一种新的X连锁精神发育迟滞综合征的致病基因克隆和功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精神发育迟滞(Mental Retardation,MR)又称为智力低下,是一组在发育时期内(18岁以下)以智能、情感和社会适应行为障碍为主要特征的精神障碍性疾病。精神发育迟滞不仅给患者本人及家庭带来很大的痛苦和沉重的负担,也给公共卫生、社会福利和教育服务造成巨大的压力。目前针对精神发育迟滞缺乏有效治疗方法,因此探究精神发育迟滞的致病因素是了解其发病机制和进行预防及治疗的关键。
     精神发育迟滞的病因复杂,其中X连锁基因缺陷被认为是导致精神发育迟滞的重要原因之一。X连锁精神发育迟滞(X-linked mental retardation,XLMR)可以分为:综合征型精神发育迟滞(Syndromic X-linked mental retardation,MRXS)、神经肌肉型精神发育迟滞(Neuromuscular disorders)和非综合征型精神发育迟滞(non-syndromic or non-specific XLMR,MRX)。截止到目前,已经定位的X连锁精神发育迟滞基因位点数达170余个,分离到的X连锁精神发育迟滞致病基因82个。
     我们在山东省遗传病调查中从山东邹城市发现了一个X连锁精神发育迟滞大家系,由于患者的部分临床症状与已报道的Smith-Fineman-Myers综合征(Smith-Fineman-Myers syndrome,SFMS,MIM309580)相似,因此该家系当时被认为是SFMS。利用连锁分析方法我们将该家系致病基因定位于Xq25.5上近10.18Mb区域。随后研究者发现SFMS是由于位于Xq13上的XNP基因突变所致。这些结果提示我们在邹城发现的XLMR家系病因不同于已经报到的SFMS,一方面可能是SFMS存在位点异质性,另一方面我们在邹城发现的XLMR家系患者可能具有不同于SFMS的临床特征。为探讨该综合征发生的分子机制,本课题发现了导致该家系患者的致病基因,并对该基因的表达模式及其转录调控、亚细胞定位和在细胞增殖中的作用进行了分析。
     第一部分CUL4B基因丧失功能突变导致一种新的X连锁精神发育迟滞综合征-MRXS15
     前期的连锁分析将邹城家系患者致病基因定位于Xq25.5并排除SFMS的致病基因XNP为该家系致病基因,提示邹城家系可能是一种新的X连锁精神发育迟滞综合征。因此2005年我们对该家系进行了再访,并对患者做了深入全面的临床和实验室检查。
     调查发现该家系共有7名男性患者,分布在6个同胞群,未发现女性患者。所有成年患者均表现为轻度到中度精神发育迟滞,无独立生活能力。患者除表现为MR外,还具有身材矮小、短指、巨舌、足内翻、失语和单核细胞增多等特征。
     为分离导致该家系患者的致病基因,我们采取候选基因分析策略对位于致病基因候选区域内的候选基因进行突变分析。在排除了9个候选基因后,发现患者CUL4B基因第9外显子的1564位核苷酸由C突变为T(c.1564C→T)。该碱基替换导致CUL4B基因编码的蛋白质第388位精氨酸密码子CGA突变成终止密码子TGA(p.R388X)。进一步分析发现该突变在家系中与疾病表型共分离;对264名无血缘关系的健康对照个体的312条染色体分析未检测到1564T,说明该突变不是多态,而是导致疾病的突变。
     实时定量PCR检测发现,患者外周血白细胞CUL4B mRNA含量约为正常对照的30%,减少了70%,表明患者CUL4B基因c.1564C→T突变激活了无义介导的mRNA降解途径,导致含有突变的CUL4B mRNA降解,该突变为丧失功能突变。
     与正常对照相比,女性携带者外周血CUL4B mRNA含量并未改变,提示携带突变的细胞处于选择劣势。为证实这一假设,我们对女性携带者和正常女性外周血白细胞进行了X染色体失活分析。发现女性携带者外周白血细胞表现为X染色体失活完全偏倚,所有携带CUL4B c.1564C→T突变的X染色体均失活,活性的X染色体都不携带此突变,女性携带者外周血细胞cDNA中只能检测到1564C等位基因。
     综合以上研究结果,我们认为邹城家系患者是一种新的X连锁精神发育迟滞综合征MRXS15,该综合征是由于CUL4B基因丧失功能突变所致。
     与此同时,英国Stratton MR领导的研究小组在对250个XLMR家系患者进行X连锁基因突变筛查,发现其中8个XLMR家系的患者是由于CUL4B基因突变所致。对比分析由CUL4B突变导致的9个来自不同种族家系患者临床表现发现,携带CUL4B基因突变的患者除精神发育迟滞外还伴有多种发育异常,提示CUL4B基因在个体的生长发育中发挥着重要作用,CUL4B基因突变是XLMR的重要原因之一。
     第二部分CUL4基因表达模式分析及CUL4B转录调控机制的初步研究
     遗传分析显示CUL4B基因在个体生长发育中发挥着重要作用,但对其功能几乎一无所知。Cullin家族中,CUL4A和CUL4B的同源性最高,其蛋白质的同源性高达83%。但多项研究均提示两者在生命活动中的作用机制可能有较大区别,作为认识基因功能的第一步,我们首先对CUL4A和CUL4B的表达模式进行了分析并对CUL4B的转录调控机制进行了初步的研究,取得了以下研究结果:
     1.实时定量PCR分析显示,CUL4A与CUL4B在多种组织中广泛表达,但两者表达模式存在一定差别。CUL4B的mRNA在不同组织中的含量差异较大,其中胎脑和脾脏中表达水平最高,肺、肝、肾和胸腺中度表达,心脏与骨骼肌中含量最低,尤其是骨骼肌中CUL4B mRNA仅为胎脑的10%左右;与CUL4B不同,CUL4A mRNA在组织间的分布差异不很明显,其中在表达最丰的肾脏中的含量约为表达最低的骨骼肌中2倍左右。
     2.利用Western blotting检测了不同组织来源的20种人细胞系中CUL4A和CUL4B的蛋白水平。结果与实时定量PCR相一致,CUL4A蛋白在各细胞系中含量差异不大;CUL4B则相差较为明显,其中在血细胞系中含量较低,而在神经细胞系中含量最高。
     3.对人类CUL4B基因翻译起始点上游1kb区域的软件分析显示,该区域内存在经典的TATA-box,但距离ATG仅有50bp左右,此外该区域内也分布有CAAT、GATA保守序列以及多个如Sp1、E2F等重要的调控元件。
     4.对载体P-CUL4B-952检测结果显示人类CUL4B基因翻译起始点上游-952bp区域内含有该基因的启动调控序列。进一步利用系列截短表达载体的研究发现CUL4B的转录表达调控存在组织特异性,其中在ATG上游-476bp~-452bp的区域内含有该基因的神经组织特异性转录表达调控元件。
     5.突变分析显示,CUL4B ATG上游-476bp~-452bp区域内仅ELK1元件突变可导致P-CUL4B-476载体荧光素酶表达活性在SH-SY5Y细胞中明显下降,而在U87细胞与C6细胞中却并没有观察到相同的现象,提示CUL4B在神经元与胶质细胞内的转录表达调控机制存在一定差别,ELK1元件可能为CUL4B在神经元内的特异性转录表达调控元件。
     第三部分CUL4的亚细胞定位及CUL4B核定位信号分析
     明确蛋白质的亚细胞定位是了解蛋白质功能的基础。为此,本部分对CUL4A与CUL4B的亚细胞定位进行了分析,并在此基础上对CUL4B蛋白的核定位信号及入核机制进行了分析,得到以下结果:
     1.为了分析CUL4A和CUL4B的亚细胞分布,我们将CUL4A和CUL4B的编码序列插入到EGFP标签蛋白的C端构建了EGFP-CUL4A和EGFP-CUL4B表达载体并转染不同组织来源的细胞系。结果显示外源CUL4A与CUL4B的亚细胞定位明显不同:EGFP-CUL4B主要分布在细胞核;EGFP-CUL4A则在不同细胞中的分布不同,说明CUL4A的亚细胞定位具有组织特异性。
     2.为进一步证实以上观察到CUL4B的亚细胞定位结果,我们又将CUL4B编码序列插入到Myc标签蛋白的N端构建了CUL4B-Myc-His表达载体,转染细胞后观察融合蛋白在细胞内分布。与EGFP-CUL4B观察到的结果相同,CUL4B-Myc-His在不同细胞内也主要分布于细胞核。
     3.为了分析CUL4B入核机制,我们分别构建了N末端和C末端缺失的CUL4B表达载体并转染HeLa细胞,结果发现CUL4B的N末端是其正确入核必需的,而C末端缺失不影响CUL4B的亚细胞定位。
     4.软件分析显示CUL4B含有4个潜在的核定位信号序列,其中有三个位于N末端。为了进一步确定CUL4B功能性核定位信号,我们构建了一系列CUL4B截短表达载体并转染HeLa细胞。结果显示~(37)KKRK~(40)为CUL4B的功能性核定位信号,并且该序列在进化上高度保守。定点突变分析证实CUL4B第38位K和39位R为影响CUL4B核定位的关键氨基酸。
     5.利用GST pulldown实验我们发现CUL4B能够在体外与importinα1、3、5均发生结合,并且这种结合有赖于CUL4B的NLS,提示这三种importinα蛋白均可介导CUL4B的入核。
     第四部分CUL4B在细胞增殖和细胞周期调控中的作用
     携带CUL4B基因突变的女性携带者表现出X染色体失活完全偏倚,携带者外周血cDNA分析只检测到正常等位基因,表明携带突变等位基因的细胞处于选择劣势,只有活性X染色体携带正常基因的细胞能有效增殖而得以保留。此外,多项研究显示CUL4A在细胞周期调控中发挥重要作用。这些结果都提示CUL4B可能参与细胞增殖和细胞周期调控。为此,我们通过过表达和低表达CUL4B,分析CUL4B对细胞增殖和细胞周期调控的影响,取得了以下结果:
     1.我们首先构建了CUL4B稳定过表达的HEK293细胞并利用实时定量PCR和Western blotting实验进行了验证。MTT测定结果显示过表达CUL4B能够明显促进HEK293细胞增殖。
     2.为进一步证实CUL4B在细胞增殖中的作用,我们又利用RNAi技术干扰CUL4B基因表达并建立了CUL4B稳定低表达的HeLa细胞株,发现抑制CUL4B表达可以明显抑制HeLa细胞增殖但并不影响细胞凋亡率;Brdu掺入实验也证实CUL4B表达降低导致细胞DNA合成速度减慢;细胞周期分析显示CUL4B低表达细胞的S期细胞比例明显上升,说明降低CUL4B表达引起细胞S期停滞。
     3.为了探讨CUL4B影响细胞周期的分子生物学机制,我们利用Westernblotting分析方法对部分细胞周期关键调控蛋白进行检测,结果发现抑制CUL4B表达可以导致eyelin E累积。
     4.亚细胞定位分析表明,CUL4B主要分布在细胞核。为了明确CUL4B入核信号在CUL4B调控细胞增殖中的作用,我们将野生型、N端缺失以及核定位信号缺失的CUL4B表达载体和CUL4A表达载体分别瞬时转染HeLa细胞,利用Brdu掺入法检测转染不同载体对细胞增殖的影响。结果发现转染CUL4A与CUL4B野生型表达载体可明显促进细胞增殖,但是转染缺失核定位信号(N末端缺失和NLS缺失)的CUL4B表达载体却不能产生类似效应,表明CUL4B正确入核是其促进细胞增殖所必需的。将以上载体转染到CUL4B低表达细胞株发现,转染野生型CUL4B能恢复CUL4B低表达对细胞增殖的抑制作用,而转染核定位信号缺失的表达载体则观察不到明显的拯救效应;分析这些细胞中cyclinE发现转染野生型CUL4B表达载体能够有效减轻HeLa细胞因CUL4B低表达而产生的cyclin E蛋白累积,而转染N基末端或NLS缺失的CUL4B表达载体却不能减少CUL4B低表达细胞中cyclin E的积累。这些拯救实验进一步证实CUL4B正确入核是其发挥调控细胞增殖和细胞周期所必需的。
     综上所述,本研究首次揭示了人CUL4B基因丧失功能突变导致一种新的X连锁精神发育迟滞综合征;在此基础上我们进一步对该基因的表达模式、亚细胞定位、转录调控机制以及其在细胞增殖中的功能进行了探讨。这些研究结果为了解X连锁精神发育迟滞综合征的发病机制以及阐明CUL4B在疾病发生中的分子机制和认识CUL4B基因的功能奠定了良好的基础。
Mental retardation(MR) is characterized by sub-average cognitive functioning and deficits in social and adaptive skills,with onset under the age of 18.Because MR has a high prevalence and many MR patients need special care,it represents a major challenge and a high burden for society and families.Because of the lack of effective medical treatment for individuals with MR,identification of the etiological factors is critical for developing appropriate stragegies in the prevention,intervention and treatment of MR.
     X-linked genetic defects have been considered to be one of the important causes of mental retardation.X-linked mental retardation(XLMR) conditions are subdivided into three classes based on their clinical presentations:syndromic (S-XLMR,MRXS),neuromuscular disorders and non-syndromic(NS-XLMR,MRX) forms.At present,there are more than 170 distinct MR loci mapped to the X chromosome and 82 genes have been cloned.
     We identified a family with XLMR during a population survey for common hereditary diseases in Zoucheng,Shandong Province,China.Because the clinical features in this family were similar with that of Smith-Fineman-Myers syndrome (SFMS),this family was initially reported as having putative SFMS.The causative gene was mapped by linkage analysis to an interval of 10.18 Mb on Xq25.5.However, SFMS was later found to be caused by mutations in XNP,a gene located at Xq13. This suggested that either SFMS has genetic heterogeneity or this Zoucheng XLMR family represents a new syndrome that is distinct from SFMS in genetic etiology and in unrecognized phenotypes.To understand the molecular mechanisms of this disease, we identified the causative gene of Zoucheng family with XLMR and characterized its expression pattern,transcriptional regulation,subcellular localization and functional importance in cell proliferation.
     PART ONE Loss of Function Mutation in CUL4B Gene Causes a New X-linked Mental Retardation Syndrome:MRXS15
     The facts that the causative gene of the disease in the Zoucheng family with XLMR was mapped to Xq25 and the SFMS gene XNP was excluded as the cause of the disease suggest that cases in this family with XLMR probably represent a syndrome different from SFMS.Therefore,we revisited the family and reexamined the patients in 2005.
     There are 7 affected males in 6 sibships and no female is affected in this family. All adult patients showed mild to moderate MR and led their daily lives under the care and supervision of their parents and other relatives.None of the adult patients were able to speak a single word during their lifetimes.In addition to MR,several other physical features were also observed in patients,including short stature, brachydactyly,large tongue(macroglossia),and a unique gait of walking with the toes pointing inward.Neuroimaging by magnetic resonance imaging and computed axial tomography scanning revealed no structural abnormalities.Peripheral blood tests revealed that monocyte counts were remarkably increased,whereas the total WBC counts were in the normal range.
     To identify the gene responsible for this family we performed mutation analysis of candidate genes in the candidate region.After excluding the first 9 genes,we found a nonsense mutation in the 10th gene tested,CUL4B.A base substitution at 1564 in exon 9,c.1564C→T,converted a codon for arginine(CGA) to a termination codon (TGA),p.R388X.Further studies showed that this mutation cosegregated with the disease phenotype in the family.There was no 1564T allele detected among 312 X chromosomes from 264 unrelated,unaffected Chinese controls.Thus,it is unlikely that this mutation represents a polymorphism.
     We next measured the mRNA levels of CUL4B in peripheral leukocytes of patients,carriers,and controls by real time PCR.We found only~30%of the mRNA,a 70%reduction,was retained in the patients when compared with the controls.These results suggest that the mRNA of CUL4B was readily eliminated in those patients by the non-sense mediated decay(NMD) mechanism and the loss of function mutation in CUL4B was the cause of MRXS15.
     Interestingly,the CUL4B mRNA levels in carriers were as high as those in unaffected individuals.This was probably achieved by a selection against cells expressing the 1564T allele.To test this hypothesis,we evaluated the X-chromosome inactivation pattern in carriers and unaffected females.We found that X-chromosome inactivation was extremely skewed in all the informative carriers tested and only the wild-type allele was detected in leukocyte cDNA from those carriers.
     With the identification of the CUL4B as the causative gene and the presence of some unique clinical features,we proposed that the disease in this family represents a novel syndrome(MRXS15).
     These results,together with the findings of mutations of CUL4B in 8 families by Stratton et al,indicate that CUL4B is critical in cognition as well as other aspects of human development.
     PART TWO Expression Pattern of CUL4 and Transcriptional Regulatory Mechanism of CUL4B
     Although genetic studies showed that CUL4B plays an important role in development,little is known about the molecular function of CUL4B.CUL4 has two closely related paralogs,CUL4A and CUL4B,in mammals.Although CUL4A and CUL4B protein are 83%identical,recent studies have shown these two genes may have different functions.Therefore,in this section we investigated the expression pattern of CUL4 and characterized the transcriptional regulation of CUL4B expression by using the luciferase reporter assay.
     1.Real time PCR analysis revealed that CUL4B is expressed in all tissues detected,with the highest levels in brain and spleen,moderate in lung,liver,kidney and thymus,and lowest levels in skeletal muscle,nearly 10-fold less than that in brain. CUL4A is also ubiquitously expressed.But differently from CUL4B,there is no significant difference in the expression levels among different tissues.
