甘蓝型油菜隐性上位核不育系统育性基因的定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陈凤祥等(1993,1998)报道了甘蓝型油菜隐性上位互作核不育系统并提出了该不育系统的遗传模式,提出不育性状由二对隐性不育重叠基因和一对隐性上位抑制基因互作控制。该不育系统具有不育性彻底、稳定且恢复源广等优点。然而由于该不育系的育性受多对基因互作控制,分离后代基因型复杂,给选育带来很大困难,限制了该不育系统在杂交育种中的大规模应用。为了进一步解决隐性上位互作核不育统在生产应用中的难题,我们认为有必要寻找与育性相关基因紧密连锁的共显性标记,通过标记辅助筛选达到快速高效改良和选育两型系和临保系的目的,从而生产出农艺性状和品质特点符合大面积制种需要的遗传稳定的全不育系。为此我们以陕西省农垦科教中心提供的纯合两型系和临保系及全不育系构建基因池,用于目标基因连锁标记的筛选;利用三基因互作核不育杂种沪油杂1号通过多代兄妹交保存的两型系和可育株自交后代分离群体为材料定位Bnms3基因;同时将全不育系与临保系回交获得BCl群体定位Bnrf基因。从本课题组SG图谱以及拟南芥基因组共线性区域和油菜BAC文库等公共资源获得相关序列信息并开发标记,利用BSA(集群分离法)法寻找与育性基因Bnms3位点和上位抑制基因Bnrf紧密连锁的分子标记,构建目标基因区域的连锁图谱。取得的实验结果和主要结论如下:
     隐性不育基因Bnms3位点的定位研究及共显性标记的开发1) Bnms3基因初定位及目标连锁群的获得:从前人的研究结果中筛选到与育性表型共分离的标记共5个(SC1、SC5、SEP4B、SEP7和SEP8),均为显性标记。根据5个标记在DH(Sollux×Gaoyou)群体中的分析结果,SEP7被定位于本课题组构建SG图谱A10连锁群,进一步从该连锁群上获得连锁标记PBI和ZAAS133,其中PBI为共显性标记。最终依据连锁标记在500单株的小群体中的连锁分析结果,将Bnms3基因定位于SG-A10连锁群,并初步获得与目标基因连锁的标记共7个,除PBI为共显性标记外,其余均为显性标记。因此我们仅选择PBI和SEP7(定位于SG-A10)以及He等(2008)刚发表的AR23和AR48(显性标记)共4个标记对Bnms3基因进行初步定位,将目标基因定位于AR23和AR48之间,遗传距离分别为0.4cM和1.0cM,共显性标记PBI的遗传图距为2.1 cM。
     2) Bnms3基因的精细定位:依据初定位结果,从模式作物拟南芥基因组获得共线性区域,进一步从芸薹属BAC库获得7个位于目标区段的BAC片段并设计了45对引物,BSA分析表明有15对引物显示多态性,最终6个(Ms3-6、Ms3-9、Ms3-10、Ms3-20、Ms3-32和Ms3-44)被证明与目标基因紧密连锁,涉及3个BAC。Bnms3基因被定位于连锁标记Ms3-32和Ms3-6之间,定位区域由1.4cM缩小为0.5cM,对应同源拟南芥基因组物理距离为280Kb,比发表的Bnms3二侧最近标记(AR23和AR48)470Kb缩小了190 Kb。
     3)共显性标记的获得:至此,所有已公开发表的Bnms3连锁标记均为显性标记,而本研究针对Bnms3区域BAC序列开发标记,获得3个分别位于目标基因两侧的共显性标记:PBI、MS3-9和MS3-32,距离Bnms3基因分别为2.1 cM、0.4cM和0.1 cM。共显性标记的获得将对分子标记辅助选育起到至关重要的作用。
     4)常规品种Bnms3位点基因型的检测:利用共显性标记(PBI和Ms3-32)对72个代表性品种的Bnms3位点基因型进行检验,结果表明普通品种中Bnms3位点均为显性纯合(BnMS3MS3),这解释了为什么所有普通油菜品种均为其恢复系的原因。
     二、隐性上位基因Bnrf的初定位及共显性连锁标记的开发
     从本课题组SG图谱上筛选到3个(MR166、SR0282和R118)与Bnrf基因连锁的分子标记并初步构建了目标基因的连锁图谱,同时将他人研究获得的标记(ESPSC1、ESPSC2和XSC5)整合到了连锁图谱中,最终将目标基因定位于SG-A7连锁群9.2cM的区间内,距离Bnrf基因两侧最近的标记是ESPSC1和MR166,遗传距离分别为6.0cM和3.2cM,其中SR0282被证实是共显性标记,其他均为显性标记。
Chen et al (1993,1998) reported that the sterility of RGMS was controlled by two recessive genes (Bnms3 and Bnms4) and one recessive epistatic suppression gene (Bnrf) interactively. This sterile system has several remarkable advantages, a stable, complete male sterility, which makes sure for yielding high rate F1 hybrid seeds; a complete open flower petal, which benefits for getting a good seeds set. Of them, the most important one is that almost all the normal rapeseed cultivars are its restorers, which provides possibility to produce huge number of F1 combinations for breeding purpose. Therefore, this RGMS was regarded as one of the most potential sterile system in oilseed rape nowadays. However, due to the polygene control system, resulting in complex genotypes in segregation generations, the improvement for sterile lines