三峡库区一级支流水质变化预测及对策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三峡水库蓄水成库后,长江天然河道属性发生改变,形成典型的狭长型水库,特别是库区各条支流因受到干流水位顶托,出现长短不一的回水河段,流速十分缓慢,水体出现不同程度的富营养化,严重影响了库区的水环境质量,并直接对库区生态环境和饮用水安全构成威胁。本课题在大量监测调查数据的基础上,对三峡库区主要一级支流的富营养化水平进行预测和水质安全评估,提出相应的对策措施。
     2006年对长江干流常年回水区监测结果表明,23条一级支流回水区差于Ⅲ类水质的断面约占两成。库区主要一级支流回水区水体综合营养状态为贫-中营养的断面所占比例约为80%,富营养以上的断面约占20%。回水中段富营养化情况明显重于回水尾段。近几年规模化的“水华”现象都始发于3月~4月,主要发生区域集中在离三峡大坝较近的巫山县、奉节县和云阳县,且水华现象的程度、时间和范围有逐年增长趋势。以乌江、小江、大宁河三条典型支流为代表,统计和计算水体的主要污染负荷,进行富营养化水平预测和类比分析后得出,三峡库区支流出现富营养化的区域,主要在水库常年回水区(涪陵以下江段),有越靠近坝首富营养化加重之势,且主要在支流回水腹心区,特别是水面开阔的低流速区,将是富营养化的高发地段。从上游到下游,富营养化呈现低―高―较低或者轻―重―较重的分布态势。在对敏感的饮用水源点进行搬迁后,库区支流回水区内水质是较安全的。
     通过富营养化趋势预测和水质安全评估,从饮用水安全保障、库区支流回水区富营养化防治技术和“水华”应急处理三方面提出了环境管理制度保障、控制与防治技术等若干对策措施。
After the water storage, there are drastic changes in hydrological situation of Three Gorges Region and every branch river, and the Yangtse River become as a long and narrow reservoirs Area. The backwater region of every binnacle flows slowly, and been an eutrophication sysytem more or less. The water quality of reservoirs Area was weakened seriously, and imperiled the ecological environment and the drinking reliability of people. Based on copious examination data, intimate prognosis about eutrophication and security assessment were presented in this paper, and several strategies followed.
     Water quality monitoring data of backwater region on Yangze River 2006 showed that, 20 percent reached water quality beneathⅢlevel among 23 branch rivers in the three gorges reservoirs region. The branch rivers of 80% were in a low-medium eutrophication, and those of 20% were in high eutrophication. The richer fertiliser in the middle areas of binnacle backwater region was moreobviously serious than that in extremity area. In the past years, macroscale plankton bloom always broken out in March and April. Plankton bloom locality are chief focused at Wushan, Fengjie and Yunyang which are near by the the Three Gorges Dam, and its degree is deeper, area is wider. Taken three binnacles of Da’ning, Xiaojiang and Wujiang as models, water pollution load was accounted. After a foretaste analysis of the eutrophication lever, it considered that the eutrophication area was mostly at the all-the-year backwater region (lower reaches of Fulin). The more serious richer eutrophication is, the near it closes to the dam. At the backwater ventro-zone of branch river, where assumes unclosed and sluggish current, eutrophication would be much more serious. From upper reaches to tail, it appears a low-high-little distribution. After the sensitive drinking-water sources sites have been relocated, the quality security of backwater region would achieve.
     The several strategies at three aspects as drinking-water security, technological measure to control eutrophication in backwater region and emergency disposal to plankton bloom have been brought by the concludsions on the prognosis of eutrophication and security assessment,.
引文
[1]李佐荣,鲍素敏,黄祥明.水体的富营养化及其防治[J].安徽农学通报,2007,13(10):67-68.
    [2]谢雄飞,肖锦.水体富营养化问题评述[J].四川环境,2000,19(2):22-25.
    [3]戴树桂,刘广良.中国湖泊富营养化及其防治对策研究[M].北京:中国环境科学出版社,2001.
    [4]濮培民,李正魁,王国祥.提高水体净化能力控制湖泊富营养化[J].生态学报,2005(10):2757-2763.
    [5]陈为国,许文杰,张晓平等.湖泊水体富营养化评价与可持续发展研究[J].节水灌溉,2008(6):47-50.
    [6] Monzur Alam Imteaz, Takashi Asaeda, David A.Lockington. Modelling the effects of inflow parameters on lake water quality, Environmental Modeling and Assessment, 8:63-70,2003,Kluwer Academic Publishers, Netherlands.
    [7]熊汉锋,万细华.农业面源氮磷污染对湖泊水体富营养化的影响[J].环境科学与技术,2008(2):25-27.
    [8]胡家文,姚维志.养殖水体富营养化及其防治[J].河北渔业,2006(1):52-54.
    [9]袁夫臣.水体富营养化及其防治[J].现代农业科学,2008(04):42-43.
    [10]赵声才.我国湖泊富营养化的发生机制与控制对策地球科学进展,2004,19(1):138-140.
    [11]付春平,钟成华,邓春光.水体富营养化成因分析[J].重庆建筑大学学报,2005,27(1):128-131.
    [12]石凤,张雁秋,李艳芬等.水体富营养化的预防及治理办法[J].环境科学与管理,2008(2):144-147.
    [13]尹真真.国内外水体富营养化机理研究历史与进展[J].微量元素与健康研究,2006(5):46-47.