     2.We performed Western blotting analysis of a set of 20 human cell lines. While CUL4B protein is expressed in all cell lines examined,its expression level is varied.Similar to the mRNA expression pattern in fetal human tissues,CUL4B protein is high in nervous system cell lines,but is low in all hematopoietic cell lines examined.In contrast,CUL4A is expressed at similar levels in these cell lines.
     3.Computer-based analysis of the 1kb region upstream of the translational start site of human CUL4B gene revealed a putative TATA box,~50bp upstream of ATG. In addition,some other potential cis-regulatory elements such as CAAT box,GATA box,Sp1 and E2F were identified in this region.
     4.P-CULB-952 showed a greater promoter activity in different cell lines including HeLa,LO2,U87 and SH-SY5Y than the promoterless luciferase vector, pGL3-basic,suggesting that the region~952bp upstream of ATG contains functional elements for the transcription of human CUL4B in different tissues.To further identify the sequence that is necessary for basal transcription of human CUL4B in different cell lines,we analyzed by reporter gcne assays various 5' deletions of the promoter. The promoter activity was drastically decreased in constructs with deletions between positions -476 and -452 in U87 and SH-SY5Y cells,but not in HeLa,HEK293 and LO2 cells,suggesting that the region from -476bp to -452bp contains nerve-specific cis-elements that arc crucial for the basal transcription of the CUL4B gene in nervous tissue.
     5.Using mutagenesis analysis,we found that only the mutation of ELK1 site located in the region between -476 and -452 resulted in significantly reduced promoter activity in SH-SY5Y cells.However,this reduction of promoter activity was not observed in C6 and U87 cells,indicating that there is a difference in transcriptional regulation of CUL4B gene between neuronal cells and glial cells and ELK1 element is the neuronal specific cis-element essential for the CUL4B transcription.
     PART THREE Subcellular Localization of CUL4 and Identification of a Functional NLS of CUL4B
     To further understand the function of CUL4B,we investigated the subcellular localization of CUL4A and CUL4B and identified the functional NLS of CUL4B.
     1.To investigate the subcellular localization of CUL4A and CUL4B,we first fused CUL4A and CUL4B cDNA containing the complete open reading frame to C-terminal end of EGFP to construct pEGFP-C1-CUL4A and pEGFP-C1-CUL4B expression vector and transiently transfected into different cell lines.The results showed that the subcellular localization of EGFP-CUL4A varies among different cell lines,while EGFP-CUL4B was exclusively localized in the nucleus in all cell lines examined.Therefore,despite their strong sequence homology,CUL4B and CUL4A have different patterns of subcellular distribution in transfected cells.
     2.We next examined the subcellular localization of CUL4B-Myc-His fusion protein in which the tagged proteins Myc and His are at the C-terminal end of CUL4B by immunofluorescence using anti-Myc antibody.The results showed that like EGFP-CUL4B,CUL4B-Myc-His mainly distributed in nucleus in different cell lines.
     3.We found that lacking of C-terminus did not impair the nuclear accumulation of CUL4B.In contrast,CUL4B with N-terminal end truncated was unable to accumulate in the nucleus and was exclusively observed in the cytoplasm.The N-terminal fragment of CUL4B was able to guide EGFP to the nucleus.These results indicated that N-terminus but not C-terminal region of CUL4B regulates its nuclear import.
     4.We used web-based computer program PSORTⅡto predict the functional NLS in the amino acid sequence of CUL4B.According to calculations by this program,four sequences were suggested as putative NLSs of CUL4B,three in the first 100 residues and the other in the C-terminus.To determine which of the three candidate NLSs in the N-terminus are actually responsible for nuclear import of CUL4B,a series truncation mutant constructs were generated and transiently expressed in HeLa cells.The result showed that ~(37)KKRK~(40) is the functional NLS of CUL4B.Using mutation analysis,we found 38K and 39R were the key amino acids regulating the nuclear localization of CUL4B.
     5.To further understand the mechanism of nuclear import of CUL4B,we performed in vitro GST pulldown experiments to investigate the ability of CUL4B to interact with importinαproteins.The results showed that all importinαs(importinα1,α3,α5) tested in this assay could interact with CUL4B in vitro in a NLS-mediated way,suggesting that these importinαs are all capable of transporting CUL4B into the nucleus in conjunction with importinβ.
     PART FOUR he Role of CUL4B in Cell Proliferation and Cell Cycle Regulation
     The findings that X-chromosome inactivation was extremely skewed in carriers and only the wild-type allele was detected in leukocyte cDNA from those carriers suggest that cells lacking CUL4B are impaired in proliferation and strongly selected against in vivo.In addition,previous studies have shown that CUL4A is involved in regulation of several key cell cycle regulators.These results prompted us to examine whether CUL4B also plays an important role in cell proliferation and cell cycle regulation.
     1.We first evaluated the effects of CUL4B overexpression on cell proliferation by MTT assay.We found that upregulationof CUL4B expression can promote growth rate of HEK293 cells
     2.Next,we employed CUL4B-specific RNAi to stably knock down endogenous CUL4B expression in HeLa cells and determined changes in cell proliferation.The results of MTT assay indicated that CUL4B depletion led to a significantly decreased growth rate of HeLa cells.Using TUNEL assay,we evaluated the effect of CUL4B down-regulation on cell apoptosis,but no difference was observed.These results suggest that the inhibition of cell growth may be mediated by cell cycle arrest.To test our hypothesis,BrdU incorporation assay and FACS analysis were employed.Consistent with MTT assay,down-regulation of CUL4B showed a significant decrease in the number of BrdU positive cells compared to the control group.Interestingly,Cell cycle distributions by FACS analysis showed the amount of cells in S phase increased about 10%in CUL4B depletion cells.Taken together,these results indicate that the inhibition of proliferation caused by constitutive silencing of CUL4B was mediated by S phase arrest.
     3.To understand the molecular basis for CUL4B depletion-induced cell cycle arrest in HeLa cells,we examined the expression levels of several cell cycle regulators by Western blotting analysis.Of the proteins examined,silencing of CUL4B only led to the selective accumulation of cyclin E as compared to control cells.
     4.Since CUL4B was mainly localized in nuclei,we further examined whether nuclear localization of CUL4B was required for its functions in regulating of cell proliferation.We found that an over-expression of full-length CUL4B and CUL4A significantly increased the proliferation of cells compared with untransfected cells.In contrast,expression of constructs in which the NLS or N-terminal region of CUL4B had been deleted was unable to promote cell proliferation.Rescue experiments also showed that wildtype CUL4B could restore DNA synthesis and relieve the accumulation of cyclin E protein in CUL4B-depleted HeLa cells.These data indicated that the nuclear localization of CUL4B was required for its regulation of cell proliferation.
     Taken together,this study provided the first evidence of CUL4B mutation as the cause of a human disease.In addition,we analyzed the expression pattern,subcellular localization,transcriptional regulation of CUL4B and its role in cell proliferation. These results advanced our understanding of the etiology of XLMR and the functions of CUL4B in human development.
引文
1.Leonard,H.,Wen,X.The epidemiology of mental retardation:challenges and opportunities in the new millennium[J].Ment Retard Dev Disabil Res Rev,2002,8(3):117-34.
    2.Renieri,A.,Pescucci,C.,Longo,I.,Ariani,F.,Mari,F.,Meloni,I.Non-syndromic X-linked mental retardation:from a molecular to a clinical point of view[J].J Cell Physiol,2005,204(1):8-20.
    3.Inlow,J.K.,Restifo,L.L.Molecular and comparative genetics of mental retardation[J].Genetics,2004,166(2):835-81.
    4.Kleefstra,T.,Hamel,B.C.X-linked mental retardation:further lumping,splitting and emerging phenotypes[J].Clin Genet,2005,67(6):451-67.
    5.Stevenson,R.E.,Schwartz,C.E.Clinical and molecular contributions to the understanding of X-linked mental retardation[J].Cytogenet Genome Res,2002,99(1-4):265-75.
    6.Chiurazzi,P.,Schwartz,C.E.,Gecz,J.,Neff,G.XLMR genes:update 2007[J].Eur J Hum Genet,2008,16(4):422-34.
    7.Ropers,H.H.,Hamel,B.C.X-linked mental retardation[J].Nat Rev Genet,2005,6(1):46-57.
    8.Frints,S.G.,Froyen,G.,Marynen,P.,Fryns,J.P.X-linked mental retardation:vanishing boundaries between non-specific(MRX) and syndromic(MRXS) forms[J].Clin Genet,2002,62(6):423-32.
    9.VerkerK,A.J.,Pieretti,M.,Sutcliffe,J.S.,Fu,Y.H.,Kuhl,D.P.,Pizzuti,A.,Reiner,O.,Richards,S.,Victoria,M.F.,Zhang,F.P.,et al.Identification of a gene(FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome[J].Cell,1991,65(5):905-14.
    10.Zemni,R.,Bienvenn,T.,Vinet,M.C.,Sefiani,A.,Carrie,A.,Billuart,P.,McDonell,N.,Couvert,P.,Francis,F.,Chafey,P.,Fauchereau,F.,Friocourt,G.,des PoRes,V.,Cardona,A,Flints,S.,Meindl,A.,Brandau,O.,Ronce,N.,Moraine,C.,van Bokhoven,H.,Ropers,H.H.,Sudbrak,R.,Kahn,A.,Fryns,J.P.,Beldjord,C.,Chelly,J.A new gene involved in X-linked mental retardation identified by analysis of an X;2 balanced translocation[J].Nat Genet,2000,24(2):167-70.
    11.Billuart,P.,Bienvenu,T.,Ronce,N.,des Portes,V.,Vinet,M.C.,Zemni,R.,Roest Crollius,H.,Carrie,A.,Fauchereau,F.,Cherry,M.,Briault,S.,Hamel,B.,Fryns,J.P.,Beldjord,C.,Kahn,A.,Moraine,C.,Chelly,J.Oligophrenin-1 encodes a rhoGAP protein involved in X-linked mental retardation[J].Nature,1998,392(6679):923-6.
    12.Gecz,J.,Barnett,S.,Liu,J.,Hollway,G.,Donnelly,A.,Eyre,H.,Eshkevari,H.S.,Baltazar,R.,Grunn,A.,Nagaraja,R.,GiUiam,C.,Peltonen,L.,Sutherland,G.R.,Baron,M.,Mulley,J.C.Characterization of the human glutamate receptor subunit 3 gene(GRIA3),a candidate for bipolar disorder and nonspecific X-linked mental retardation[J].Genomics,1999,62(3):356-68.
    13.Meloni,I.,Muscettola,M.,Raynaud,M.,Longo,I.,Bruttini,M.,Moizard,M.P.,Gomot,M.,Chelly,J.,des Portes,V.,Fryns,J.P.,Ropers,H.H.,Magi,B.,BeUan,C.,Volpi,N.,Yntema,H.G.,Lewis,S.E.,Schaffer,J.E.,Renieri,A.FACL4,encoding fatty acid-CoA ligase 4,is mutated in nonspocific X-linked mental retardation[J].Nat Genet,2002,30(4):436-40.
    14.Ropers,H.H.,Hoeltzenbein,M.,Kalscheuer,V.,Yntema,H.,Hamel,B.,Fryus,J.P.,Chelly,J.,Partington,M.,Gecz,J.,Moraine,C.Nonsyndromic X-linked mental retardation:where are the missing mutations?[J].Trends Genet,2003,19(6):316-20.
    15.Zhang,L.,Jie,C.,Obie,C.,Abidi,F.,Schwartz,C.E.,Stevenson,R.E.,Valle,D.,Wang,T.X chromosome cDNA microarray screening identifies a functional PLP2 promoter polymorphism enriched in patients with X-linked mental retardation[J].Genome Res,2007,17(5):641-8.
    16.Wei,J.,Chen,B.,Jiang,Y.,Yang,Y.,Guo,Y.Smith-Fineman-Myers syndrome:report on a large family[J].Am J Med Genet,1993,47(3):307-11.
    17.Smith,R.D.,Fineman,R.M.,Myers,G.G.Short stature,psychomotor retardation,and unusual facial appearance in two brothers[J].Am J Med Genet,1980,7(1):5-9.
    18.Reed,T.Unusual fingerprint patterns in Smith-Fineman-Myers syndrome[J].Am J Med Genet,1993,46(6):727.
    19.Ades,L.C.,Kerr,B.,Turner,G.,Wise,G.Smith-Fineman-Myers syndrome in two brothers[J].Am J Med Genet,1991,40(4):467-70.
    20.Stephenson,L.D.,Johnson,J.P.Smith-Fineman-Myers syndrome:report of a third case[J].Am J Med Genet,1985,22(2):301-4.
    21.Guion-Almeida,M.L.,Tabith,A.,Jr.,Kokitsu-Nakata,N.M.,Zechi,R.M.Smith-Fineman-Myers syndrome in apparently monozygotic twins[J].Am J Med Genet,1998,79(3):205-8.
    22.Villard,L.,Fontes,M.,Ades,L.C.,Gecz,J.Identification of a mutation in the XNP/ATR-X gene in a family reported as Smith-Fineman-Myers syndrome[J].Am J Med Genet,2000,91(1):83-5.
    23.Gong,Y.,Wei,J.,Shao,C.,Guo,Y.,Chen,B.,Guo,C.,Warman,M.[Mapping the gene responsible for Smith-Fineman-Myers syndrome to Xq25][J].Zhonghua Yi Xue Yi Chuan Xue Za Zhi,1999,16(5):277-80.
    24.Liu,Q.,Gong,Y.,Chen,B.,Guo,C.,Li,J.,Guo,Y.[Linkage analysis of X-linked nuclear protein gene in Smith-Fineman-Myers syndrome][J].Zhonghua Yi Xue Yi Chuan Xue Za Zhi,2002,19(1):22-5.
    25.Liu,Q.J.,Gong,Y.Q.,Chen,B.X.,Guo,C.H.,Li,J.X.,Guo,Y.S.[Linkage analysis and mutation detection of GRIA3 in Smith-Fineman-Myers syndrome][J].Yi Chuan Xue Bao,2001,28(11):985-90.
    26.Liu,Q.J.,Gong,Y.Q.,Zhang,X.Y.,Gao,G.M.,Guo,Y.S.[Characterization of genomic structure and mutation analysis of SMARCA1 gene in a Smith-Fineman-Myers syndrome family][J].Yi Chuan Xue Bao,2004,31(2):114-8.
    27.Lin,Q.J.,Gong,Y.Q.,Li,J.X.,Zhang,X.Y.,Gao,G.M.,Guo,Y.S.[Fine mapping of Smith-Fineman-Myers syndrome and exclusion of GPC3,GPCR2 MST4 and GLUD2 as candidate genes][J].Zhonghua Yi Xue Yi Chuan Xue Za Zhi,2004,21(3):198-202.
    28.Lucas,D.R.,Shroyer,K.R.,McCarthy,P.J.,Markham,N.E.,Fujita,M.,Enomoto,T.E.Desmoid tumor is a clonal cellular proliferation:PCR amplification of HUMARA for analysis of patterns of X-chromosome inactivation[J].Am J Surg Pathol,1997,21(3):306-11.
    29.Holbrook,J.A.,Nen-Yilik,G.,Hentze,M.W.,Kulozik,A.E.Nonsense-mediated decay approaches the clinic[J].Nat Genet,2004,36(8):801-8.
    30.Plenge,R.M.,Stevenson,R.A.,Lubs,H.A.,Schwartz,C.E.,Willard,H.F.Skewed X-chromosome inactivation is a common feature of X-linked mental retardation disorders[J].Am J Hum Genet,2002,71(1):168-73.
    31.Nascimento,R.M.,Otto,P.A.,de Brouwer,A.P.,Vianna-Morgante,A.M.UBE2A,which encodes a ubiquitin-conjugating enzyme,is mutated in a novel X-linked mental retardation syndrome[J].Am J Hum Genet,2006,79(3):549-55.
    32.Tarpey,P.S.,Raymond,F.L.,O'Meara,S.,Edkins,S.,Teague,J.,Butler,A.,Dicks,E.,Stevens,C.,Tofts,C.,Avis,T.,Barthorpe,S.,Buck,G.,Cole,J.,Gray,K.,Halliday,K.,Harrison,R.,Hills,K.,Jenkinson,A.,Jones,D.,Menzies,A.,Mironenko,T.,Perry,J.,Raine,K.,Richardson,D.,Shepherd,R.,Small,A.,Varian,J.,West,S.,Widaa,S.,Mallya,U.,Moon,J.,Luo,Y.,Holder,S.,Smithson,S.F.,Hurst,J.A.,Clayton-Smith,J.,Kerr,B.,Boyle,J.,Shaw,M.,Vandeleur,L.,Rodriguez,J.,Slaugh,R.,Easton,D.F.,Wooster,R.,Bobrow,M.,Srivastava,A.K.,Stevenson,R.E.,Schwartz,C.E.,Turner,G.,Gecz,J.,Futreal,P.A.,Stratton,M.R.,Partington,M.Mutations in CUL4B,which encodes a ubiquitin E3 ligase subunit,cause an X-linked mental retardation syndrome associated with aggressive outbursts,seizures,relative macrocephaly,central obesity,hypogonadism,pes cavus,and tremor[J].Am J Hum Genet,2007,80(2):345-52.
    33.Cabezas,D.A.,Slaugh,R.,Abidi,F.,Arena,J.F.,Stevenson,R.E.,Schwartz,C.E.,Lubs,H.A.A new X linked mental retardation(XLMR) syndrome with short stature,small testes,muscle wasting,and tremor localises to Xq24-q25[J].J Med Genet,2000,37(9):663-8.