becomes difficult if without advanced technique support in practical breeding procedures. So it is necessary to develop a set of specific markers, which linked either to sterile or epistatic genes for creating or improving a two-type lines and temporary maintainer lines, and thereby to get geneticly stable full sterile lines finally. To achieve this goals, firstly we used the DNA samples from sterile and fertile plants of two-type lineand also DNA's from temporary maintainer line and full sterility lines provided by Shan Xi province for marker screening. Secondly, the linked markers were confirmed and fine mapping for Bnms3 and Bnrf genes with large segregation population generated from sib-mating (9012A×9012B) and by full self-mating (9012B×9012B) of fertile plants, which from Huyouza 1 hao (F1 hybrid) originally. The locus specific PCR primers were developed on the basis of the syntenic region of the Arabidopsis genome, the Brassica BAC sequences and the published reference markers. The main results and conclusions are as following
     1. Fine mapping of the Bnms3 gene
     1) Screening markers linked to the Bnms3 gene:Based on published reports, we obtained 7 markers linkaged with the Bnms3 gene (SC1,SC5,SEP4B,SEP7, SEP8, AR23 and AR48), Of them, SEP7 was also mapped to SG (Sollux×Gaoyou) map in linkage group 10 (A10) Further, two markers nearby SEP7were proved to be also linked to Bnms3 (PBI and ZAAS133), PBI was a co-dominant marker. Thus, according to our result, Bnms3 gene was located on A10 of B. rape instead of C9 of B. oleracea as previously published. Finaly we choose 4 markers (PBI SEP7,AR23 and AR48) for future mapping Bnms3 gene in large population of 1896 plants.The Bnms3 gene was genetically mapped in a flanking region of 1.4 cM.Bnms3 gene was 0.4 cM from marker AR23 in one side and 1.0 cM from marker AR48 in another side.
     2) Fine mapping of the Bnms3 gene:According to the 4 marker mapping result of Bnms3 gene, we future developed 45 genome region specific primers from the syntenic search of the BAC clone in Brassica database between marker AR23 and AR48 and found 15 of them showing clear polymorphism between fertile and sterile plants. At last,6 markers (Ms3-6、Ms3-9、Ms3-10、Ms3-20、Ms3-32 and Ms3-44) showing clear co-segregation with the Bnms3 gene were selected for fine mapping in population of 1896 plants. The results future narrowed Bnms3 gene in a flanking region of 0.5 cM, with 0.1 cM from marker Ms3-32 and 0.4 cM from marker Ms3-6 in respective sides. Syntenic analysiswith Arabidopsis genome, a physical distance of 280 Kb between Ms3-6 and Ms3-32 was identified, which was 190 Kb less than published interval between flanking markers of Bnms3 gene.
