215 (1999)
    [2] G. Gaigalas, Z. Rudzikas, Charlotte Froese Fischer, An efficient approach for spin - angular integrations in atomic structure calculations, J. Phys. B: At. Mol. Opt. Phys. 30, 3747 (1997).
    [3] I. P. Grant, Gauge invariance and relativistic radiative transitions, J. Phys. B: At. Mol. Opt. Phys. 7, 1458 (1974)
    [4] A. Hibbert, CIV3—A general program to calculate configuration interaction wave functions and electric-dipole oscillator strengths, Comput. Phys. Commun. 9, 141 (1997)
    [5] W. Eissner, M. Jones, H. Nussbaumer, Techniques for the calculation of atomic structures and radiative data including relativistic corrections, Comput. Phys. Commun. 8, 270 (1974)
    [6] R. D. Cowan, Theory of Atomic Strueture and Spectra: University of California Press,Berkeley (1981)
    [7] C. Froese Fiseher, T. Brage, P. Jonsson, Computational Atomic Physics: An MCHF Approach, Institute of Physics Publishing, Bristol (2000)
    [8] I. P. Grant, B. J. McKenzie, P. H. Norrington, D. F. Mayers, N. C. Pyper, An atomic multiconfigurational Dirac-Fock package, Comput. Phys. Commun. 21, 207 (1980)
    [9] M. Y. Amusia, L. V. Chernysheva, Computation of Atomic Processes: A Handbook For ATOM Programs, Institute of Physics Publishing, Bristol (1997)
    [10] A. Bar-Shalom, M. Klapisch, J. Oreg, HULLAC-an integrated computer package for atomic processes in plasmas, J. Quant. Spectrosc. Radiat. Transfer. 71, 169 (2001)
    [11] D. H. Sampson, H. L. Zhang, A. K. Mohanty, R. E. H. Clark, A Dirac-Fock-Slater approach to atomic structure for highly charged ions, Phys. Rev. A 40, 604 (1989)
    [12] H. L. Zhang, D. H. Sampson, A. K. Mohanty, Fully relativistic and quasirelativistic distorted-wave methods for calculating collision strengths for highly charged ions, Phys. Rev. A 40, 616 (1989)
    [1] E. Behar,A. Peleg,R. Doron,et al. Dielectronic recombination of Ni-, Cu-, and Ar-like tungsten and barium through the low inner-shell excited configurations including collision process. J. Quant. Spectrosc. Radiat. Transfer 58(4) 449-469 (1997)
    [2] R. Radtke,C. Biedermann,J. L. Schwob,et al. Line and band emission from tungsten ions with charge 21+ to 45+ in the 45–70? range. Phys. Rev. A 64 012720 (2001)
    [3] C. Biedermann,R. Radtke,J. L. Schwob,et al. EUV spectroscopy of highly charged tungsten ions relevant to hot plasmas. Phys. Scr. T92 85-88 (2001)
    [4] S. B. Utter,P. Beiersdorfer,E. Trabert. Electron-beam ion-trap spectra of tungsten in the EUV. Can. J. Phys. 80(12) 1503-1515 (2002)
    [5] T. Pütterich,R. Neu,C. Biedermann,et al. Disentangling the emissions of highly ionized tungsten in the range 4–14 nm. J. Phys. B: At. Mol. Opt. Phys. 38(16) 3071-3081 (2005)
    [6] Y. Ralchenko,J. Reader,J. M. Pomeroy,et al. Spectra of W39+–W47+ in the 12–20 nm region observed with an EBIT light source. J. Phys. B: At. Mol. Opt. Phys. 40(19) 3861-3876 (2007)
    [7] C. P. Ballance,D. C. Griffin. Relativistic radiatively damped R-matrix calculation ofthe electron-impact excitation of W46+. J. Phys. B: At. Mol. Opt. Phys.39(17) 3617-3628 (2006)
    [8] C. P. Ballance,D. C. Griffin. Electron-impact excitation of W4 4+ and W45+. J. Phys. B: At. Mol. Opt. Phys. 40(1) 247-258 (2007)
    [9] Loch S D,Ludlow J A,Pindzola M S. Electron-impact ionization of atomic ions in the W isonuclear sequence. Phys. Rev. A 72 052716 (2005)
    [10] M. S. Pindzola,D. C. Griffin. Electron-impact ionization of the tungsten atom. Phys. Rev. A 46 2486-2488 (1992)
    [11] M. S. Pindzola,D. C. Griffin. Electron-impact ionization of tungsten ions in the configuration-average distorted-wave approximation. Phys. Rev. A 56 1654-1657 (1997)
    [12] J. J. Boyle,Z. Altun,H. P. Kelly. Photoionization cross-section calculation of atomic tungsten. Phys. Rev. A 47 4811-4830 (1993)
    [13] P. Sladeczek,H. Feist,M. Feldt,et al. Photoionization Experiments with an Atomic Beam of Tungsten in the Region of the 5p and 4f excitation. Phys. Rev. Let. 75 1483-1486 (1995)
    [14] T. M. Shen,C. Y. Chen,Y. S. Wang,et al. Resonance excitation rate coefficients of Ni-like tungsten. J. Phys. B: At. Mol. Opt. Phys. 40(15) 3075-3090 (2007)
    [15] M. B. Trzhaskovskaya,V. K. Nikulin,R. E. H. Clark. Radiative recombination rate coefficients for highly-charged tungsten ions. At. Data Nuc. Data Tables 96 1-15 (2010)
    [16] A. Peleg,E. Behar,P. Mandelbaum,et al. Total dielectronic recombination rate coefficient for Ar-like tungsten. Phys. Rev. A 57 3493-3503 (1998)
    [17] E. Behar,P. Mandelbaum,J. L. Schwob. Dielectronic recombination of Ne-like tungsten. Phys. Rev. A 59 2787-2793 (1999)
    [18] U. I. Safronova,A. S. Safronova,P. Beiersdorfer. Excitation energies, radiative and autoionization rates, dielectronic satellite lines, and dielectronic recombination rates for excited states of Na-like W from Ne-like W. At. Data Nuc. Data Tables 95 751-785 (2009) U. I. Safronova,A. S. Safronova,P. Beiersdorfer,et al. Excitation energies, radiative and autoionization rates, dielectronic satellite lines, and dielectronic recombination rates for excited states of Ag-like W from Pd-like W. J. Phys. B: At. Mol. Opt. Phys. 44 (3) 035005(2011).