    34.Gecz,J.,Cloosterman,D.,Partington,M.ARX:a gene for all seasons[J].Curr Opin Genet Dev,2006,16(3):308-16.
    35.de Brouwer,A.P.,Yntema,H.G.,Kleefstra,T.,Lugtenberg,D.,Oudakker,A.R.,de Vries,B.B.,van Bokhoven,H.,Van Esch,H.,Frints,S.G.,Froyen,G.,Fryns,J.P.,Raynaud,M.,Moizard,M.P.,Ronce,N.,Bensalem,A.,Moraine,C.,Poirier,K.,Castelnau,L.,Saillour,Y.,Bienvenu,T.,Beldjord,C.,des Portes,V.,Chelly,J.,Turner,G.,Fullston,T.,Gecz,J.,Kuss,A.W.,Tzschach,A.,Jensen,L.R.,Lenzner,S.,Kalscheuer,V.M.,Ropers,H.H.,Hamel,B.C.Mutation frequencies of X-linked mental retardation genes in families from the EuroMRX consortium[J].Hum Mutat,2007,28(2):207-8.
    36.Petroski,M.D.,Deshaies,R.J.Function and regulation of cullin-RING ubiquitin ligases[J].Nat Rev Mol Cell Biol,2005,6(1):9-20.
    37.Pickart,C.M.Mechanisms underlying ubiquitination[J].Annu Rev Biochem,2001,70(503-33.
    38.Willems,A.R.,Schwab,M.,Tyers,M.A hitchhiker's guide to the cullin ubiquitin ligases:SCF and its kin[J].Biochim Biophys Acta,2004,1695(1-3):133-70.
    39.Zenker,M.,Mayerle,J.,Lerch,M.M.,Tagariello,A.,Zerres,K.,Durie,P.R.,Beier,M.,Hulskamp,G.,Gnzman,C.,Rehder,H.,Beemer,F.A.,Hamel,B.,Vanlieferinghen,P.,Gershoni-Baruch,R.,Vieira,M.W.,Dumic,M.,Auslender,R.,Gil-da-Silva-Lopes,V.L.,Steinlicht,S.,Rauh,M.,Shalev,S.A.,Thiel,C.,Ekici,A.B.,Winterpacht,A.,Kwon,Y.T.,Varshavsky,A.,Reis,A.Deficiency of UBR1,a ubiquitin ligase of the N-end rule pathway,causes pancreatic dysfunction,malformations and mental retardation(Johanson-Blizzard syndrome)[J].Nat Genet,2005,37(12):1345-50.
    40.Elting,M.,Kariminejad,A.,de Sonnaville,M.L.,Ottenkamp,J.,Bauhuber,S.,Bozorgmehr,B.,Zenker,M.,Cobben,J.M.Johanson-Blizzard syndrome caused by identical UBR1mutations in two unrelated girls,one with a cardiomyopathy[J].Am J Med Genet A,2008,146A(23):3058-61.
    41.Matsuura,T.,Sutcliffe,J.S.,Fang,P.,Galjaard,R.J.,Jiang,Y.H.,Benton,C.S.,Rommens,J.M.,Beaudet,A.L.De novo truncating mutations in E6-AP ubiquitin-protein ligase gene(UBE3A) in Angelman syndrome[J].Nat Genet,1997,15(1):74-7.
    42.Quaderi,N.A.,Schweiger,S.,Gaudenz,K.,France,B.,Rugarli,E.I.,Berger,W.,Feldman,G.J.,Volta,M.,Andolfi,G.,Gilgenkrantz,S.,Marion,R.W.,Hennekam,R.C.,Opitz,J.M.,Muenke,M.,Ropers,H.H.,Ballabio,A.Opitz G/BBB syndrome,a defect of midline development,is due to mutations in a new RING finger gene on Xp22[J].Nat Genet,1997,17(3):285-91.
    43.Trockenbacher,A.,Suckow,V.,Foerster,J.,Winter,J.,Krauss,S.,Ropers,H.H.,Schneider,R.,Schweiger,S.MID1,mutated in Opitz syndrome,encodes an ubiquitin ligase that targets phosphatase 2A for degradation[J].Nat Genet,2001,29(3):287-94.
    44.Froyen,G.,Corbett,M.,Vandewalle,J.,Jarvela,I.,Lawrence,O.,Meldrum,C.,Bauters,M.,Govaerts,K.,Vandeleur,L.,Van Esch,H.,Chelly,J.,Sanlaville,D.,van Bokhoven,H.,Ropers,H.H.,Laumonnier,F.,Ranieri,E.,Schwartz,C.E.,Abidi,F.,Tarpey,P.S.,Futreal,P.A.,Whibley,A.,Raymond,F.L.,Stratton,M.R.,Fryns,J.P.,Scott,R.,Peippo,M.,Sipponen,M.,Partington,M.,Mowat,D.,Field,M.,HackeR,A.,Marynen,P.,Turner,G.,Gecz,J.Submicroscopic duplications of the hydroxysteroid dehydrogenase HSD17B10 and the E3ubiquitin ligase HUWE1 are associated with mental retardation[J].Am J Hum Genet,2008,82(2):432-43.
    45.Micale,L.,Fnsco,C.,Augello,B.,Napolitano,L.M.,Dermitzakis,E.T.,Meroni,G.,Merla,G.,Reymond,A.Williams-Beuren syndrome TRIM50 encodes an E3 ubiquitin ligase[J].Eur J Hum Genet,2008,16(9):1038-49.
    46.Huber,C.,Dias-Santagata,D.,Glaser,A.,O'Sullivan,J.,Brauner,R.,Wu,K.,Xu,X.,Pearce,K.,Wang,R.,Uzielli,M.L.,Dagoneau,N.,Chemaitilly,W.,Superti-Furga,A.,Dos Santos,H.,Megarbane,A.,Morin,G.,Gillessen-Kaesbach,G.,Hennekam,R.,Van der Burgt,I.,Black,G.C.,Clayton,P.E.,Read,A.,Le Merrer,M.,Scambler,P.J.,Munnich,A.,Pan,Z.Q.,Winter,R.,Cormier-Daire,V.Identification of mutations in CUL7 in 3-M syndrome[J].Nat Genet,2005,37(10):1119-24.
    47.Bosu,D.R.,Kipreos,E.T.Cullin-RING ubiquitin ligases:global regulation and activation cycles[J].Cell Div,2008,3(7.
    48.Goldenberg,S.J.,Cascio,T.C.,Shumway,S.D.,Garbutt,K.C.,Liu,J.,Xiong,Y.,Zheng,N.Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases[J].Cell,2004,119(4):517-28.
    49.Kipreos,E.T.,Lander,L.E.,Wing,J.P.,He,W.W.,Hedgecock,E.M.cul-1 is required for cell cycle exit in C.elegans and identifies a novel gene family[J].Cell,1996,85(6):829-39.
    50.Dealy,M.J.,Nguyen,K.V.,Lo,J.,Gstaiger,M.,Krek,W.,Elson,D.,Arbeit,J.,Kipreos,E.T.,Johnson,R.S.Loss of Cull results in early embryonic lethality and dysregulation of cyclin E[J].Nat Genet,1999,23(2):245-8.
    51.Singer,J.D.,Gurian-West,M.,Clurman,B.,Roberts,J.M.Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells[J].Genes Dev,1999,13(18):2375-87.
    52.Li,B.,Rulz,J.C.,Chun,K.T.CUL-4A is critical for early embryonic development[J].Mol Cell Biol,2002,22(14):4997-5005.
    53.Arai,T.,Kasper,J.S,,Skaar,J.R.,All,S.H.,Takahashi,C.,DeCaprio,J.A.Targeted disruption of p185/Cu17 gene results in abnormal vascular morphogenesis[J].Proc Natl Acad Sci U S A,2003,100(17):9855-60.
    54.Zhong,W.,Feng,H.,Santiago,F.E.,Kipreos,E.T.CUL-4 ubiquitin ligase maintains genome stability by restraining DNA-replication licensing[J].Nature,2003,423(6942):885-9.
    55.Wertz,I.E.,O'Rourke,K.M.,Zhang,Z.,Dornan,D.,Arnott,D.,Deshaies,R.J.,Dixit,V.M.Human De-etiolated-1 regulates c-Jun by assembling a CUL4A ubiquitin ligase[J].Science,2004,303(5662):1371-4.
    56.Ohtake,F.,Baba,A.,Takada,I.,Okada,M.,Iwasaki,K.,Miki,H.,Takahashi,S.,Kouzmenko,A.,Nohara,K.,Chiba,T.,Fujii-Kuriyama,Y.,Kato,S.Dioxin receptor is a ligand-dependent E3 ubiquitin ligase[J].Nature,2007,446(7135):562-6.
    57.Lee,J.,Zhou,P.DCAFs,the missing link of the CUL4-DDB1 ubiquitin ligase[J].Mol Cell,2007,26(6):775-80.
    58.Li,B.,Jia,N.,Kaput,R.,Chun,K.T.Cu14A targets p27 for degradation and regulates proliferation,cell cycle exit,and differentiation during erythropoiesis[J].Blood,2006,107(11):4291-9.
    59.Waning,D.L.,Li,B.,Jia,N.,Naaldijk,Y.,Goebel,W.S.,HogenEsch,H.,Chun,K.T.Cu14A is required for hematopoietic cell viability and its deficiency leads to apoptosis[J].Blood,2008,112(2):320-9.
    60.Chen,L.C.,Manjeshwar,S.,Lu,Y.,Moore,D.,Ljung,B.M.,Kuo,W.L.,Dairkee,S.H.,Wernick,M.,Collins,C.,Smith,H.S.The human homologue for the Caenorhabditis elegans cu1-4 gene is amplified and overexpressed in primary breast cancers[J].Cancer Res,1998,58(16):3677-83.
    61.Hori,T.,Osaka,F.,Chiba,T.,Miyamoto,C.,Okabayashi,K.,Shimbara,N.,Kato,S.,Tanaka,K.Covalent modification of all members of human cullin family proteins by NEDD8[J].Oncogene,1999,18(48):6829-34.
    62.Tupler,R.,Perini,G.,Green,M.R.Expressing the human genome[J].Nature,2001,409(6822):832-3.
    63.Qiu,P.Recent advances in computational promoter analysis in understanding the transcriptional regulatory network[J].Biochem Biophys Res Commun,2003,309(3):495-501.
    64.La Monica,N.,Racaniello,V.R.Differences in replication of attenuated and neurovirulent poliovirnses in human neuroblastoma cell line SH-SY5Y[J].J Virol,1989,63(5):2357-60.
    65.Encinas,M.,Iglesias,M.,Llecha,N.,Comella,J.X.Extracellular-regulated kinases and phosphatidylinositol 3-kinase are involved in brain-derived neurotrophic factor-mediated survival and neuritogenesis of the neuroblastoma cell line SH-SY5Y[J].J Neurochem,1999,73(4):1409-21.
    66.Jalava,A.,Akerman,K.,Heikkila,J.Protein kinase inhibitor,staurosporine,induces a mature neuronal phenotype in SH-SY5Y human neuroblastoma cells through an alpha-,beta-,and zeta-protein kinase C-independent pathway[J].J Cell Physiol,1993,155(2):301-12.
    67.Matthews,C.C.,Feldman,E.L.Insulin-like growth factor I rescues SH-SY5Y human neuroblastoma cells from hyperosmotic induced programmed cell death[J].J Cell Physiol,1996,166(2):323-31.
    68.Qian,X.,Shen,Q.,Goderie,S.K.,He,W.,Capela,A.,Davis,A.A.,Temple,S.Timing of CNS cell generation:a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells[J].Neuron,2000,28(1):69-80.
    69.Manch,D.H.,Nagler,K.,Schumacher,S.,Goritz,C.,Muller,E.C.,Otto,A.,Pfrieger,F.W.CNS synaptogenesis promoted by glia-derived cholesterol[J].Science,2001,294(5545):1354-7.
    70.Ullian,E.M.,Sapperstein,S.K.,Christopherson,K.S.,Banes,B.A.Control of synapse number by glia[J].Science,2001,291(5504):657-61.
    71.Ma,D.K.,Ming,G.L.,Song,H.Glial influences on neural stem cell development:cellular niches for adult neurogenesis[J].Curr Opin Neurobiol,2005,15(5):514-20.
    72.Song,H.,Stevens,C.F.,Gage,F.H.Astroglia induce neurogenesis from adult neural stem cells[J].Nature,2002,417(6884):39-44.
    73.Szabo,S.J.,Sullivan,B.M.,Stemmann,C.,Satoskar,A.R.,Sleckman,B.P.,Glimcher,L.H.Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells[J].Science,2002,295(5553):338-42.
    74.Christmas,P.,Carlesso,N.,Shang,H.,Cheng,S.M.,Weber,B.M.,Preffer,F.I.,Scadden,D.T.,Soberman,R.J.Myeloid expression of cytochrome P450 4F3 is determined by a lineage-specific alternative promoter[J].J Biol Chem,2003,278(27):25133-42.
    75.Laudet,V.,Hanni,C.,Stehelin,D.,Duterque-Coquillaud,M.Molecular phylogeny of the ETS gene family[J].Oncogene,1999,18(6):1351-9.
    76.Nunn,M.F.,Seeburg,P.H.,Moscovici,C.,Duesberg,P.H.Tripartite structure of the avian erythroblastosis virus E26 transforming gene[J].Nature,1983,306(5941):391-5.
    77.Oikawa,T.,Yamada,T.Molecular biology of the Ets family of transcription factors[J].Gene,2003,303(11-34.
    78.Gallant,S.,Gilkeson,G.ETS transcription factors and regulation of immunity[J].Arch Immunol Ther Exp(Warsz),2006,54(3):149-63.
    79.Buchwalter,G.,Gross,C.,Wasylyk,B.Ets ternary complex transcription factors[J].Gene,2004,324(1-14.
    80.Seth,A.,Watson,D.K.ETS transcription factors and their emerging roles in human cancer[J].Eur J Cancer,2005,41(16):2462-78.
    81.Oikawa,T.ETS transcription factors:possible targets for cancer therapy[J].Cancer Sci,2004,95(8):626-33.
    82.Bartel,F.O.,Higuchi,T.,Spyropoulos,D.D.Mouse models in the study of the Ets family of transcription factors[J].Oncogene,2000,19(55):6443-54.
    83.Maroulakou,I.G.,Bowe,D.B.Expression and function of Ets transcription factors in mammalian development:a regulatory network[J].Oncogene,2000,19(55):6432-42.
    84.Valter,M.M.,Hugel,A.,Huang,H.J.,Cavenee,W.K.,Wiestler,O.D.,Pietsch,T.,Wernert,N.Expression of the Ets-1 transcription factor in human astrocytomas is associated with Fms-like tyrosine kinase-1(Flt-1)/vascular endothelial growth factor receptor-1 synthesis and neoangiogenesis[J].Cancer Res,1999,59(21):5608-14.
    85.Fleischman,L.F.,Holtzclaw,L.,Russell,J.T.,Mavrothalassitis,G.,Fisher,R.J.ets-1 in astrocytes:expression and transmitter-evoked phosphorylation[J].Mol Cell Biol,1995,15(2):925-31.
    86.Lee,J.,Kannagi,M.,Ferrante,R.J.,Kowall,N.W.,Ryu,H.Activation of Ets-2 by oxidative stress induces Bcl-xL expression and accounts for glial survival in amyotrophic lateral sclerosis[J].Faseb J,2009.
    87.Vanhoutte,P.,Nissen,J.L.,Brugg,B.,Gaspera,B.D.,Besson,M.J.,Hipskind,R.A.,Caboche,J.Opposing roles of Elk-1 and its brain-specific isoform,short Elk-1,in nerve growth factor-induced PC12 differentiation[J].J Biol Chem,2001,276(7):5189-96.
    88.Petersohn,D.,Schoch,S.,Brinkmann,D.R.,Thiel,G The human synapsin Ⅱ gene promoter. Possible role for the transcription factor zif268/egr-1,polyoma enhancer activator 3,and AP2[J].J Biol Chem,1995,270(41):24361-9.
    89.Chang,L.,Thompson,M.A.Activity of the distal positive element of the peripherin gene is dependent on proteins binding to an Ets-like recognition site and a novel inverted repeat site[J].J Biol Chem,1996,271(11):6467-75.
    90.Sun,P.,Loh,H.H.Transcriptional regulation of mouse delta-opioid receptor gene:role of Ets-1 in the transcriptional activation of mouse delta-opioid receptor gene[J].J Biol Chem,2001,276(48):45462-9.
    91.Hippenmeyer,S.,Vrieseling,E.,Sigrist,M.,Portmann,T.,Laengle,C.,Ladle,D.R.,Arber,S.A developmental switch in the response of DRG neurons to ETS transcription factor signaling[J].PLoS Biol,2005,3(5):e159.
    92.Arber,S.,Ladle,D.R.,Lin,J.H.,Frank,E.,Jessell,T.M.ETS gene Er81 controls the formation of functional connections between group Ia sensory afferents and motor neurons[J].Cell,2000,101(5):485-98.
    93.Lange,A.,Mills,R.E.,Lange,C.J.,Stewart,M.,Devine,S.E.,Corbett,A.H.Classical nuclear localization signals:definition,function,and interaction with importin alpha[J].J Biol Chem,2007,282(8):5101-5.
    94.Fahrenkrog,B.,Aebi,U.The nuclear pore complex:nucleocytoplasmic transport and beyond[J].Nat Rev Mol Cell Biol,2003,4(10):757-66.
    95.Moroianu,J.Nuclear import and export pathways[J].J Cell Biochem,1999,Suppl 32-33(76-83.