     3) Co-dominant marker:Two of six co-segregation markers (Ms3-9 and Ms3-32) with Bnms3 showed co-dominant nature, with 0.4 cM and 0.1 cM to Bnms3 respectively. So far, all the published markers were dominant in nature.
     4) Identification of Bnms3 alleles in normal varieties:Using co-dominant marker PBI and Ms3-32,72 representative rapeseed cultivars worldwide were analyzed for allelic detection. The results indicated that all the checked cultivars were homozygosis locus for Bnms3 gene of BnMS3MS3. This result explained the reason for why almost all the normal rapeseed cultivars can be used as restorers.
     2. Fine mapping of the Bnrf gene
     Initially, more than 200 markers evenly distributed on SG-map were screened with sterile and fertile pools from temporary maintainer line and full sterility lines (1:1), searching for Bnrf linked markers. As a result, three markers (MR 166, R118 and sR0282) from A7 showed tightly linked with Bnrf gene. These markers together with another three published dominant markers (ESPSC1、ESPSC2 and XSC5) were used for co-segregation analysis in a F2 population of 864 plants. The result indicated that Bnrf gene was located on linkage group 7 (A7) of B. napus, which agreed with previously published result. The genetic distance between Bnrf gene to flanking markers MR166 and ESPSC1 were 3.2 and 6.0, respectively. One co-dominant marker sR0282 was detected, which located 11.9 cM away from Bnrf gene.
     All the co-dominant markers obtained from this research are positively contributed in present hybrid breeding.
引文
[1]Vratislav KuCera, Miroslava Vyvadilova, MiroslavKlima.利用自交不亲和与细胞质雄性不育系培育冬油菜杂交种.见:傅廷栋,官春云编.第12届国际油菜大会论文摘要集.Science Press USA Inc.2007:15
    [2]陈玉峰.甘蓝型油菜隐性细胞核雄性不育恢复基因的精细定位.[硕士学位论文].武汉:华中农业大学图书馆,2007
    [3]Crow J F.90 years ago:the beginning of hybrid maize.[J].Genetics,1998,148: 923-928.
    [4]傅廷栋.杂交油菜的育种与利用[M].第二版.武汉:湖北科学技术出版设,2000
    [5]王贵春.甘蓝型油菜隐性细胞核雄性不育两型系9012AB雄性不育基因的分子标记开发.[硕士学位论文].武汉:华中农业大学图书馆,2007
    [6]Yang G S, Duan Z H, Fu T D, et al. A promising alternative way of utilizing pol CMS for hybrid breeding in Brassica napus L. [J].Proc 10th Int Rapeseed Cong,1999, Canberra, Australia,73
    [7]Mohring S, Esch F, Wricke G, Breeding hybrid varitiles in winter rapeseed using recessively inherited self-incompatibility. [J]. Proc 10th Int Rapeseed Cong,1999, Canberra, Australia,72
    [8]Girke A, Heiko C B, Gabriele M E.Resynthesized rapeseed as a new gene pool for hybrid breeding. [J]. Proc 10th Int Rapeseed Cong,1999, Canberra, Australia,90
    [9]傅廷栋.杂交油菜的育种与利用[M].武汉:湖北科学技术出版社,1995:71-90
    [10]王泽立,戴景瑞,王斌.植物基因的图位克隆[J].生物技术通报,2000,(4):21-27
    [11]Ryder C D, Smith L B, Teakle G R, et al.Contrasting genome organisation:Two regions of the Brassica oleracea genome compared with collinear regions of the Arabidopsis thaliana genome. [J].Genome,2001,44(5):808-17
    [12]李殿荣.甘蓝型油菜三系选育初报[J].陕西农业科学,1980,(1):26-29
    [13]王丽侠,赵建伟,徐芳森等.与甘蓝型油菜重要经济性状有关的cDNA克隆在拟南芥遗传图谱中的整合[J].遗传学报,2002,29(8):741-746
    [14]王俊霞.甘蓝型油菜PolCMS育性恢复基因图谱定位及其抗菌核病恢复系的分子标记辅助选择.[硕士学位论文].武汉:华中农业大学图书馆,2000
    [15]李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传规律探讨及其应用[J].上海农业学报,1985,1(2):1-12
    [16]侯国佐,王华,张瑞茂.甘蓝型油菜细胞核雄性不育材料117A的遗传研究[J].中国油料,1990,(2):7-10
    [17]潘寿,曾凡亚,吴书慧,等.甘蓝型低芥酸油菜雄性不育两用系的选育与利用研究.[J].中国油料,1988,(3):5-8
    [18]陈凤祥,胡宝成,李强生.细胞核不育材料9012A的发现与初步遗传.见:全国植物雄性不育及杂种优势利用青年学术讨论会论文集.北京学报(A), 1993, (2):20-25
    [19]Chalhoub B, Budin K, Aubourg S, et al.Comparative genomic approaches for High-throughput physical and genetie mapping and gene cloning in oilseed rape (Brassica napus) and application to breeding [J].Proe.11thInternational Rapeseed Congress,2003, Copenhagen, VOI.1,p.78.