    [14]葛虹,张扬.水体富营养化及对鱼类的毒性[J].水利渔业,2006(6):79-81.
    [15]赵不凋,刘柏朱,卢晓芳.水体富营养化的形成、危害和防治[J].安徽农学通报,2007,13(17):51-53
    [16]刘迎利,陈哲.洋河水库水体富营养化治理对策浅析[J].中国水利,2007(5):43-44.
    [17]刘春广.朱庄水库水体富营养化机理分析及治理对策[J].南水北调与水利科技,2003,(5):44-45.
    [18]邵林广,游映玖,陶惠芳等.武汉东湖水体富营养化现状及其控磷对策[J].环境与开发,1999,14(2):19-20.
    [19]国家环境保护局科技标准司.中国湖泊富营养化及其防治研究[M].北京:中国环境科学出版社,2001,12.
    [20]郭怀成,孙延枫.滇池水体富营养化特征分析及控制对策探讨[J].地理科学进展,2002,9 (21):500-505.
    [21]杜勤,赵保全,朱家义.水体富营养化控制手段及防治实例[J].工业水处理,2005(9):20-22.
    [22]张代钧,许丹宇,任宏洋等.长江三峡水库水污染控制若干问题[J].长江流域资源与环境,2005,14(5):605-609.
    [23]秦伯强.长江中下游浅水湖泊富营养化发生机制与控制途径初探[J].湖泊科学,2002,14(3):182-190.
    [24]中国环境监测总站.湖泊水库富营养化评价方法及分级技术规定[M].北京:中国环境科学出版社,2001,9.
    [25]王德蕊,钟成华,邓春光等.长江三峡库区蓄水前氮磷污染现状初步研究[J].西南农业大学学报(自然科学版),2005,27(1):124-127.
    [26]金相灿主编.中国湖泊水库环境调查研究[M].北京:中国环境科学出版社,1990.
    [27]金相灿,刘鸿亮主编.中国湖泊富营养化[M].北京:中国环境科学出版社,1990.
    [28]裴廷权,王里奥,韩勇等.三峡库区小江流域水体富营养化的模糊评价[J].农业环境科学学报,2008,27(4):1427-1431.
    [29]常会庆,车青梅.富营养化水体的评价方法研究[J].安徽农业科学,2007,35(32):10407-10409.
    [30]秦伯强,杨柳燕,陈非洲等.湖泊富营养化发生机制与控制技术及其应用[J].科学通报,2006,51(16).
    [31] Smith K A, Chalmers A G,Chambers B J,et al. Organic manure phosphorus accumulation, mobility and management[J]. Soil Use and Management, 1998,14:154-159.
    [32] Pionke H B, Gburek W J, Sharpley A M, et al. Hydrological and chemical controls on phosphorus loss from catchments. In: Tunney H, Carton O T, Brookes P C and Johnston A E (Eds.).Phosphorus loss from soil to water. CAB International, Wallingford, 1997: 77-93.
    [33]钱大富,马静颖,洪小平.水体富营养化及其防治技术研究进展[J].青海大学学报(自然科学版),2002(1):28-31.
    [34] M.A.Imteaz. Modelling of lake eutrophication including artificial mixing and effects of bubbling operations on algal bloom,Ph.D. Thesis,Saitama University,Japan(1997).
    [35] Smith K A, Jackson D R, Withers P J A. Nutrient losses by surface run-off following the application of organic manures to arable land Nitrogen. Environmental Pollution, 2001,112:41-51.
    [36] Sharpley A N, Withers P J A. The environmentally-sound management of agriculture phosphorus[J]. Fertilizer Research, 1994,39:133-146.
    [37] Paul J A Withers, Eunice I Lord. Agricultural nutrient inputs to rivers and groundwater in the UK policy, environmental management and research needs. The Science of the Total Environment, 2002(79):9-24.
    [38]黄钰铃,惠二青,刘德富.河道型水库库湾水体富营养化评价及防治初探[J].人民长江,2006(4):16-18.
    [39]李锦秀,廖文根.富营养化综合防治调控指标探讨[J].水资源保护,2002(2):66-68.
    [40]王晟,徐祖信.蓝绿藻的生态学研究进展[J].上海环境科学,2003(5):97-98.
    [41]张均顺等.胶州湾营养盐结构变化的研究[J].海洋与湖泊,1997,28(5):21-24.
    [42]全水清,侯延鹏.浅谈富营养化水体的藻华防治方法[J].江西科学,2008(4):308-310.
    [43]王立刚,任天志,王迎春等.海藻提取物对富营养化水体氮素循环影响研究[J].环境科学与技术,2006(2):14-16.
    [44]罗固源,刘国涛,王文标.三峡库区水环境富营养化污染及其控制对策的思考[J].重庆建筑大学学报,1999,21(3):124.
    [45]李锦秀,廖文根.三峡工程对库区水流水质影响预测[J].水利水电技术,2001,21(5):71-73.
    [46]张壮志,孙磊,常维山.水体富营养化中的氮素污染及生物防治技术研究现状[J].山西农业科学,2008,36(6):13-15.
    [47]杨具瑞,方铎,何文社等.滇池湖泊富营养化动力学模拟研究[J].环境科学与技术,2003(5):37-39.
    [48]刘玉生,唐宗武,韩梅等.滇池富营养化生态动力学模型及其应用[J].环境科学研究,1991(6):1-8.