    96.Hodel,M.R.,Corbett,A.H.,Hodel,A.E.Dissection of a nuclear localization signal[J].J Biol Chem,2001,276(2):1317-25.
    97.Kaffman,A.,O'Shea,E.K.Regulation of nuclear localization:a key to a door[J].Annu Rev Cell Dev Biol,1999,15(291-339.
    98.Hood,J.K.,Silver,P.A.In or out? Regulating nuclear transport[J].Curr Opin Cell Biol,1999,11(2):241-7.
    99.Lee,S.J.,Matsuura,Y.,Liu,S.M.,Stewart,M.Structural basis for nuclear import complex dissociation by RanGTP[J].Nature,2005,435(7042):693-6.
    100.Kutay,U.,Bischoff,F.R.,Kostka,S.,Kraft,R.,Gorlich,D.Export of importin alpha from the nucleus is mediated by a specific nuclear transport factor[J].Cell,1997,90(6):1061-71.
    101.Hartmann,T.,Bergsdorf,C.,Sandbrink,R.,Tienari,P.J.,Multhaup,G.,Ida,N.,Bieger,S.,Dyrks,T.,Weidemann,A.,Masters,C.L.,Beyreuther,K.Alzheimer's disease betaA4 protein release and amyloid precursor protein sorting are regulated by alternative splicing[J].J Biol Chem,1996,271(22):13208-14.
    102.Shurety,W.,Merino-Trigo,A.,Brown,D.,Hume,D.A.,Stow,J.L.Localization and post-Golgi trafficking of tumor necrosis factor-alpha in macrophages[J].J Interferon Cytokine Res,2000,20(4):427-38.
    103.Bryant,D.M.,Stow,J.L.The ins and outs of E-cadherin trafficking[J].Trends Cell Biol,2004,14(8):427-34.
    104.Ho,S.N.,Hunt,H.D.,Horton,R.M.,Pullen,J.K.,Pease,L.R.Site-directed mutagenesis by overlap extension using the polymerase chain reaction[J].Gene,1989,77(1):51-9.
    105.Furukawa,M.,Zhang,Y.,McCarville,J.,Ohta,T.,Xiong,Y.The CUL1 C-terminal sequence and ROC1 are required for efficient nuclear accumulation,NEDD8 modification,and ubiquitin ligase activity of CUL1[J].Mol Cell Biol,2000,20(21):8185-97.
    106.Chen,X.,Zhang,Y.,Douglas,L.,Zhou,P.UV-damaged DNA-binding proteins are targets of CUL-4A-mediated ubiquitination and degradation[J].J Biol Chem,2001,276(51):48175-82.
    107.Guerrero-Santoro,J.,Kapetanaki,M.G.,Hsieh,C.L.,Gorbachinsky,I.,Levine,A.S.,Rapic-Otrin,V.The cullin 4B-based UV-damaged DNA-binding protein ligase binds to UV-damaged chromatin and ubiquitinates historic H2A[J].Cancer Res,2008,68(13):5014-22.
    108.He,D.,Song,X.,Liu,L.,Burk,D.H.,Zhou,G.W.EGF-stimulation activates the nuclear localization signal of SHP-1[J].J Cell Biochem,2005,94(5):944-53.
    109.Conti,E.,Uy,M.,Leighton,L,Blobel,G.,Kuriyan,J.Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha[J].Cell,1998,94(2):193-204.
    110.Colledge,W.H.,Richardson,W.D.,Edge,M.D.,Smith,A.E.Extensive mutagenesis of the nuclear location signal of simian virus 40 large-T antigen[J].Mol Cell Biol,1986,6(11):4136-9.
    111.Kovac,C.R.,Emelyanov,A.,Singh,M.,Ashouian,N.,Birshtein,B.K.BSAP(Pax5)-importin alpha 1(Rch1) interaction identifies a nuclear localization sequence[J].J Biol Chem,2000,275(22):16752-7.
    112.Jain,A.K.,Bloom,D.A.,Jaiswal,A.K.Nuclear import and export signals in control of Nrf2[J].J Biol Chem,2005,280(32):29158-68.
    113.Zhang,X.,Wang,K.S.,Wang,Z.Q.,Xu,L.S.,Wang,Q.W.,Chen,F.,Wei,D.Z.,Han,Z.G.Nuclear localization signal of ING4 plays a key role in its binding to p53[J].Biochem Biophys Res Commun,2005,331(4):1032-8.
    114.Lischka,P.,Sorg,G.,Kann,M.,Winlder,M.,Stamminger,T.A nonconventional nuclear localization signal within the UL84 protein of human cytomegalovirns mediates nuclear import via the importin alpha/beta pathway[J].J Virol,2003,77(6):3734-48.
    115.Nadler,S.G.,Tritschler,D.,Haffar,O.K.,Blake,J.,Bruce,A.G.,Cleaveland,J.S.Differential expression and sequence-specific interaction of karyopherin alpha with nuclear localization sequences[J].J Biol Chem,1997,272(7):4310-5.
    116.Miyamoto,Y.,Imamoto,N.,Sekimoto,T.,Tachibana,T.,Seki,T.,Tada,S.,Enomoto,T.,Yoneda,Y.Differential modes of nuclear localization signal(NLS) recognition by three distinct classes of NLS receptors[J].J Biol Chem,1997,272(42):26375-81.
    117.Prieve,M.G.,Guttridge,K.L.,Munguia,J.,Waterman,M.L.Differential importin-alpha recognition and nuclear transport by nuclear localization signals within the high-mobility-group DNA binding domains of lymphoid enhancer factor 1 and T-cell factor 1[J].Mol Cell Biol,1998,18(8):4819-32.
    118.Jans,D.A.,Xiao,C.Y.,Lam,M.H.Nuclear targeting signal recognition:a key control point in nuclear transport?[J].Bioessays,2000,22(6):532-44.
    119.Kohler,M.,Ansieau,S.,Prehn,S.,Leutz,A.,Hailer,H.,Hartmann,E.Cloning of two novel human importin-alpha subunits and analysis of the expression pattern of the importin-alpha protein family[J].FEBS Lett,1997,417(1):104-8.
    120.Gupta,A.,Yang,L.X.,Chen,L.Study of the G2/M cell cycle checkpoint in irradiated mammary epithelial cells overexpressing Cu1-4A gene[J],Int J Radiat Oncol Biol Phys,2002,52(3):822-30.
    121.Nag,A.,Bagchi,S.,Raychaudhuri,P.Cu14A physically associates with MDM2 and participates in the proteolysis of p53[J].Cancer Res,2004,64(22):8152-5.
    122.Banks,D.,Wu,M.,Higa,L.A.,Gavrilova,N.,Quan,J.,Ye,T.,Kobayashi,R.,Sun,H.,Zhang,H.L2DTL/CDT2 and PCNA interact with p53 and regulate p53 polyubiquitination and protein stability through MDM2 and CUL4A/DDB1 complexes[J].Cell Cycle,2006,5(15):1719-29.
    123.Kim,Y.,Starostina,N.G.,Kipreos,E.T.The CRL4Cdt2 ubiquitin ligase targets the degradation of p21Cip 1 to control replication licensing[J].Genes Dev,2008,22(18):2507-19.
    124.Nishitani,H.,Shiomi,Y.,Iida,H.,Michishita,M.,Takami,T.,Tsurimoto,T.CDK inhibitor p21 is degraded by a proliferating cell nuclear antigen-coupled Cu14-DDB1Cdt2 pathway during S phase and after UV irradiation[J].J Biol Chem,2008,283(43):29045-52.
    125.Abbas,T.,Sivaprasad,U.,Terai,K.,Amador,V.,Pagano,M.,Dutta,A.PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4Cdt2 ubiquitin ligase complex[J].Genes Dev,2008,22(18):2496-506.
    126.Higa,L.A.,Yang,X.,Zheng,J.,Banks,D.,Wu,M.,Ghosh,P.,Sun,H.,Zhang,H.Involvement of CUL4 ubiquitin E3 ligases in regulating CDK inhibitors Dacapo/p27Kip1 and cyclin E degradation[J].Cell Cycle,2006,5(1):71-7.
    127.Miranda-Carboni,G.A.,Krum,S.A.,Yee,K.,Nava,M.,Deng,Q.E.,Pervin,S.,Collado-Hidalgo,A.,Galic,Z.,Zack,J.A.,Nakayama,K.,Nakayama,K.I.,Lane,T.F.A functional link between Wnt signaling and SKP2-independent p27 turnover in mammary tumors[J].Genes Dev,2008,22(22):3121-34.
    128.Zhang,Y.W.,Otterness,D.M.,Chiang,G.G.,Xie,W.,Liu,Y.C.,Mercurio,F.,Abraham,R.T.Genotoxic stress targets human Chk1 for degradation by the ubiquitin-proteasome pathway[J].Mol Cell,2005,19(5):607-18.
    129.Senga,T.,Sivaprasad,U.,Zhu,W.,Park,J.H.,Arias,E.E.,Walter,J.C.,Dutta,A.PCNA is a cofactor for Cdt1 degradation by CUL4/DDB1-mediated N-terminal ubiquitination[J].J Biol Chem,2006,281(10):6246-52.
    130.Sansam,C.L.,Shepard,J.L.,Lai,K.,Ianari,A.,Danielian,P.S.,Amsterdam,A.,Hopkins,N.,Lees,J.A.DTL/CDT2 is essential for both CDT1 regulation and the early G2/M checkpoint[J].Genes Dev,2006,20(22):3117-29.
    131.Lovejoy,C.A.,Lock,K.,Yenamandra,A.,Cortez,D.DDB1 maintains genome integrity through regulation of Cdt1[J].Mol Cell Biol,2006,26(21):7977-90.
    132.Hu,J.,Xiong,Y.An evolutionarily conserved function of proliferating cell nuclear antigen for Cdt1 degradation by the Cu14-Ddb1 ubiquitin ligase in response to DNA damage[J].J Biol Chem,2006,281(7):3753-6.
    133.Higa,L.A.,Banks,D.,Wu,M.,Kobayashi,R.,Sun,H.,Zhang,H.L2DTL/CDT2 interacts with the CUL4/DDB1 complex and PCNA and regulates CDT1 proteolysis in response to DNA damage[J].Cell Cycle,2006,5(15):1675-80.
    134.Hu,J.,McCall,C.M.,Ohta,T.,Xiong,Y.Targeted ubiquitination of CDT1 by the DDB1-CUL4A-ROC1 ligase in response to DNA damage[J].Nat Cell Biol,2004,6(10):1003-9.
    135.Mazumdcr,S.,Plesca,D.,Almasan,A.A jekyll and hyde role of cyclin E in the genotoxic stress response:switching from cell cycle control to apoptosis regulation[J].Cell Cycle,2007,6(12):1437-42.
    136.Moroy,T.,Geisen,C.Cyclin E[J].Int J Biochem Cell Biol,2004,36(8):1424-39.
    137.Crosby,M.E.,Almasan,A.Opposing roles of E2Fs in cell proliferation and death[J].Cancer Biol Ther,2004,3(12):1208-11.
    138.Mazumder,S.,Gong,B.,Almasan,A.Cyclin E induction by genotoxic stress leads to apoptosis of hematopoietie cells[J].Oncogene,2000,19(24):2828-35.
    139.Yeh,K.H.,Kondo,T.,Zbeng,J.,Tsvetkov,L.M.,Blair,J.,Zhang,H.The F-box protein SKP2binds to the phosphorylated threonine 380 in eyclin E and regulates ubiquitin-dependent degradation of cyclin E[J].Biochem Biophys Res Commun,2001,281(4):884-90.
    140.Hao,B.,Oehlmarm,S.,Sowa,M.E.,Harper,J.W.,Pavletich,N.P.Structure of a Fbw7-Skp1-cyclin E complex:multisite-phosphorylated substrate reeoguition by SCF ubiquitin ligases[J].Mol Cell,2007,26(1):131-43.
    141.Zhang,W.,Koepp,D.M.Fbw7 isoform interaction contributes to cyclin E proteolysis[J].Mol Cancer Res,2006,4(12):935-43.
    142.McEvoy,J.D.,Kossatz,U.,Malek,N,,Singer,J.D.Constitutive turnover of cyclin E by Cu13maintains quiescence[J].Mol Cell Biol,2007,27(10):3651-66.
    143.Geng,Y.,Yu,Q.,Sicinska,E.,Das,M.,Schneider,J.E.,Bhattacharya,S.,Rideout,W.M.,Bronson,R.T.,Gardner,H.,Sicinski,P.Cyclin E ablation in the mouse[J].Cell,2003,114(4):431-43.
    144.Donnellan,R.,Cherty,R.Cyclin E in human cancers[J].Faseb J,1999,13(8):773-80.
    145.Bortner,D.M.,Rosenberg,M.P.Induction of mammary gland hyperplasia and carcinomas in transgenic mice expressing human cyclin E[J].Mol Cell Biol,1997,17(1):453-9.
    146.Porter,P.L.,Malone,K.E.,Heagerty,P.J.,Alexander,G.M.,Gatti,L.A.,Firpo,E.J.,Daling,J.R.,Roberts,J.M.Expression of cell-cycle regulators p27Kip1 and cyclin E,alone and in combination,correlate with survival in young breast cancer patients[J].Nat Med,1997,3(2):222-5.
    147.Doronkin,S.,Djagaeva,I.,Beckendorf,S.K.The COP9 signalosome promotes degradation of Cyclin E during early Drosophila oogenesis[J].Dev Cell,2003,4(5):699-710.
    148.Spruck,C.H.,Won,K.A.,Reed,S.I.Deregulated cyclin E induces chromosome instability[J].Nature,1999,401(6750):297-300.
    1.Tarpey,P.S.,Smith,R.,Pleasance,E.,Whibley,A.,Edkins,S.,Hardy,C.,O'Meara,S.,Latimer,C.,Dicks,E.,Menzies,A.,Stephens,P.,Blow,M.,Greenman,C.,Xue,Y.,Tyler-Smith,C.,Thompson,D.,Gray,K.,Andrews,J.,Barthorpe,S.,Buck,G,Cole,J.,Dunmore,R.,Jones,D.,Maddison,M.,Mironenko,T.,Turner,R.,Turrell,K.,Varian,J.,West,S.,Widaa,S.,Wray,P.,Teague,J.,Butler,A.,Jenkinson,A.,Jia,M.,Richardson,D.,Shepherd,R.,Wooster,R.,Tejada,M.I.,Martinez,F.,Carvill,G.,Goliath,R.,de Brouwer,A.P.,van Bokhoven,H.,Van Esch,H.,Chelly,J.,Raynaud,M.,Ropers,H.H.,Abidi,F.E.,Srivastava,A.K.,Cox,J.,Luo,Y.,Mallya,U.,Moon,J.,Parnau,J.,Mohammed,S.,Tolmie,J.L.,Shoubridge,C.,Corbett,M.,Gardner,A.,Haan,E.,Rujirabanjerd,S.,Shaw,M.,Vandeleur,L.,Fullston,T.,Easton,D.F.,Boyle,J.,Partington,M.,Hackett,A.,Field,M.,Skinner,C.,Stevenson,R.E.,Bobrow,M.,Turner,G.,Schwartz,C.E.,Gecz,J.,Raymond,F.L.,Futreal,P.A.,Stratton,M.R.A systematic,large-scale resequencing screen of X-chromosome coding exons in mental retardation[J].Nat Genet,2009,41(5):535-43.
    2.Leonard,H.,Wen,X.The epidemiology of mental retardation:challenges and opportunities in the new millennium[J].Ment Retard Dev Disabil Res Rev,2002,8(3):117-34.
    3.Renieri,A.,Pescucci,C.,Longo,I.,Ariani,F.,Mad,F.,Meloni,I.Non-syndromic X-linked mental retardation:from a molecular to a clinical point of view[J].J Cell Physiol,2005,204(1):8-20.
    4.Polder,J.J.,Meerding,W.J.,Koopmanschap,M.A.,Bonneux,L.,van der Maas,P.J.[The cost of sickness in the Netherlands in 1994;the main determinants were advanced age and disabling conditions][J].Ned Tijdschr Geneeskd,1998,142(28):1607-11.
    5.Chiurazzi,P.,Oostra,B.A.Genetics of mental retardation[J].Curr Opin Pediatr,2000,12(6):529-35.
    6.Inlow,J.K.,Restifo,L.L.Molecular and comparative genetics of mental retardation[J].Genetics,2004,166(2):835-81.
    7.Stevenson,R.E.,Procopio-Allen,A.M.,Schroer,R.J.,Collins,J.S.Genetic syndromes among individuals with mental retardation[J].Am J Med Genet A,2003,123A(1):29-32.
    8.Moog,U.The outcome of diagnostic studies on the etiology of mental retardation:considerations on the classification of the causes[J].Am J Med Genet A,2005,137(2):228-31.
    9.Curry,C.J.,Stevenson,R.E.,Aughton,D.,Byrne,J.,Carey,J.C.,Cassidy,S.,Cunniff,C.,Graham,J.M.,Jr.,Jones,M.C.,Kaback,M.M.,Moeschler,J.,Schaefer,G.B.,Schwartz,S.,Tarleton,J.,Opitz,J.Evaluation of mental retardation:recommendations of a Consensus Conference:American College of Medical Genetics[J].Am J Med Genet,1997,72(4):468-77.
    10.Partington,M.,Mowat,D.,Einfeld,S.,Tonge,B.,Turner,G.Genes on the X chromosome are important in undiagnosed mental retardation[J].Am J Med Genet,2000,92(1):57-61.