    [20]宋来强.甘蓝型油菜显性细胞核雄性不育的遗传与应用模式.[博士学位论文].武汉:华中农业大学图书馆,2006
    [21]傅廷栋,涂金星.油菜杂种优势利用的现状与展望.见:刘后利主编,作物育种学论丛[M].北京:中国农业大学出版社,2002
    [22]FuT-D.Production and research of rapeseed in the People'Republic of China. [J]Eucarpia Cruciferae Newsl,1981, (6):6-7
    [23]刘忠松,官春云,陈社员.植物雄性不育机理的研究及应用[M].北京:中国农业出版社,2001
    [24]刘后利编著.油菜遗传育种学[J].北京:中国农业大学出版社,2000.
    [25]Radoslav Koprna, Miroslav Klima.用小抱子培养技术生产用于杂交种选育甘蓝型冬油菜自交不亲和系.见:傅廷栋,官春云编.第12届国际油菜大会论文摘要集. Science Prcss USA Inc.2007:11
    [26]李树林,钱玉秀,周熙荣.显性核不育油菜的遗传性[J].上海农业学报,1987,3(2):1-8
    [27]李树林,周熙荣,周志疆等.显性核不育油菜的遗传与利用[J].作物研究,1990,4(3):27-32
    [28]李树林,周志疆,周熙荣.甘蓝型油菜隐性核不育系S45AB的遗传.上海农业学报[J],1993,9(4):1-7
    [29]陈凤祥,胡宝成,李成等.甘蓝型油菜细胞核雄性不育性的遗传研究1.隐性核不育系9012A的遗传[J].作物学报,1998,24(4):431-438
    [30]杨光圣,傅廷栋.油菜杂种优势利用的一条可能途径-细胞核+细胞质雄性不育[J].华中农业大学学报,1993,12(4):307-316
    [31]李加纳,谌利,唐张林,等.油菜细胞核+细胞质双重不育系选育初报[J].西南农业大学学报,1994,16(4):403-405
    [32]Cheung WY, Friensen L, Rakow G F W, et al.A RFLP-based linkage map of mustard [Brassica juncea (L.) Czern and Coss]. [J].Theor Appl Genet,1997, 94:841-851
    [33]Foisset N, Delourme R, Barret P, et al.Molecul Mapping analysis of Brassica napus using isozyme, RAPD and RFLP markers on double haploid Progeny[J]. Theor Appl Genet,1996,93:1017-1025
    [34]刘后利.油菜的遗传与育种[M].上海:上海科学技术出版社,1985
    [35]官春云,李构,王国槐等.化学杂交诱导油菜雄性不育机理的研究:I1.KMs-1对甘蓝型油菜育性的影响[J].中国油料作物学报,1998,20(3):1-4
    [36]青海省门源农科所.油菜天然杂交种增产显著[J].遗传与育种,1976,(6):19
    [37]田正科.白菜型油菜自交迟钝特性在杂种生产中的利用[J].青海农林科技,1979(4):14-15
    [38]黄继英,庄顺琪.白菜型油菜杂种优势利用的研究[J].中国油料,1980,(1):38-41
    [39]四川南充地区农科所.油菜杂种优势初步观察[J].油料作物科技,1976, (4):14-15
    [40]Engqvist G, Beeker H C.Heterosis and epistasis in rapeseed estimated from Generation means[J].Euphytica,1991,58:31-35
    [41]栗茂腾,王芳,张椿雨等.甘蓝型油菜亚基因组间杂种(ArAnCcCn)的细胞学和育性研究[J].作物学报,2006,32(3):351-357
    [42]李树林,周志疆,周熙荣.油菜显性核不育三系法制种[J].上海农业学报1995,11(1):21-26
    [43]席代汉,陈卫江,宁祖良.甘蓝型油菜温敏核不育系“湘9ls’,的选育[J].湖南农业科学,1994,(4):25-27
    [44]王华,赵继献,汤晓华.甘蓝型油菜新型细胞核雄性不育材料的选育[J].中国油料,1997,19(1):8-11
    [45]王华,汤晓华,李厚英等.油菜生态型雄性不育材料H90S温光特性研究[J].作物研究,2003,(1):24-27
    [46]宋来强,傅廷栋,杨光圣等.1对复等位基因控制的油菜(Brassica napus L.)显性核不育系609AB的遗传验证[J].作物学报,2005,31:869-875
    [47]王武萍,庄顺琪,董振生.白菜型油菜细胞核雄性不育三系选育研究[J].西北农业学报,1992,(1):37-40
    [48]Zhou P, Tan Y, Zhang Q.Simultaneous improvement for four quality traits of Zhenshan97, an elite parent of hybrid rice, by molecular marker-assisted selection. [J]Theor Appl Genet,2003,106:326-331