    [19] F. C. Meng,C. Y. Chen,Y. S. Wang,et al. Total dielectronic recombination rate coefficient for Co-like tungsten. J. Quant. Spectrosc. Radiat. Transfer 109 2000-2008 (2008)
    [20] C. P. Ballance,S. D. Loch,M. S. Pindzola,et al. Dielectronic recombination of W35+. J. Phys. B: At. Mol. Opt. Phys. 43(20) 205201 (2010)
    [21] C. H. Skinner. Applications of EBIT to magnetic fusion diagnostics. Can. J. Phys. 2008 86(1): 285–290
    [22] Y. Hahn. Theory of dielectronic recombination Adv. At. Mol. Phys. 21 123 (1985)
    [23] F. Koike,S. Fritzsche,K. Nishihara,et al. Precise and Accurate Calculations of Electronic Transitions in Heavy Atomic Ions Relevant to Extreme Ultra-Violet Light Sources. J. Plasma Fusion Res. Series 7 253-255 (2006)
    [24] H. Zhang,Y. M. Li,J. Yan,et al. Dielectronic recombination processes through doubly excited states (4l4l′,4l5l′) in Co-like Pd ions. Phys. Rev. A 71 042705 (2005)
    [25] N. J. Peacock,R. S. Pease. Sources of highly stripped ions. J. Phys. D: Appl. Phys. 2(2) 1705-1716 (1969)
    [26] C. H. Skinner. Applications of EBIT to magnetic fusion diagnostics. Can. J. Phys. 86(1) 285–290 (2008)
    [27]Y. B. Fu, C. Z. Dong, M. G. Su and G. O Sullivan Dielectronic Recombination of Sn10+ Ions and Related Satellite Spectra. Chin. Phys. Lett. 25 927 (2008)
    [1] Fan-Chang Meng,Chong-Yang Chen,Yan-Sen Wang,et al. Total dielectronic recombination rate coefficient for Co-like tungsten. J. Quant. Spectrosc. Radiat. Transfer 109 2000–2008 (2008)
    [2] Behar E,Mandelbaum P,Schwob JL. General analytic formula for total dielectronic recombination rate coefficients of Ni-like ions. Phys Rev A 58 2115 (1998).
    [3] Behar E,Peleg A,Doron R,et al. Dielectronic recombination of Ni-, Cu-, and Ar-like tungsten and barium through the low inner-shell excited configurations including collision process. J. Quant. Spectrosc. Radiat. Transfer 58 449-469 (1997).
    [4]Y. B. Fu, C. Z. Dong, M. G. Su and G. O Sullivan Dielectronic Recombination of Sn10+ Ions and Related Satellite Spectra. Chin. Phys. Lett. 25 927 (2008)
    [1] S. Dalhed,J. Nilsen and P. Hagelstein,Dielectronic-recombination-rate coefficients for neonlike ions,Phys. Rev. A 33,264 (1986)
    [2] J. C. Raymond,B. W. Smith,Temperature diagnostic line ratios of Fe XVII,Astrophys. J. 306,762 (1986)
    [3] J. P. Apruzese and J. Davis,Kinetics of x-ray lasing by resonant photoexcitation:Fundamentals of pumping power and gain for the Na x–Ne ix system,Phys. Rev. A 31,2976 (1985)
    [4] A. Dasgupta,K. G. Whitney,M. Blaha and M. Buic,Analysis of pumping mechanisms affecting the gain of the J=0-1 and J=2-1 lines in neonlike selenium,Phys. Rev. A 46,5973 (1992)
    [5] P. B.hoiden,S. B. Healy,M T. Lightbocty,et al. A computational investigation of the neon-like germanium collisionally pumped laser,J. Phys. B: At. Mol. Opt. Phys. 27,341(1994)
    [6] C. Brandau,C. Kozhuharov,Z. Harman,et al. dielectronic recombination of three-electron Nd57+,Phys. Rev. Lett. 100,073210 (2008)
    [7] A. Pálffya,Z. Harmana,C. Kozhuharovb,et al. Nuclear excitation by electron capture followed by fast x-ray emission,Phys. Lett. B 661,330 (2008)