    11.Priest,J.H.,Thuline,H.C.,Laveck,G.D.,Jarvis,D.B.An approach to genetic factors in mental retardation.Studies of families containing at least two siblings admitted to a state institution for the retarded[J].Am J Ment Defic,1961,66(42-50.
    12.Turner,G.,Turner,B.X-linked mental retardation[J].J Med Genet,1974,11(2):109-13.
    13.Lehrke,R.Theory of X-linkage of major intellectual traits[J].Am J Ment Defic,1972,76(6):611-9.
    14.Croen,L.A.,Grether,J.K.,Selvin,S.The epidemiology of mental retardation of unknown cause[J].Pediatrics,2001,107(6):E86.
    15.Lehrke,R.A theory of X-linkage of major intellectual traits.Response to Dr.Anastasi and to the Drs.Nance and Engel[J].Am J Ment Defic,1972,76(6):626-31.
    16.Skuse,D.H.X-linked genes and mental functioning[J].Hum Mol Genet,2005,14 Spec No 1(R27-32.
    17.Stevenson,R.E.Advances in X-linked mental retardation[J].Curr Opin Pediatr,2005,17(6):720-4.
    18.Rogers,R.C.,Stevenson,R.E.,Simensen,R.J.,Holden,K.R.,Schwartz,C.E.Finding new etiologies of mental retardation and hypotonia:X marks the spot[J].Dev Med Child Neurol,2008,50(2):104-11.
    19.Stevenson,R.E.Splitting and lumping in the nosology of XLMR[J].Am J Med Genet,2000,97(3):174-82.
    20.Stevenson,R.E.,Schwartz,C.E.Clinical and molecular contributions to the understanding of X-linked mental retardation[J].Cytogenet Genome Res,2002,99(1-4):265-75.
    21.Chiurazzi,P.,Schwartz,C.E.,Gecz,J.,Neri,G.XLMR genes:update 2007[J].Eur J Hum Genet,2008,16(4):422-34.
    22.Ropers,H.H.,Hamel,B.C.X-linked mental retardation[J].Nat Rev Genet,2005,6(1):46-57.
    23.Frints,S.G.,Froyen,G.,Marynen,P.,Fryns,J.P.X-linked mental retardation:vanishing boundaries between non-specific(MRX) and syndromic(MRXS) forms[J].Clin Genet,2002,62(6):423-32.
    24.de Brouwer,A.P.,Yntema,H.G.,Kleefstra,T.,Lugtenberg,D.,Oudakker,A.R.,de Vries,B.B.,van Bokhoven,H.,Van Esch,H.,Frints,S.G.,Froyen,G.,Fryns,J.P.,Raynaud,M.,Moizard,M.P.,Ronce,N.,Bensalem,A.,Moraine,C.,Poirier,K.,Castelnau,L.,Saillour,Y.,Bienvenu,T.,Beldjord,C.,des Portes,V.,Chelly,J.,Turner,G.,Fullston,T.,Gecz,J.,Kuss,A.W.,Tzschach,A.,Jensen,L.R.,Lenzner,S.,Kalscbeuer,V.M.,Ropers,H.H.,Hamel,B.C.Mutation frequencies of X-linked mental retardation genes in families from the EuroMRX consortium[J].Hum Mutat,2007,28(2):207-8.
    25.Partington,M.W.,Mulley,J.C.,Sutherland,G.R.,Thode,A.,Turner,G.A family with the Coffin Lowry syndrome revisited:localization of CLS to Xp21-pter[J].Am J Med Genet,1988,30(1-2):509-21.
    26.Arveiler,B.,Alembik,Y.,Hanauer,A.,Jacobs,P.,Tranebjaerg,L.,Mikkelsen,M.,Puissant,H.,Piet,L.L.,Mandel,J.L.Linkage analysis suggests at least two loci for X-linked non-specific mental retardation[J].Am J Med Genet,1988,30(1-2):473-83.
    27.Botstein,D.,White,R.L.,Skolnick,M.,Davis,R.W.Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J].Am J Hum Genet,1980,32(3):314-31.
    28.Nordstrom,A.M.,Penttinen,M.,von Koskull,H.Linkage to Xq28 in a family with nonspecific X-linked mental retardation[J].Hum Genet,1992,90(3):263-6.
    29.Collins,F.S.,Brooks,L.D.,Chakravarti,A.A DNA polymorphism discovery resource for research on human genetic variation[J].Genome Res,1998,8(12):1229-31.
    30.Kruglyak,L.The use of a genetic map of biallelic markers in linkage studies[J].Nat Genet,1997,17(1):21-4.
    31.Budny,B.,Chen,W.,Omran,H.,Fliegauf,M.,Tzschach,A.,Wisniewska,M.,Jensen,L.R.,Raynaud,M.,Shoichet,S.A.,Badura,M.,Lenzner,S.,Latos-Bielenska,A.,Ropers,H.H.A novel X-linked recessive mental retardation syndrome comprising macrocephaly and ciliary dysfunction is allelic to oral-facial-digital type Ⅰ syndrome[J].Hum Genet,2006,120(2):171-8.
    32.Lubs,H.A.A marker X chromosome[J].Am J Hum Genet,1969,21(3):231-44.
    33.Oberle,I.,Rousseau,F.,Heitz,D.,Kretz,C.,Devys,D.,Hanauer,A.,Boue,J.,Bertheas,M.,Mandel,J.Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome[J].Science,1991,252(5009):1097-1102.
    34.Verkerk,A.J.,Pieretti,M.,Sutcliffe,J.S.,Fu,Y.H.,Ktthl,D.P.,Pizzuti,A.,Reiner,O.,Richards,S.,Victoria,M.F.,Zhang,F.P.,et al.Identification of a gene(FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome[J].Cell,1991,65(5):905-14.
    35.Robin,N.H.,Feldman,G.J.,Aronson,A.L.,Mitchell,H.F.,Weksberg,R.,Leonard,C.O.,Burton,B.K.,Josephson,K.D.,Laxova,R.,Aleck,K.A.,Allanson,J.E.,Guion-Almeida,M.L.,Martin,R.A.,Leichtman,L.G.,Price,R.A.,Opitz,J.M.,Muenke,M.Opitz syndrome is genetically heterogeneous,with one locus on Xp22,and a second locus on 22q11.2[J].Nat Genet,1995,11(4):459-61.
    36.Knight,S.J.,Flannery,A.V.,Hirst,M.C.,Campbell,L.,Christodoulou,Z.,Phelps,S.R.,Pointon,J.,Middleton-Price,H.R.,Barnicoat,A.,Pembrey,M.E.,et al.Trinucleotide repeat amplification and hypermethylation of a CpG island in FRAXE mental retardation[J].Cell,1993,74(1):127-34.
    37.Stromme,P.,Mangelsdorf,M.E.,Shaw,M.A.,Lower,K.M.,Lewis,S.M.,Bruyere,H.,Lutcherath,V.,Gedeon,A.K.,Wallace,R.H.,Scheffer,I.E.,Turner,G.,Partington,M.,Frints,S.G.,Fryns,J.P.,Sutherland,G.R.,Mulley,J.C.,Gecz,J.Mutations in the human ortholog of Aristaless cause X-linked mental retardation and epilepsy[J].Nat Genet,2002,30(4):441-5.
    38.Meloni,I.,Muscettola,M.,Raynaud,M.,Longo,I.,Bruttini,M.,Moizard,M.P.,Gomot,M.,Chelly,J.,des Portes,V.,Fryns,J.P.,Ropers,H.H.,Magi,B.,Bellan,C.,Volpi,N.,Yntema,H.G.,Lewis,S.E.,Schaffer,J.E.,Renieri,A.FACL4,encoding fatty acid-CoA ligase 4,is mutated in nonspecific X-linked mental retardation[J].Nat Genet,2002,30(4):436-40.
    39.Govek,E.E.,Newey,S.E.,Akerman,C.J.,Cross,J.R.,Van der Veken,L.,Van Aelst,L.The X-linked mental retardation protein oligophrenin-1 is required for dendritic spine morphogenesis[J].Nat Neurosci,2004,7(4):364-72.
    40.Kutsche,K.,Yntema,H.,Brandt,A.,Jantke,I.,Nothwang,H.G.,Orth,U.,Boavida,M.G.,David,D.,Chelly,J.,Fryns,J.P.,Moraine,C.,Ropers,H.H.,Hamel,B.C.,van Bokhoven,H.,Gal,A.Mutations in ARHGEF6,encoding a guanine nucleotide exchange factor for Rho GTPases,in patients with X-linked mental retardation[J].Nat Genet,2000,26(2):247-50.
    41.D'Adamo,P.,Menegon,A.,Lo Nigro,C.,Grasso,M.,Gulisano,M.,Tamanini,F.,Bienvenu,T.,Gedeon,A.K.,Oostra,B.,Wu,S.K.,Tandon,A.,Valtorta,F.,Baler,W.E.,Chelly,J.,Toniolo,D.Mutations in GDI1 are responsible for X-linked non-specific mental retardation[J].Nat Genet,1998,19(2):134-9.
    42.Higgins,J.J.,Topaloglu,H.X-linked oligophrenic vermian dysgenesis:syndromic vs non-syndromie X-linked mental retardation?[J].Neurology,2005,65(9):1346-7.
    43.Ropers,H.H.,Hoeltzenbein,M.,Kalscheuer,V.,Yntema,H.,Hamel,B.,Fryns,J.P.,Chelly,J.,Partington,M.,Geez,J.,Moraine,C.Nonsyndromic X-linked mental retardation:where are the missing mutatious?[J].Trends Genet,2003,19(6):316-20.
    44.Zemni,R.,Bienvenu,T.,Vinet,M.C.,Sefiani,A.,Carrie,A.,Billuart,P.,McDonell,N., Couvert,P.,Francis,F.,Chafey,P.,Fauchereau,F.,Friocourt,G,des Portes,V.,Cardona,A.,Frints,S.,Meindl,A.,Brandau,O.,Ronce,N.,Moraine,C.,van Bokhoven,H.,Ropers,H.H.,Sudbrak,R.,Kahn,A.,Fryns,J.P.,Beldjord,C.,Chelly,J.A new gene involved in X-linked mental retardation identified by analysis of an X;2 balanced translocation[J].Nat Genet,2000,24(2):167-70.
    45.Hagens,O.,Dubos,A.,Abidi,F.,Barbi,G,Van Zutven,L.,Hoeltzenbein,M.,Tommerup,N.,Moraine,C.,Fryns,J.P.,Chelly,J.,van Bokhoven,H.,Gecz,J.,Dollfus,H.,Ropers,H.H.,Schwartz,C.E.,de Cassia Stocco Dos Santos,R.,Kalscheuer,V.,Hanauer,A.Disruptions of the novel KIAA1202 gene are associated with X-linked mental retardation[J].Hum Genet,2006,118(5):578-90.
    46.Chelly,J.Breakthroughs in molecular and cellular mechanisms underlying X-linked mental retardation[J].Hum Mol Genet,1999,8(10):1833-8.
    47.Gibbons,R.J.,Picketts,D.J.,Villard,L.,Higgs,D.R.Mutations in a putative global transcriptional regulator cause X-linked mental retardation with alpha-thalassemia(ATR-X syndrome)[J].Cell,1995,80(6):837-45.
    48.Trivier,E.,De Cesare,D.,Jacquot,S.,Pannetier,S.,Zackai,E.,Young,I.,Mandel,J.L.,Sassone-Corsi,P.,Hanauer,A.Mutations in the kinase Rsk-2 associated with Coffin-Lowry syndrome[J].Nature,1996,384(6609):567-70.
    49.Rosenthal,A.,Jouet,M.,Kenwrick,S.Aberrant splicing of neural cell adhesion molecule L1mRNA in a family with X-linked hydrocephalus[J].Nat Genet,1992,2(2):107-12.
    50.Vits,L.,Van Camp,G.,Coucke,P.,Fransen,E.,De Boulle,K.,Reyniers,E.,Korn,B.,Poustka,A.,Wilson,G,Schrander-Stumpel,C.,et al.MASA syndrome is due to mutations in the neural cell adhesion gene L1CAM[J].Nat Genet,1994,7(3):408-13.
    51.Tao,J.,Van Esch,H.,Hagedorn-Greiwe,M.,Hoffmann,K.,Moser,B.,Raynaud,M.,Sperner,J.,Fryns,J.P.,Schwinger,E.,Gecz,J.,Ropers,H.H.,Kalscheuer,V.M.Mutations in the X-linked cyclin-dependent kinase-like 5(CDKL5/STK9) gene are associated with severe neurodevelopmental retardation[J].Am J Hum Genet,2004,75(6):1149-54.
    52.Weaving,L.S.,Christodoulon,J.,Williamson,S.L.,Friend,K.L,McKenzie,O.L.,Archer,H.,Evans,J.,Clarke,A.,Pelka,G.J.,Tam,P.P.,Watson,C.,Lahooti,H.,Ellaway,C.J.,Bennetts,B.,Leonard,H.,Gecz,J.Mutations of CDKL5 cause a severe neurodevelopmental disorder with infantile spasms and mental retardation[J].Am J Hum Genet,2004,75(6):1079-93.
    53.Archer,H.L.,Evans,J.,Edwards,S.,Colley,J.,Newbury-Ecob,R.,O'Callaghan,F.,Huyton,M.,O'Regan,M.,Tolmie,J.,Sampson,J.,Clarke,A.,Osborne,J.CDKL5 mutations cause infantile spasms,early onset seizures,and severe mental retardation in female patients[J].J Med Genet,2006,43(9):729-34.
    54.de Vries,B.B.,Pfundt,R.,Leisink,M.,Koolen,D.A.,Vissers,L.E.,Janssen,I.M.,Reijmersdal,S.,Nillesen,W.M.,Huys,E.H.,Leeuw,N.,Smeets,D.,Sistermans,E.A.,Feuth,T.,van Ravenswaaij-Arts,C.M.,van Kessel,A.G,Schoenmakers,E.F.,Brunner,H.G.,Veltman,J.A.Diagnostic genome profiling in mental retardation[J].Am J Hum Genet,2005,77(4):606-16.
    55.Menten,B.,Maas,N.,Thienpont,B.,Buysse,K.,Vandesompele,J.,Melotte,C.,de Ravel,T.,Van Vooren,S.,Balikova,I.,Backx,L.,Janssens,S.,De Paepe,A.,De Moor,B.,Moreau,Y.,Marynen,P.,Fryns,J.P.,Mortier,G.,Devriendt,K.,Speleman,F.,Vermeesch.J.R.Emerging patterns of cryptic chromosomal imbalance in patients with idiopathic mental retardation and multiple congenital anomalies:a new series of 140 patients and review of published reports[J]. J Med Genet,2006,43(8):625-33.
    56.Froyen,G.,Corbett,M.,Vandewalle,J.,Jarvela,I.,Lawrence,O.,Meldrum,C.,Bauters,M.,Govaerts,K.,Vandeleur,L.,Van Esch,H.,Chelly,J.,Sanlaville,D.,van Bokhoven,H.,Ropers,H.H.,Laumonnier,F.,Ranieri,E.,Schwartz,C.E.,Abidi,F.,Tarpey,P.S.,Futreal,P.A.,Whibley,A.,Raymond,F.L.,Stratton,M.R.,Fryns,J.P.,Scott,R.,Peippo,M.,Sipponen,M.,Partington,M.,Mowat,D.,Field,M.,Hackett,A.,Marynen,P.,Turner,G.,Gecz,J.Submicroscopic duplications of the hydroxysteroid dehydrogenase HSD17B10 and the E3ubiquitin ligase HUWE1 are associated with mental retardation[J].Am J Hum Genet,2008,82(2):432-43.
    57.Zhang,L.,Jie,C.,Obie,C.,Abidi,F.,Schwartz,C.E.,Stevenson,R.E.,Valle,D.,Wang,T.X chromosome cDNA microarray screening identifies a functional PLP2 promoter polymorphism enriched in patients with X-linked mental retardation[J].Genome Res,2007,17(5):641-8.
    58.Scheiffele,P.,Fan,J.,Choih,J.,Fetter,R.,Serafini,T.Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons[J].Cell,2000,101(6):657-69.
    59.Dean,C.,Scholl,F.G.,Choih,J.,DeMaria,S.,Berger,J.,Isacoff,E.,Scheiffele,P.Neurexin mediates the assembly of presynaptic terminals[J].Nat Neurosci,2003,6(7):708-16.
    60.Chih,B.,Afridi,S.K.,Clark,L.,Scheiffele,P.Disorder-associated mutations lead to functional inactivation of neuroligins[J].Hum Mol Genet,2004,13(14):1471-7.
    61.Jamain,S.,Quach,H.,Betancur,C.,Rastam,M.,Colineaux,C.,Gillberg,I.C.,Soderstrom,H.,Giros,B.,Leboyer,M.,Gillberg,C.,Bourgeron,T.Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism[J].Nat Genet,2003,34(1):27-9.
    62.Laumonnier,F.,Bonnet-Brilhault,F.,Gomot,M.,Blanc,R.,David,A.,Moizard,M.P.,Raynaud,M.,Ronce,N.,Lemonnier,E.,Calvas,P.,Laudier,B.,Chelly,J.,Fryns,J.P.,Ropers,H.H.,Hamel,B.C.,Andres,C.,Barthelemy,C.,Moraine,C.,Briault,S.X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene,a member of the neuroligin family[J].Am J Hum Genet,2004,74(3):552-7.
    63.Garcia,C.C.,Blair,H.J.,Seager,M.,Coulthard,A.,Tennant,S.,Buddies,M.,Curtis,A.,Goodship,J.A.Identification of a mutation in synapsin I,a synaptic vesicle protein,in a family with epilepsy[J].J Med Genet,2004,41(3):183-6.