    [49]胡胜武,刘胜毅,于澄宇等.甘蓝型油菜核不育材料Shaan-GMS不育基因的RAPD标记[J].中国油料作物学报,2003,25(3):5-7
    [50]Brondani C, Rangel P, Brondani R.QTL mapping and introgression of Yield-related traits from Oryza glumaepatulato cultivated rice(Oryza sativa) using miero-satellite markers[J].Theor Appl Genet,2002,104:1192-1203
    [51]潘家驹.作物遗传育种总论[M].北京:中国农业出版社,1995:82-87
    [52]孙超才,方光华,赵华,等.甘蓝型油菜(Brassica napus L)隐性核不育两型系22118AB的基因型分析及利用途径探讨[J].上海农业学报,1997,13(1):11-15
    [53]卓宇红,彭武生,祁怀风.甘蓝型油菜核不育材料82lA的遗传研究与利用[J].种子,1999,(4):23-26
    [54]蒙大庆,袁代斌,李芝凡,等.甘蓝型油菜核不育系绵9AB-1不育性的遗传规律研究及初步应用[J].四川农业大学学报,2002,20(4):328-329,353
    [55]洪登峰.甘蓝型油菜显性细胞核雄性不育基因Ms/Mf的定位.[博士学位论文].武汉:华中农业大学图书馆,2006
    [56]孙超才,赵华,王伟荣等.甘蓝型油菜隐性核不育系20118A的遗传与利用探讨[J].中国油料作物学报,2002,24(4):1-4
    [57]王军,张太平,魏忠芬等.甘蓝型油菜隐性核不育材料ZWA的遗传利用研究[J].种子,2004,23(5):8-11
    [58]孙超才等.甘蓝型双低隐性核不育杂交种沪油杂1号的选育[J].中国油料作物学报,2004,26(1):63-65
    [59]孙超才等.甘蓝型双低隐性核不育杂交种沪油杂2号的选育[J].上海农业学报,2005,21(3):1-3
    [60]刘志文.人工合成甘蓝型黄籽油菜的分子标记和利用研究.[博士学位论文]. 武汉:华中农业大学图书馆,2004
    [61]方宣钧.作物DNA标记辅助育种[J].北京:科学出版社,2001
    [62]涂金星,郑用琏.甘蓝型油菜核不育材料育性基因的RAPD标记[J].华中农业大学学报,1997,16(2):112-117
    [63]涂金星,傅廷栋,郑用琏等.甘蓝型油菜隐性核不育遗传标记的初步研究11.P6-9紫杆基因与可育基因连锁的分子证据[J].作物学报,1999,25(6):669-673
    [64]王晓武,方智远,孙培田等.一个用于甘蓝显性雄性不育基因辅助选择的SCAR标记[J].园艺学报,2000,27(2):143-144
    [65]Lu G Y, Yang G S, Fu T D.Molecular mapping of a dominant genic male sterility gene Ms in rapeseed (Brassica napus). [J].Plant breed,2004, 123:262-265
    [66]陆光远.甘蓝型油菜显性核不育基因和抑制基因的图谱定位.[博士学位论文].武汉:华中农业大学图书馆,2003
    [67]Song L Q, Fu T D, Tu J X, et al.Molecular validation of multiple allele inheritance for dominant genic male sterility gene in Brassica napus L[J]. Theor Appl Genet,2006,113:55-62
    [68]Hong Deng feng, Wan Li li, Liu Ping wu, et al. AFLP and SCAR markers linked to the suppressor gene (Rf) of a dominant genic male sterility in rapeseed (Brassica napus L.) [J]. Euphytica,2006,151:401-409
    [69]Hong Deng feng, Liu Jun, Yang Guang sheng, et al. Development and characterization of SCAR markers associated with a dominant genic male sterility in rapeseed [J]. Plant Breeding,2008,127:69-73
    [70]Ke L P, Sun Y Q, Liu P W, et al.Ideniification of AFLP fragments linked to one recessive genic malesterility (RGMS) in rapeseed (Brassica napus L.) and conversion to SCAR markers for marker-aided selection[J].Euphytica,2004, 138(2):163-168
    [71]Yi B, Chen Y N, Lei S L, et al.Fina mapping of the recessive genic male-sterile gene (ms1) in Brassica napus L [J]. Theor Appl Genet,2006,113:634-650
    [72]王晓武,方智远,孙培田等.一个与甘蓝显性雄性不育基因连锁的RAPD标记[J].园艺学报,1998,25(2):197-198
    [73]陆光远,杨光圣,傅廷栋.甘蓝型油菜显性细胞核雄性不育基因的AFLP标记[J].作物学报,2004,30(2):104-107
    [74]Hu S W, Fan Y F, Zhao H X, et al..Analysis of MS2 B.nape genomic DNA homologous to MS2 gene from Arabidopsis thaliana in two dominant digenic male sterile accessions of oilseed rape (Brassica napus L.) [J]. Theor Appl Genet,2006,113:397-406
    [75]Negi M S, Devie M, Delseny M, et al.Identification of AFLP fragments linked to seed coat colour in Brassica juncea and conversion to a SCAR marker for rapid selection [J]. Theor Appl Genet,2002,101:146-152
    [76]Wang Gui chun, He Jun ping, Hong Deng feng, et al. Development of AFLP and SCAR markers linked to a recessive genic male sterile gene (Bnms3) in rapeseed for marker-assisted selection [J]. Korean Journal of Genetics,2007, 29:481-487
    [77]Liu Ren Hu, Meng Jin Ling.RFLP and AFLP analysis of inter-and intraspecific variation of Brassica rapa and B.napus shows that B.rapa is an important genetic resource for B.napus improvement[J].遗传学报,2006,33(9):814-823
    [78]Shao lin Lei, Xueqin Yao, Bin Yi, et al. Towards map-based cloning:fine mapping of a recessive genic male-sterile gene (BnMs2) in Brassica napus L. and syntenic region identification based on the Arabidopsis thaliana genome sequences[J]. Theor Appl Genet,2007,115(5):643-651
    [79]Keita Suwabe, Keita Suwabe, Hikaru Tsukzaki, et al.Simple sequence repeat-based comparative genomies between Brassica rapa and Arabidopsis thaliana:The genetic origin of clubroot resistance [J].Geneties,2006, 173:309-319
    [80]Ke L P, Sun Y Q, Hong D F, et al.Identifieation of AFLP markers linked to one recessive genic male sterility gene in oilseed rape, Brassica napus[J].Plant Breed,2005,124:367-370
    [81]Junping He, Liping Ke, Dengfeng Hong, Fine mapping of a recessive genic male sterility gene (Bnms3) in rapeseed (Brassica napus) with AFLP-and Arabidopsis-derived PCR markers[J]. Theor Appl Genet (2008) 117:11-18
    [82]Zhen Huang, Yufeng Chen, Bin Yi, et al. Fine mapping of the recessive genic male sterility gene (Bnms3) in Brassica napus L [J]. Theor Appl Genet,2007, 115(1):113-118.