    64.Giovedi,S.,Darchen,F.,Valtorta,F.,Greengard,P.,Benfenati,F.Synapsin is a novel Rab3effector protein on small synaptic vesicles.Ⅱ.Functional effects of the Rab3A-synapsin Ⅰinteraction[J].J Biol Chem,2004,279(42):43769-79.
    65.Giovedi,S.,Vaccaro,P.,Valtorta,F.,Darchen,F.,Greengard,P.,Cesareni,G.,Benfenati,F.Synapsin is a novel Rab3 effector protein on small synaptic vesicles.I.Identification and characterization of the synapsin I-Rab3 interactions in vitro and in intact nerve terminals[J].J Biol Chem,2004,279(42):43760-8.
    66.Carlezon,W.A.,Jr.,Duman,R.S.,Nestler,E.J.The many faces of CREB[J].Trends Neurosci,2005,28(8):436-45.
    67.Merienne,K.,Pannetier,S.,Harel-Bellan,A.,Sassone-Corsi,P.Mitogen-regulated RSK2-CBP interaction controls their kinase and acetylase activities[J].Mol Cell Biol,2001,21(20):7089-96.
    68.Miltenberger-Miltenyi,G.,Laccone,F.Mutations and polymorphisms in the human methyl CpG-binding protein MECP2[J].Hum Mutat,2003,22(2):107-15.
    69.Kleefstra,T.,Yntema,H.G.,Nillesen,W.M.,Oudakker,A.R.,Mullaart,R.A.,Geerdink,N.,van Bokhoven,H.,de Vries,B.B.,Sistermans,E.A.,Hamel,B.C.MECP2 analysis in mentally retarded patients:implications for routine DNA diagnostics[J].Eur J Hum Genet,2004,12(1):24-8.
    70.Watson,P.,Black,G.,Ramsden,S.,Barrow,M.,Super,M.,Kerr,B.,Clayton-Smith,J.Angelman syndrome phenotype associated with mutations in MECP2,a gene encoding a methyl CpG binding protein[J].J Med Genet,2001,38(4):224-8.
    71.Carney,R.M.,Wolpert,C.M.,Ravan,S.A.,Shahbazian,M.,Ashley-Koch,A.,Cuccaro,M.L.,Vance,J.M.,Pericak-Vance,M.A.Identification of MeCP2 mutations in a series of females with autistic disorder[J].Pediatr Neurol,2003,28(3):205-11.
    72.Wade,P.A.Methyl CpG-binding proteins and transcriptional repression[J].Bioessays,2001,23(12):1131-7.
    73.Ausio,J.,Levin,D.B.,De Amorim,G.V.,Bakker,S.,Macleod,P.M.Syndromes of disordered chromatin remodeling[J].Clin Genet,2003,64(2):83-95.
    74.Chen,W.G.,Chang,Q.,Lin,Y.,Meissner,A.,West,A.E.,Griffith,E.C.,Jaenisch,R.,Greenberg,M.E.Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2[J].Science,2003,302(5646):885-9.
    75.Pang,P.T.,Teng,H.K.,Zaitsev,E.,Woo,N.T.,Sakata,K.,Zhen,S.,Teng,K.K.,Yung,W.H.,Hempstead,B.L.,Lu,B.Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity[J].Science,2004,306(5695):487-91.
    76.Stancheva,I.,Collins,A.L.,Van den Veyver,I.B.,Zoghbi,H.,Meehan,R.R.A mutant form of MeCP2 protein associated with human Rett syndrome cannot be displaced from methylated DNA by notch in Xenopus embryos[J].Mol Cell,2003,12(2):425-35.
    77.Kleefstra,T.,Hamel,B.C.X-linked mental retardation:further lumping,splitting and emerging phenotypes[J].Clin Genet,2005,67(6):451-67.
    78.Hershko,A.,Ciechanover,A.The ubiquitin system[J].Annu Rev Biochem,1998,67(425-79.
    79.Kahana,C.Ubiquitin dependent and independent protein degradation in the regulation of cellular polyamines[J].Amino Acids,2007,33(2):225-30.
    80.Quaderi,N.A.,Schweiger,S.,Gaudenz,K.,Franco,B.,Rugarfi,E.I.,Berger,W.,Feldman,G.J.,Volta,M.,Andolfi,G.,Gilgenkrantz,S.,Marion,R.W.,Hennekam,R.C.,Opitz,J.M.,Muenke,M.,Ropers,H.H.,Ballabio,A.Opitz G/BBB syndrome,a defect of midline development,is due to mutations in a new RING finger gene on Xp22[J].Nat Genet,1997,17(3):285-91.
    81.Trockenbacher,A.,Suckow,V.,Foerster,J.,Winter,J.,Krauss,S.,Ropers,H.H.,Schneider,R.,Schweiger,S.MID1,mutated in Opitz syndrome,encodes an ubiquitin ligase that targets phosphatase 2A for degradation[J].Nat Genet,2001,29(3):287-94.
    82.Tarpey,P.S.,Raymond,F.L.,O'Meara,S.,Edkins,S.,Teague,J.,Butler,A.,Dicks,E.,Stevens,C.,Tofts,C.,Avis,T.,Barthorpe,S.,Buck,G,Cole,J.,Gray,K.,Halliday,K.,Harrison,R,Hills,K.,Jenkinson,A.,Jones,D.,Menzies,A.,Mironenko,T.,Perry,J.,Raine,K.,Richardson,D.,Shepherd,R.,Small,A.,Varian,J.,West,S.,Wide,S.,Mallya,U.,Moon,J.,Luo,Y.,Holder,S.,Smithson,S.F.,Hurst,J.A.,Clayton-Smith,J.,Kerr,B.,Boyle,J.,Shaw,M.,Vandeleur,L.,Rodrignez,J.,Slaugh,R.,Easton,D.F.,Wooster,R.,Bobrow,M.,Srivastava,A.K.,Stevenson,R.E.,Schwartz,C.E.,Turner,G.,Gecz,J.,Futreal,P.A.,Stratton,M.R.,Partington,M.Mutations in CUL4B,which encodes a ubiquitin E3 ligase subuniT,cause an X-linked mental retardation syndrome associated with aggressive outbursts,seizures,relative macrocephaly,central obesity,hypogonadism,pes cavus,and tremor[J].Am J Hum Genet,2007,80(2):345-52.
    83.Zou,Y.,Liu,Q.,Chen,B.,Zhang,X.,Guo,C.,Zhou,H.,Li,J.,Gao,G.,Guo,Y.,Yan,C.,Wei,J.,Shao,C.,Gong,Y.Mutation in CUL4B,which encodes a member of cullin-RING ubiquitin ligase complex,causes X-linked mental retardation[J].Am J Hum Genet,2007,80(3):561-6.
    84.Nascimento,R.M.,Otto,P.A.,de Brouwer,A.P.,Vianna-Morgante,A.M.UBE2A,which encodes a ubiquitin-conjugating enzyme,is mutated in a novel X-linked mental retardation syndrome[J].Am J Hum Genet,2006,79(3):549-55.
    85.Chen,W.,Jensen,L.R.,Gecz,J.,Fryns,J.P.,Moraine,C.,de Brouwer,A.,Chelly,J.,Moser,B.,Ropers,H.H.,Kuss,A.W.Mutation screening of brain-expressed X-chromosomal miRNA genes in 464 patients with nonsyndromic X-linked mental retardation[J].Eur J Hum Genet,2007,15(3):375-8.
    86.Gecz,J.FMR3 is a novel gene associated with FRAXE CpG island and transcriptionally silent in FRAXE full mutations[J].J Med Genet,2000,37(10):782-4.
    87.Santos-Reboucas,C.B.,Abdalla,C.B.,Fullston,T.,Campos,M.,Jr.,Pimentel,M.M.,Gecz,J.Lack of FMR3 expression in a male with non-syndromic mental retardation and a microdeletion immediately distal to FRAXE CCG repeat[J].Neurosci Lett,2006,397(3):245-8.
    88.Nelson,D.L.,Gibbs,R.A.X-cess of variants in XLMR[J].Nat Genet,2009,41(5):510-2.
    89.Karim,S.A.,Barrie,J.A.,McCulloch,M.C.,Montague,P.,Edgar,J.M.,Kirkham,D.,Anderson,T.J.,Nave,K.A.,Griffiths,I.R.,McLaughlin,M.PLP overexpression perturbs myelin protein composition and myelination in a mouse model of Pelizaeus-Merzbacher disease[J].Glia,2007,55(4):341-51.
    90.Gecz,J.,Cloosterman,D.,Partington,M.ARX:a gene for all seasons[J].Curr Opin Genet Dev,2006,16(3):308-16.
    1.Ciechanover,A.Proteolysis:from the lysosome to ubiquitin and the proteasome[J].Nat Rev Mol Cell Biol,2005,6(1):79-87.
    2.Hershko,A.,Ciechanover,A.The ubiquitin system[J].Annu Rev Biochem,1998,67(425-79.
    3.Kahana,C.Ubiquitin dependent and independent protein degradation in the regulation of cellular polyamines[J].Amino Acids,2007,33(2):225-30.
    4.Willems,A.R.,Schwab,M.,Tyers,M.A hitchhiker's guide to the cullin ubiquitin ligases:SCF and its kin[J].Biochim Biophys Acta,2004,1695(1-3):133-70.
    5.Smalle,J.,Vierstra,R.D.The ubiquitin 26S proteasome proteolytic pathway[J].Annu Rev Plant Biol,2004,55(555-90.
    6.Hochstrasser,M.Ubiquitin-dependent protein degradation[J].Annu Rev Genet,1996,30(405-39.
    7.Sun,Y.E3 ubiquitin ligases as cancer targets and biomarkers[J].Neoplasia,2006,8(8):645-54.
    8.Hotton,S.K.,Callis,J.Regulation of cullin RING ligases[J].Annu Rev Plant Biol,2008,59(467-89.
    9.Pickart,C.M.Mechanisms underlying ubiquitination[J].Annu Rev Biochem,2001,70(503-33.
    10.Zhou,P.Targeted protein degradation[J].Curr Opin Chem Biol,2005,9(1):51-5.
    11.Zacksenhaus,E.,Sheinin,R.Molecular cloning,primary structure and expression of the human X linked AlS9 gene cDNA which complements the ts AlS9 mouse L cell defect in DNA replication[J].Embo J,1990,9(9):2923-9.
    12.McGrath,J.P.,Jentsch,S.,Varshavsky,A.UBA 1:an essential yeast gene encoding ubiquitin-activating enzyme[J].Embo J,1991,10(1):227-36.
    13.Lee,T.V.,Ding,T.,Chen,Z.,Rajendran,V.,Scherr,H.,Lackey,M.,Bolduc,C.,Bergmann,A.The E1 ubiquitin-activating enzyme Ubal in Drosophila controls apoptosis autonomously and tissue growth non-autonomously[J].Development,2008,135(1):43-52.
    14.Varshavsky,A.The N-end rule and regulation of apoptosis[J].Nat Cell Biol,2003,5(5):373-6.
    15.Scheffner,M.,Nuber,U.,Huibregtse,J.M.Protein ubiquitination involving an E1-E2-E3enzyme ubiquitin thioester cascade[J].Nature,1995,373(6509):81-3.
    16.Schwarz,S.E.,Rosa,J.L.,Scheffner,M.Characterization of human hect domain family members and their interaction with UbcH5 and UbcH7[J].J Biol Chem,1998,273(20):12148-54.
    17.Freemont,P.S.RING for destruction?[J].Curr Biol,2000,10(2):R84-7.
    18.Cardozo,T.,Pagano,M.The SCF ubiquitin ligase:insights into a molecular machine[J].Nat Rev Mol Cell Biol,2004,5(9):739-51.
    19.Bosu,D.R.,Kipreos,E.T.Cullin-RING ubiquitin ligases:global regulation and activation cycles[J].Cell Div,2008,3(7.
    20.Petroski,M.D.,Deshaies,R.J.Function and regulation of cullin-RING ubiquitin ligases[J].Nat Rev Mol Cell Biol,2005,6(1):9-20.
    21.Kamura,T.,Koepp,D.M.,Conrad,M.N.,Skowyra,D.,Moreland,R.J.,Iliopoulos,O.,Lane,W.S.,Kaelin,W.G,Jr.,Elledge,S.J.,Conaway,R.C.,Harper,J.W.,Conaway,J.W.Rbxl,a component of the VHL tumor suppressor complex and SCF ubiquitin ligase[J].Science,1999,284(5414):657-61.
    22.Ohta,T.,Michel,J.J.,Schottelius,A.J.,Xiong,Y.ROCl,a homolog of APC11,represents a family of cullin partners with an associated ubiquitin ligase activity[J].Mol Cell,1999,3(4):535-41.
    23.Seol,J.H.,Feldman,R.M.,Zachariae,W.,Shevchenko,A.,Correll,C.C.,Lyapina,S.,Chi,Y.,Galova,M.,Claypool,J.,Sandmeyer,S.,Nasmyth,K.,Deshaies,R.J.,Shevchenko,A.,Deshaies,R.J.Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34[J].Genes Dev,1999,13(12):1614-26.
    24.Zheng,N.,Schulman,B.A.,Song,L.,Miller,J.J.,Jeffrey,P.D.,Wang,P.,Chu,C.,Koepp,D.M.,Elledge,S.J.,Pagano,M.,Conaway,R.C.,Conaway,J.W.,Harper,J.W.,Pavletich,N.P.Structure of the Cull-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex[J].Nature,2002,416(6882):703-9.
    25.Kipreos,E.T.,Lander,L.E.,Wing,J.P.,He,W.W.,Hedgecock,E.M.cul-1 is required for cell cycle exit in C.elegans and identifies a novel gene family[J].Cell,1996,85(6):829-39.
    26.Zachariae,W.,Shevchenko,A.,Andrews,P.D.,Ciosk,R.,Galova,M.,Stark,M.J.,Mann,M.,Nasmyth,K.Mass spectrometric analysis of the anaphase-promoting complex from yeast:identification of a subunit related to cullins[J].Science,1998,279(5354):1216-9.
    27.Yu,H.,Peters,J.M.,King,R.W.,Page,A.M.,Hieter,P.,Kirsclmer,M.W.Identification of a cullin homology region in a subunit of the anaphase-promoting complex[J].Science,1998,279(5354):1219-22.
    28.Nikolaev,A.Y.,Li,M.,Puskas,N.,Qin,J.,Gu,W.Parc:a cytoplasmic anchor for p53[J].Cell,2003,112(1):29-40.
    29.Goldenberg,S.J.,Cascio,T.C.,Shumway,S.D.,Garbutt,K.C.,Liu,J.,Xiong,Y.,Zheng,N.Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases[J].Cell,2004,119(4):517-28.
    30.Kohroki,J.,Nishiyama,T.,Nakamura,T.,Masuho,Y.ASB proteins interact with Cullin5 and Rbx2 to form E3 ubiquitin ligase complexes[J].FEBS Lett,2005,579(30):6796-802.
    31.Megumi,Y.,Miyauchi,Y.,Sakurai,H.,Nobeyama,H.,Lorick,K,Nakamura,E.,Chiba,T.,Tanaka,K.,Weissman,A.M.,Kirisako,T.,Ogawa,O.,Iwai,K.Multiple roles of Rbx1 in the VBC-Cul2 ubiquitin ligase complex[J].Genes Cells,2005,10(7):679-91.
    32.Weissman,A.M.Themes and variations on ubiquitylation[J].Nat Rev Mol Cell Biol,2001,2(3):169-78.
    33.Kamura,T.,Conrad,M.N.,Yah,Q.,Conaway,R.C.,Conaway,J.W.The Rbx1 subunit of SCF and VHL E3 ubiquitin ligase activates Rub1 modification of cullins Cdc53 and Cul2[J].Genes Dev,1999,13(22):2928-33.
    34.Noureddine,M.A.,Donaldson,T.D.,Thacker,S.A.,Duronio,R.J.Drosophila Rocla encodes a RING-H2 protein with a unique function in processing the Hh signal transducer Ci by the SCF E3 ubiquitin ligase[J].Dev,Cell,2002,2(6):757-70.
    35.Hu,J.,McCall,C.M.,Ohta,T.,Xiong,Y.Targeted ubiquitination of CDT1 by the DDB1-CUL4A-ROC1 ligase in response to DNA damage[J].Nat Cell Biol,2004,6(10):1003-9.
    36.Zhang,Y.W.,Ottemess,D.M.,Chiang,G.G.,Xie,W.,Liu,Y.C.,Mercurio,F.,Abraham,R.T.Genotoxic stress targets human Chk1 for degradation by the ubiquitin-proteasome pathway[J].Mol Cell,2005,19(5):607-18.
    37.Niskitani,H.,Sugimoto,N.,Roukos,V.,Nakanishi,Y.,Saijo,M.,Obuse,C.,Tsurimoto,T., Nakayama,K.I.,Nakayama,K.,Fujita,M.,Lygerou,Z.,Nishimoto,T.Two E3 ubiquitin ligases,SCF-Skp2 and DDB1-Cul4,target human Cdt1 for proteolysis[J].Embo J,2006,25(5):1126-36.
    38.Jung,P.,Verdoodt,B.,Bailey,A.,Yates,J.R.,3rd,Menssen,A.,Hermeking,H.Induction of cullin 7 by DNA damage attenuates p53 function[J].Proc Natl Acad Sci U S A,2007,104(27):11388-93.
    39.Nag,A.,Bagchi,S.,Raychaudhuri,P.Cul4A physically associates with MDM2 and participates in the proteolysis of p53[J].Cancer Res,2004,64(22):8152-5.
    40.Higa,L.A.,Yang,X.,Zheng,J.,Banks,D.,Wu,M.,Ghosh,P.,Sun,H.,Zhang,H.Involvement of CUL4 ubiquitin E3 ligases in regulating CDK inhibitors Dacapo/p27Kip1 and cyclin E degradation[J].Cell Cycle,2006,5(1):71-7.
    41.Chen,Q.,Xie,W.,Kuhn,D.J.,Voorhees,P.M.,Lopez-Girona,A.,Mendy,D.,Corral,L.G.,Krenitsky,V.P.,Xu,W.,Moutouh-de Parseval,L.,Webb,D.R.,Mercurio,E,Nakayama,K.I.,Nakayama,K.,Odowski,R.Z.Targeting the p27 E3 ligase SCF(Skp2) results in p27-and Skp2-mediated cell-cycle arrest and activation of autophagy[J].Blood,2008,111(9):4690-9.
    42.Michel,J.J.,Xiong,Y.Human CUL-1,but not other cullin family members,selectively interacts with SKP1 to form a complex with SKP2 and cyclin A[J].Cell Growth Differ,1998,9(6):435-49.
    43.Angers,S.,Li,T.,Yi,X.,MacCoss,M.J.,Moon,R.T.,Zheng,N.Molecular architecture and assembly of the DDB1 -CUL4A ubiquitin ligase machinery[J].Nature,2006,443(7111):590-3.
    44.Dias,D.C.,Dolios,G.,Wang,R.,Pan,Z.Q.CUL7:A DOC domain-containing cullin selectively binds Skp1.Fbx29 to form an SCF-like complex[J].Proc Natl Acad Sci U S A,2002,99(26):16601-6.
    45.Jackson,P.K.,Eldridge,A.G.The SCF ubiquitin ligase:an extended look[J].Mol Cell,2002,9(5):923-5.
    46.Pintard,L.,Willems,A.,Peter,M.Cullin-based ubiquitin ligases:Cul3-BTB complexes join the family[J].Embo J,2004,23(8):1681-7.
    47.Kipreos,E.T.,Pagano,M.The F-box protein family[J].Genome Biol,2000,1(5):REVIEWS3002.
    48.Jin,J.,Cardozo,T.,Lovering,R.C.,Elledge,S.J.,Pagano,M.,Harper,J.W.Systematic analysis and nomenclature of mammalian F-box proteins[J].Genes Dev,2004,18(21):2573-80.
    49.Kus,B.M.,Caldon,C.E.,Andorn-Broza,R.,Edwards,A.M.Functional interaction of 13 yeast SCF complexes with a set of yeast E2 enzymes in vitro[J].Proteins,2004,54(3):455-67.
    50.Cenciarelli,C.,Chiaur,D.S.,Gnardavaccaro,D.,Parks,W.,Vidal,M.,Pagano,M.Identification of a family of human F-box proteins[J].Curt Biol,1999,9(20):1177-9.
    51.Dealy,M.J.,Nguyen,K.V.,Lo,J.,Gstaiger,M.,Krek,W.,Elson,D.,Arbeit,J.,Kipreos,E.T.,Johnson,R.S.Loss of Cull results in early embryonic lethality and dysregulation of cyclin E[J].Nat Genet,1999,23(2):245-8.
    52.Wang,Y.,Penfold,S.,Tang,X.,Hattori,N.,Riley,P.,Harper,J.W.,Cross,J.C.,Tyers,M.Deletion of the Cull gene in mice causes arrest in early embryogenesis and accumulation of cyclin E[J].Curr Biol,1999,9(20):1191-4.
    53.Nayak,S.,Santiago,F.E.,Jin,H.,Lin,D.,Schedl,T.,Kipreos,E.T.The Caenorhabditis elegans Skp1-related gene family:diverse functions in cell proliferation,morphogenesis,and meiosis[J].Curr Biol,2002,12(4):277-87.
    54.Nelson,R.F.,Glenn,K.A.,Zhang,Y.,Wen,H.,Knutson,T.,Gouvion,C.M.,Robinson,B.K.,Zhou,Z.,Yang,B.,Smith,R.J.,Paulson,H.L.Selective cochlear degeneration in mice lacking the F-box protein,Fbx2,a glycoprotein-specific ubiquitin ligase subnnit[J].J Neurosci,2007,27(19):5163-71.
    55.Tsutsumi,T.,Kuwabara,H.,Arai,T.,Xiao,Y.,Decaprio,J.A.Disruption of the Fbxw8 gene results in pre-and postnatal growth retardation in mice[J].Mol Cell Biol,2008,28(2):743-51.
    56.Tetzlaff,M.T.,Bai,C.,Finegold,M.,Wilson,J.,Harper,J.W.,Mahon,K.A.,Elledge,S.J.Cyclin F disruption compromises placental development and affects normal cell cycle execution[J].Mol Cell Bioi,2004,24(6):2487-98.
    57.Nakayama,K.,Nagahama,H.,Minamishima,Y.A.,Matsumoto,M.,Nakamichi,I.,Kitagawa,K.,Shirane,M.,Tsnnematsu,R.,Tsukiyama,T.,Ishida,N.,Kitagawa,M.,Nakayama,K.,Hatakeyama,S.Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1),polyploidy and centrosome overduplication[J].Embo J,2000,19(9):2069-81.
    58.Jiang,J.,Struhl,G Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb[J].Nature,1998,391(6666):493-6.
    59.Liao,E.H.,Hung,W.,Abrams,B.,Zhen,M.An SCF-like ubiquitin ligase complex that controls presynaptic differentiation[J].Nature,2004,430(6997):345-50.
    60.Voigt,J.,Papalopulu,N.A dominant-negative form of the E3 ubiquitin ligase Cullin-1 disrupts the correct allocation of cell fate in the neural crest lineage[J].Development,2006,133(3):559-68.
    61.Staropoli,J.E,Abeliovich,A.The ubiquitin-proteasome pathway is necessary for maintenance of the postmitotic status of neurons[j].J Mol Neurosci,2005,27(2):175-83.
    62.Kawaida,R.,Yamada,R.,Kobayashi,K.,Tokuhiro,S.,Suzuki,A.,Kochi,Y.,Chang,X.,Sekine,A.,Tsunoda,T.,Sawada,T.,Furukawa,H.,Nakamura,Y.,Yamamoto,K.CUL1,a component of E3 ubiquitin ligase,alters lymphocyte signal transduction with possible effect on rheumatoid arthritis[J].Genes Immun,2005,6(3):194-202.
    63.Salon,C.,Brambilla,E.,Brambilla,C.,Lantuejoul,S.,Gazzeri,S.,Eymin,B.Altered pattern of Cul-1 protein expression and neddylation in human lung turnouts:relationships with CAND1 and cyclin E protein levels[J].J Pathol,2007,213(3):303-10.
    64.Nakayama,K.I.,Nakayama,K.Ubiquitin ligases:cell-cycle control and cancer[J].Nat Rev Cancer,2006,6(5):369-81.
    65.Kamura,T.,Maenaka,K.,Kotoshiba,S.,Matsumoto,M.,Kohda,D.,Conaway,R.C.,Conaway,J.W.,Nakayama,K.I.VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases[J].Genes Dev,2004,18(24):3055-65.
    66.Brower,C.S.,Sato,S.,Tomomori-Sato,C.,Kamura,T.,Pause,A.,Stearman,R.,Klausner,R.D.,Malik,S.,Lane,W.S.,Sorokina,I.,Roeder,R.G,Conaway,J.W.,Conaway,R.C.Mammalian mediator subunit taMED8 is an Elongin BC-interacting protein that can assemble with Cul2 and Rbx1 to reconstitute a ubiquitin ligase[J].Proc Natl Acad Sci U S A,2002,99(16):10353-8.
    67.Mahrour,N.,Redwine,W.B.,Florens,L.,Swanson,S.K.,Martin-Brown,S.,Bradford,W.D.,Staehling-Hampton,K.,Washburn,M.P.,Conaway,R.C.,Conaway,J.W.Characterization of Cullin-box sequences that direct recruitment of Cul2-Rbx1 and Cul5-Rbx2 modules to Elongin BC-based ubiquitin ligases[J].J Biol Chem,2008,283(12):8005-13.
    68.Maynard,M.A.,Ohh,M.Von Hippel-Lindau tumor suppressor protein and hypoxia-inducible factor in kidney cancer[J].Am J Nephrol,2004,24(1):1-13.
    69.Lonergan,K.M.,Iliopoulos,O.,Ohh,M.,Kamura,T.,Conaway,R.C.,Conaway,J.W.,Kaelin,W.G.,Jr.Regulation of hypoxia-inducible mRNAs by the von Hippel-Lindan tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2[J].Mol Cell Biol,1998,18(2):732-41.
    70.Maeda,Y.,Suzuki,T.,Pan,X.,Chen,G.,Pan,S.,Bartman,T.,Whitsett,J.A.CUL2 is required for the activity of hypoxia-inducible factor and vasculogenesis[J].J Biol Chem,2008,283(23):16084-92.
    71.Vasudevan,S.,Starost/na,N.G.,Kipreos,E.T.The Caenorhabditis elegans cell-cycle regulator ZYG-11 defines a conserved family of CUL-2 complex components[J].EMBO Rep,2007,8(3):279-86.
    72.DeRenzo,C.,Reese,K.J.,Seydoux,G.Exclusion of germ plasm proteins from somatic lineages by cullin-dependent degradation[J].Nature,2003,424(6949):685-9.
    73.Feng,H.,Zhong,W.,Punkosdy,G,Gu,S.,Zhou,L.,Seabolt,E.K.,Kipreos,E.T.CUL-2 is required for the G1-to-S-phase transition and mitotic chromosome condensation in Caenorhabditis elegans[J].Nat Cell Biol,1999,1(8):486-92.
    74.Li,S.,Armstrong,C.M.,Bertin,N.,Ge,H.,Milstein,S.,Boxem,M.,Vidalain,P.O.,Han,J.D.,Chesneau,A.,Hao,T.,Goldberg,D.S.,Li,N.,Martinez,M.,Rual,J.F.,Lamesch,P.,Xu,L.,Tewari,M.,Wong,S.L.,Zhang,L.V.,Berriz,G.F.,Jacotot,L.,Vaglio,P.,Reboul,J.,Hirozane-Kishikawa,T.,Li,Q.,Gabel,H.W.,Elewa,A.,Baumgartner,B.,Rose,D.J.,Yu,H.,Bosak,S.,Sequerra,R.,Fraser,A.,Mango,S.E.,Saxton,W.M.,Strome,S.,Van Den Heuvel,S.,Piano,F.,Vandenhaute,J,Sardet,C.,Gerstein,M.,Doucette-Stamm,L.,Gunsalus,K.C.,Harper,J.W.,Cusick,M.E.,Roth,F.P.,Hill,D.E.,Vidal,M.A map of the interactome network of the metazoan C.elegaus[J].Science,2004,303(5657):540-3.
    75.Sonneville,R.,Gonczy,P.Zyg-11 and cul-2 regulate progression through meiosis Ⅱ and polarity establishment in C.elcgans[J].Development,2004,131(15):3527-43.
    76.Pacquelet,A.,Zanin,E.,Ashiono,C.,Gotta,M.PAR-6 levels are regulated by NOS-3 in a CUL-2 dependent manner in Caenorhabditiselcgans[J].Dev Biol,2008.
    77.Byrd,P.J.,Stankovic,T.,McConville,C.M.,Smith,A.D.,Cooper,P.R.,Taylor,A.M.Identification and analysis of expression of human VACM-1,a cullin gcnc family member located on chromosome 11q22-23[J].Genome Res,1997,7(1):71-5.
    78.Bumatowska-Hledin,M.A.,Spielman,W.S.,Smith,W.L.,Shi,P.,Meyer,J.M.,Dewitt,D.L.Expression cloning of an AVP-activated,calcium-mobilizing receptor from rabbit kidney medulla[J].Am J Physiol,1995,268(6 Pt 2):F1198-210.
    79.Burnatowska-Hledin,M.,Zhao,P.,Capps,B.,Poel,A.,Parmclee,K.,Mungall,C.,Sharangpani,A.,Listenberger,L.VACM-1,a cullin genc family member,regulates cellular signaling[J].Am J Physiol Cell Physiol,2000,279(1):C266-73.
    80.Ceremuga,T.E.,Yao,X.L.,Xia,Y.,Mukherjee,D.,McCabe,J.T.Osmotic stress increases cullin-5(cul-5) mRNA in the rat cerebral cortex,hypothalamus and kidney[J].Neurosci Res,2003,45(3):305-11.
    81.Yao,X.L.,Liu,J.,Lee,E.,Ling,G.S.,McCabe,J.T.Cullin 5 gene expression in the rat cerebral cortex and hippocampus following traumatic brain injury(TBI)[J].Neurosci Lett,2006,409(1):65-9.
    82.Fay,M.J.,Longo,K.A.,Karathanasis,G.A.,Shope,D.M.,Mandernach,C.J.,Leong,J.R.,Hicks,A.,Pherson,K.,Husain,A.Analysis of CUL-5 expression in breast epithelial cells,breast cancer cell lines,normal tissues and tumor tissues[J].Mol Cancer,2003,2(40.
    83.Johnson,A.E.,Le,I.P.,Buchwalter,A.,Burnatowska-Hledin,M.A.Estrogen-dependent growth and estrogen receptor(ER)-alpha concentration in T47D breast cancer cells are inhibited by VACM-1,a cul 5 gene[J].Mol Cell Biochem,2007,301(1-2):13-20.
    84.Burnatowska-Hledin,M.A.,Kossoris,J.B.,Van Dort,C.J.,Shearer,R.L.,Zhao,P.,Murrey,D.A.,Abbott,J.L.,Kan,C.E.,Barney,C.C.T47D breast cancer cell growth is inhibited by expression of VACM-1,a cul-5 gene[J].Biochem Biophys Res Commun,2004,319(3):817-25.
    85.Singhal,S.,Amin,K.M.,Kruklitis,R.,DeLong,P.,Friscia,M.E.,Litzky,L.A.,Putt,M.E.,Kaiser,L.R.,Albelda,S.M.Alterations in cell cycle genes in early stage lung adenocarcinoma identified by expression profiling[J].Cancer Biol Ther,2003,2(3):291-8.
    86.Ayyub,C.,Sen,A.,Gonsalves,F.,Badrinath,K.,Bhandari,P.,Shashidhara,L.S.,Krishna,S.,Rodrigues,V.Cullin-5 plays multiple roles in cell fate specification and synapse formation during Drosophila development[J].Dev Dyn,2005,232(3):865-75.
    87.Feng,L.,Allen,N.S.,Simo,S.,Cooper,J.A.Cullin 5 regulates Dab1 protein levels and neuron positioning during cortical development[J].Genes Dev,2007,21(21):2717-30.
    88.Heuze,M.L.,Guibal,F.C.,Banks,C.A.,Conaway,J.W.,Conaway,R.C.,Cayre,Y.E.,Benecke,A.,Lutz,P.G.ASB2 is an Elongin BC-interacting protein that can assemble with Cullin 5 and Rbx1 to reconstitute an E3 ubiquitin ligase complex[J].J Biol Chem,2005,280(7):5468-74.
    89.An,P.,Duggal,P.,Wang,L.H.,O'Brien,S.J.,Donfield,S.,Goedert,J.J.,Phair,J.,Buchbinder,S.,Kirk,G.D.,Winkler,C.A.Polymorphisms of CUL5 are associated with CD4+ T cell loss in HIV-1 infected individuals[J].PLoS Genet,2007,3(1):e19.
    90.Xiao,Z.,Xiong,Y.,Zhang,W.,Tan,L.,Ehrlich,E.,Guo,D.,Yu,X.F.Characterization of a novel Cullin5 binding domain in HIV-1 Vif[J].J Mol Biol,2007,373(3):541-50.
    91.Stanley,B.J.,Ehrlich,E.S.,Short,L.,Yu,Y.,Xiao,Z.,Yu,X.F.,Xiong,Y.Structural Insight into the HIV Vif SOCS Box and Its Role in Human E3 Ubiquitin Ligase Assembly[J].J Virol,2008.
    92.Dehart,J.L.,Bosque,A.,Harris,R.,Planelles,V."HIV-1 Vif induces cell cycle delay via recruitment of the same E3 ubiquitin ligase complex that targets APOBEC3 proteins for degradation"[J].J Virol,2008.
    93.Luo,K.,Ehrlich,E.,Xiao,Z.,Zhang,W.,Ketner,G,Yu,X.F.Adenovirus E4orf6 assembles with Cullin5-ElonginB-ElonginC E3 ubiquitin ligase through an HIV/SIV Vif-like BC-box to regulate p53[J].Faseb J,2007,21(8):1742-50.
    94.Furukawa,M.,He,Y.J.,Borchers,C.,Xiong,Y.Targeting of protein ubiquitination by BTB-Cullin 3-Rocl ubiquitin ligases[J].Nat Cell Biol,2003,5(11):1001-7.
    95.Geyer,R.,Wee,S.,Anderson,S.,Yates,J.,Wolf,D.A.BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases[J].Mol Cell,2003,12(3):783-90.
    96.Xu,L.,Wei,Y.,Reboul,J.,Vaglio,P.,Shin,T.H.,Vidal,M.,Elledge,S.J.,Harper,J.W.BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3[J].Nature,2003,425(6955):316-21.