    [83]Xie Y Z, Hong D F, Xu Z H, et al. Identification of AFLP markers linked to the epistatic suppressor gene of a recessive genic male sterility in rapeseed and conversion to SCAR markers [J]. Plant Breeding,2008,127:145-149
    [84]Xiao Lu, Yi Bin, Chen Yu feng, et al. Molecular markers linked to Bn;rf:a recessive epistatic inhibitor gene of recessive genic male sterility in Brassica napus L[J].Euphytica,2008,164(2)
    [85]刘平武.甘蓝型油菜人工合成种及杂交种亲本遗传多样性评价与研究.[博士学位论文].武汉:华中农业大学图书馆,2004
    [86]Landry B S, Hubert N, Crete R, et al. A genetic map of Brassica oleracea based on RFLP markers deteeted with expressed DNA sequences and mapping of resistance genes to race 2 of Plasmodiophora Brassicae (Woronin) [J].Genome,1992,35:409-420
    [87]Lombard V, Delourme R.A consensus linkage map for rapeseed (Brassica napus L.):construction and integration of three individual maps from DH populations [J]. Theor Appl Genet,2001,103:491-507
    [88]Cavell A C, Lydiate D C, Parkin I A P, et al.Colinearity between a 30-centimorga segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome[J].Genome,1998,41:62-69
    [89]Brunel D,Froger N,Pelletier G. Development of amplified consensus genetic markers(ACGM) In Brassica napus from Arabidopsis thaliana sequence of kown biological function[J].Genome,1999,42:387-402
    [90]Parkin I A P, Lydiate D J, Trick M.Assessing the level of collinearity between Arabidopsis thaliana and Brassica napus for A.thaliana chromosome 5[J].Genome,2002,45:356-366
    [91]Rana D, van den Boogaart T, O'Neil CM. Conservation of the microstructure of genome segments in Brassica napus and its diploid derivatives [J].Plant J, 2004,40:725-733
    [92]Parkin I A P, Gulden S M, Sharpe A G, et al. Segmental Structure of the Brassica napus Genome Based on Comparative Analysis with Arabidopsis thaliana [J]. Geneties,2005,171:765-781
    [93]Fourmann M, Barret P, Froger N, et al. From Arabidopsis thaliana to Brassica napus:development of amplified consensus genetic markers(ACGM)for construction of a gene map[J].Theor Appl Gener,2002,105:1196-1206
    [94]柯丽萍.甘蓝型油菜隐性细胞核雄性不育的基因定位.[博士学位论文].武汉:华中农业大学图书馆,2005
    [95]中科院上海植物生理研究所.现代植物生理学实验指南[M].科学出版社,
    [96]Snowdon R J, Kohler W, Kohler A. Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids[J].Theor Appl Genet,1997, 95:1320-1324
    [97]Lander E S, Green P, Abrahamson J, et al. MAPMARKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations[J].Genomics,1987, (1):174-181
    [98]Lincoln S, Daly M, Lander E. Constructing genetic maps with Mapmaker/ExP3.0. Whitehead Institute Technical Report[J], Cambridge, MA, USA,1992
    [99]刘仁虎,孟金陵.Mapdraw,在Excel中绘制遗传连锁图的宏.遗传[M],2003,25(3):317-321