    97.Wilton,B.A.,Campbell,S.,Van Buuren,N.,Gameau,R.,Furukawa,M.,Xiong,Y.,Barry,M.Ectromelia virus BTB/kelch proteins,EVM150 and EVM167,interact with cullin-3-based ubiquitin ligases[J].Virology,2008,374(1):82-99.
    98.Singer,J.D.,Gurian-West,M.,Clurman,B.,Roberts,J.M.Cullin-3 targets cyclin E for ubiqnitination and controls S phase in mammalian cells[J].Genes Dev,1999,13(18):2375-87.
    99.Ribar,B.,Prakash,L.,Prakash,S.ELAl and CUL3 are required along with ELC1 for RNA polymerase Ⅱ polyubiquitylation and degradation in DNA-damaged yeast cells[J].Mol Cell Biol,2007,27(8):3211-6.
    100.Ou,C.Y.,Lin,Y.E,Chen,Y.J.,Chien,C.T.Distinct protein degradation mechanisms mediated by Cull and Cul3 controlling Ci stability in Drosophila eye development[J].Genes Dev,2002,16(18):2403-14.
    101.Zhu,S.,Perez,R.,Pan,M.,Lee,T.Requirement of Cul3 for axonal arborization and dendritic elaboration in Drosophila mushroom body neurons[J].J Neurosci,2005,25(16):4189-97.
    102.Schaefer,H.,Rongo,C.KEL-8 is a substrate receptor for CUL3-dependent ubiquitin ligase that regulates synaptic glutamate receptor turnover[J].Mol Biol Cell,2006,17(3):1250-60.
    103.Salinas,G.D.,Blair,L.A.,Needleman,L.A.,Gonzales,J.D.,Chen,Y.,Li,M.,Singer,J.D.,Marshall,J.Actinfilin is a Cul3 substrate adaptor,linking GluR6 kainate receptor subunits to the ubiquitin-proteasome pathway[J].J Biol Chem,2006,281(52):40164-73.
    104.Kurz,T.,Pintard,L.,Willis,J.H.,Hamill,D.R.,Gonczy,P.,Peter,M.,Bowerman,B.Cytoskeletal regulation by the Nedd8 ubiquitin-like protein modification pathway[J].Science,2002,295(5558):1294-8.
    105.Pintard,L.,Kurz,T.,Glaser,S.,Willis,J.H.,Peter,M.,Bowerman,B.Neddylation and deneddylation of CUL-3 is required to target MEI-1/Katanin for degradation at the meiosis-to-mitosis transition in C.elegans[J].Curr Biol,2003,13(11):911-21.
    106.Pintard,L.,Willis,J.H.,Willems,A.,Johnson,J.L.,Srayko,M.,Kurz,T.,Glaser,S.,Mains,P.E.,Tyers,M.,Bowerman,B.,Peter,M.The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase[J].Nature,2003,425(6955):311-6.
    107.Kobayashi,A.,long,M.I.,Okawa,H.,Ohtsuji,M.,Zenke,Y.,Chiba,T.,Igarashi,K.,Yamamoto,M.Oxidative stress sensor Keap1 functions as an adaptor for Cul3-hased E3ligase to regulate proteasomal degradation of Nrt2[J].Mol Cell Biol,2004,24(16):7130-9.
    108.Cullinan,S.B.,Gordan,J.D.,Jin,J.,Harper,J.W.,Dieh1,J.A.The Keap1-BTB protein is an adaptor that bridges Nrt2 to a Cul3-based E3 ligase:oxidative stress sensing by a Cul3-Keap1ligase[J].Mol Cell Biol,2004,24(19):8477-86.
    109.Angers,S.[KLHL12/Cullin-3 is a new E3 ubiquitin ligase negatively regulating the Wnt pathway][J].Med Sci(Paris),2007,23(3):243-4.
    110.Hernandez-Munoz,I.,Lund,A.H.,van der Stoop,P.,Boutsma,E.,Muijrers,I.,Verhoeven,E.,Nusinow,D.A.,Panning,B.,Marahrens,Y.,van Lohuizen,M.Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2Al and the CULLIN3/SPOP ubiquitin E3 ligase[J].Proc Natl Acad Sci U S A,2005,102(21):7635-40.
    111.Zhang,H.E,Tomida,A.,Koshimizu,R.,Ogiso,Y.,Lei,S.,Tsuruo,T.Cullin 3 promotes proteasomal degradation of the topoisomerase I-DNA covalent complex[J].Cancer Res,2004,64(3):1114-21.
    112.Angers,S.,Thorpe,C.J.,Bieehele,T.L.,Goldenberg,S.J.,Zheng,N.,MacCoss,M.J.,Moon, R.T.The KLHL12-Cullin-3 ubiquitin ligase negatively regulates the Wnt-beta-catenin pathway by targeting Dishevelled for degradation[J].Nat Cell Biol,2006,8(4):348-57.
    113.Sumara,I.,Quadroni,M.,Frei,C.,Olma,M.H.,Sumara,G,Ricci,R.,Peter,M.A Cul3-based E3 ligase removes Aurora B from mitotic chromosomes,regulating mitotic progression and completion of cytokinesis in human cells[J].Dev Cell,2007,12(6):887-900.
    114.McCall,C.M.,Hu,J.,Xiong,Y.Recruiting substrates to cullin 4-dependent ubiquitin ligases by DDB1[J].Cell Cycle,2005,4(1):27-9.
    115.Guerrero-Santoro,J.,Kapetanaki,M.G,Hsieh,C.L.,Gorbachinsky,I.,Levine,A.S.,Rapic-Otrin,V.The cullin 4B-based UV-damaged DNA-binding protein ligase binds to UV-damaged chromatin and ubiquitinates histone H2A[J].Cancer Res,2008,68(13):5014-22.
    116.Groisman,R.,Polanowska,J.,Kuraoka,I.,Sawada,J.,Saijo,M.,Drapkin,R.,Kisselev,A.E,Tanaka,K.,Nakatani,Y.The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage[J].Cell,2003,113(3):357-67.
    117.Wertz,I.E.,O'Rourke,K.M.,Zhang,Z.,Dornan,D.,Arnott,D.,Deshaies,R.J.,Dixie V.M.Human De-etiolated-1 regulates c-Jun by assembling a CUL4A ubiquitin ligase[J].Science,2004,303(5662):1371-4.
    118.Bondar,T.,Ponomarev,A.,Raychaudhuri,P.Ddb1 is required for the proteolysis of the Schizosaccharomyces pombe replication inhibitor Spd1 during S phase and after DNA damage[J].J Biol Chem,2004,279(11):9937-43.
    119.Holmberg,C.,Fleck,O.,Hansen,H.A.,Liu,C.,Slaaby,R.,Carr,A.M.,Nielsen,O.Ddb1controls genome stability and meiosis in fission yeast[J].Genes Dev,2005,19(7):853-62.
    120.He,Y.J.,McCall,C.M.,Hu,J.,Zeng,Y.,Xiong,Y.DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases[J].Genes Dev,2006,20(21):2949-54.
    121.Li,T.,Chen,X.,Garbutt,K.C.,Zhou,P.,Zheng,N.Structure of DDB1 in complex with a paramyxovirus V protein:viral hijack of a propeller cluster in ubiquitin ligase[J].Cell,2006,124(1):105-17.
    122.Cang,Y.,Zhang,J.,Nicholas,S.A.,Kim,A.L.,Zhou,P.,Goff,S.P.DDB1 is essential for genomic stability in developing epidermis[J].Proc Natl Acad Sci U S A,2007,104(8):2733-7.
    123.Tang,J.Y.,Hwang,B.J.,Ford,J.M.,Hanawalt,P.C.,Chu,G.Xeroderma pigmentosum p48gene enhances global genomic repair and suppresses UV-induced mutagenesis[J].Mol Cell,2000,5(4):737-44.
    124.Zolezzi,E,Linn,S.Studies of the murine DDB1 and DDB2 genes[J].Gene,2000,245(1):151-9.
    125.Itoh,T.,Cado,D.,Kamide,R.,Linn,S.DDB2 gene disruption leads to skin tumors and resistance to apoptosis after exposure to ultraviolet light but not a chemical carcinogen[J].Proc Natl Acad Sci U S A,2004,101(7):2052-7.
    126.Yoon,T.,Chakrabortty,A.,Franks,R.,Valli,T.,Kiyokawa,H.,Raychaudhuri,P.Tumor-prone phenotype of the DDB2-deficient mice[j].Oncogene,2005,24(3):469-78.
    127.Takata,K.,Yoshida,H.,Yamaguchi,M.,Sakaguchi,K.Drosophila damaged DNA-binding protein 1 is an essential factor for development[J].Genetics,2004,168(2):855-65.
    128.Cang,Y.,Zhang,J.,Nicholas,S.A.,Bastion,J.,Li,B.,Zhou,P.,Goff,S.P.Deletion of DDB1 in mouse brain and lens leads to p53-dependent elimination of proliferating cells[J].Cell,2006,127(5):929-40.
    129.Shiyanov,P.,Nag,A.,Raychaudhuri,P.Cullin 4A associates with the UV-damaged DNA-binding protein DDB[J].J Biol Chem,1999,274(50):35309-12.
    130.Matsuda,N.,Azuma,K.,Saijo,M.,Iemura,S.,Hioki,Y.,Natsume,T.,Chiba,T.,Tanaka,K.,Tanaka,K.DDB2,the xeroderma pigmentosum group E gene product,is directly ubiquitylated by Cullin 4A-based ubiquitin ligase complex[J].DNA Repair(Amst),2005,4(5):537-45.
    131.Nag,A.,Bondar,T.,Shiv,S.,Raychaudhuri,P.The xeroderma pigmentosum group E gene product DDB2 is a specific target of cullin 4A in mammalian cells[J].Mol Cell Biol,2001,21(20):6738-47.
    132.El-Mahdy,M.A.,Zhu,Q.,Wang,Q.E.,Wani,G.,Praetorius-Ibba,M.,Wani,A.A.Cullin 4A-mediated proteolysis of DDB2 protein at DNA damage sites regulates in vivo lesion recognition by XPC[J].J Biol Chem,2006,281(19):13404-11.
    133.Higa,L.A.,Wu,M.,Ye,T.,Kobayashi,R.,Sun,H.,Zhang,H.CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation[J].Nat Cell Biol,2006,8(11):1277-83.
    134.Jin,J.,Arias,E.E.,Chen,J.,Harper,J.W.,Walter,J.C.A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2,which is required for S phase destruction of the replication factor Cdt1[J].Mol Cell,2006,23(5):709-21.
    135.Lee,J.,Zhou,P.DCAFs,the missing link of the CUL4-DDB1 ubiquitin ligase[J].Mol Cell,2007,26(6):775-80.
    136.Groisman,R.,Kuraoka,I.,Chevallier,O.,Gaye,N.,Magnaldo,T.,Tanaka,K.,Kisselev,A.F,Harel-Bellan,A.,Nakatani,Y.CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome[J].Genes Dev,2006,20(11):1429-34.
    137.Sugasawa,K.,Okuda,Y.,Saijo,M.,Nishi,R.,Matsuda,N.,Chu,G.,Mori,T.,Iwai,S.,Tanaka,K.,Tanaka,K.,Hanaoka,F.UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex[J].Cell,2005,121(3):387-400.
    138.Kapetanaki,M.G.,Guerrero-Santoro,J.,Bisi,D.C.,Hsieh,C.L.,Rapic-Otrin,V.,Levine,A.S.The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites[J].Proc Natl Acad Sci U S A,2006,103(8):2588-93.
    139.Higa,L.A.,Banks,D.,Wu,M.,Kobayashi,R.,Sun,H.,Zhang,H.L2DTL/CDT2 interacts with the CUL4/DDB1 complex and PCNA and regulates CDT1 proteolysis in response to DNA damage[J].Cell Cycle,2006,5(15):1675-80.
    140.Sansam,C.L.,Shepard,J.L.,Lai,K.,Ianari,A.,Danielian,P.S.,Amsterdam,A.,Hopkins,N.,Lees,J.A.DTL/CDT2 is essential for both CDT1 regulation and the early G2/M checkpoint[J].Genes Dev,2006,20(22):3117-29.
    141.Liu,C.,Poitelea,M.,Watson,A.,Yoshida,S.H.,Shimoda,C.,Holmberg,C.,Nielsen,O.,Carr,A.M.Transactivation of Schizosaccharomyces pombe cdt2+ stimulates a Pcu4-Ddb1-CSN ubiquitin ligase[J].Embo J,2005,24(22):3940-51.
    142.Chen,L.C.,Manjeshwar,S.,Lu,Y.,Moore,D.,Ljung,B.M.,Kuo,W.L.,Dairkee,S.H.,Wernick,M.,Collins,C.,Smith,H.S.The human homologue for the Caenorhabditis elegans cul-4 gene is amplified and overexpressed in primary breast cancers[J].Cancer Res,1998,58(16):3677-83.
    143.Gupta,A.,Yang,L.X.,Chen,L.Study of the G2/M cell cycle checkpoint in irradiated mammary epithelial cells overexpressing Cul-4A gene[J].Int J Radiat Oncol Biol Phys,2002,52(3):822-30.
    144.Banks,D.,Wu,M.,Higa,L.A.,Gavrilova,N.,Quan,J.,Ye,T.,Kobayashi,R.,Sun,H.,Zhang,H.L2DTL/CDT2 and PCNA interact with p53 and regulate p53 polyubiqnitination and protein stability through MDM2 and CUL4A/DDB1 complexes[J].Cell Cycle,2006,5(15):1719-29.
    145.Kim,Y.,Starostina,N.G.,Kipreos,E.T.The CRL4Cdt2 ubiquitin ligase targets the degradation of p21Cip1 to control replication licensing[J].Genes Dev,2008,22(18):2507-19.
    146.Nishitani,H.,Shiomi,Y.,Iida,H.,Michishita,M.,Takami,T.,Tsurimoto,T.CDK inhibitor p21 is degraded by a proliferating cell nuclear antigen-coupled Cul4-DDB1Cdt2 pathway during S phase and after UV irradiation[J].J Biol Chem,2008,283(43):29045-52.
    147.Abbas,T.,Sivaprasad,U.,Terai,K.,Amador,V.,Pagano,M.,Dutta,A.PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4Cdt2 ubiquitin ligase complex[J].Genes Dev,2008,22(18):2496-506.
    148.Miranda-Carboni,G.A.,Krum,S.A.,Yee,K.,Nava,M.,Deng,Q.E.,Pervin,S.,Collado-Hidalgo,A.,Galic,Z.,Zack,J.A.,Nakayama,K.,Nakayama,K.I.,Lane,T.E A functional link between Wnt signaling and SKP2-independent p27 turnover in mammary tumors[J].Genes Dev,2008,22(22):3121-34.
    149.Li,B.,Ruiz,J.C.,Chun,K.T.CUL-4A is critical for early embryonic development[J].Mol Cell Biol,2002,22(14):4997-5005.
    150.Li,B.,Yang,EC.,Clapp,D.W.,Chun,K.T.Enforced expression of CUL-4A interferes with granulocytic differentiation and exit from the cell cycle[J].Blood,2003,101(5):1769-76.
    151.Zhang,Y.,Morrone,G.,Zhang,J.,Chen,X.,Lu,X.,Ma,L.,Moore,M.,Zhou,P.CUL-4A stimulates ubiquitylation and degradation of the HOXA9 homeodomain protein[J].Embo J,2003,22(22):6057-67.
    152.Li,B.,Jia,N.,Kaput,R.,Chun,K.T.Cul4A targets p27 for degradation and regulates proliferation,cell cycle exit,and differentiation during erythropoiesis[J].Blood,2006,107(11):4291-9.
    153.Waning,D.L.,Li,B.,Jia,N.,Naaldijk,Y.,Goebel,W.S.,HogenEsch,H.,Chun,K.T.Cul4A is required for hematopoietic cell viability and its deficiency leads to apoptosis[J].Blood,2008,112(2):320-9.
    154.Higa,L.A.,Zhang,H.Stealing the spotlight:CUL4-DDB1 ubiquitin ligase docks WD40-repeat proteins to destroy[J].Cell Div,2007,2(5.
    155.Precious,B.,Childs,K.,Fitzpatrick-Swallow,V.,Goodbourn,S.,Randall,R.E.Simian virus 5V protein acts as an adaptor,linking DDB1 to STAT2,to facilitate the ubiquitination of STAT1[J].J Virol,2005,79(21):13434-41.
    156.Hrecka,K.,Gierszewska,M.,Srivastava,S.,Kozaczkiewicz,L.,Swanson,S.K.,Florens,L.,Washburn,M.P.,Skowronski,J.Lentiviral Vpr usurps Cul4-DDB1[VprBP]E3 ubiqultin ligase to modulate cell cycle[J].Proc Natl Acad Sci U S A,2007,104(28):11778-83.
    157.Le Rouzic,E.,Belaidouni,N.,Estrabaud,E.,Morel,M.,Rain,J.C.,Transy,C.,Margottin-Goguet,F.HIV1 Vpr arrests the cell cycle by recruiting DCAF1/VprBP,a receptor of the Cu14-DDB1 ubiquitin ligase[J].Cell Cycle,2007,6(2):182-8.
    158.Zou,Y.,Liu,Q.,Chen,B.,Zhang,X.,Guo,C.,Zhou,H.,Li,J.,Gao,G.,Guo,Y.,Yah,C.,Wei,J.,Shao,C.,Gong,Y.Mutation in CUL4B,which encodes a member of cullin-RING ubiquitin ligase complex,causes X-linked mental retardation[J].Am J Hum Genet,2007,80(3):561-6.
    159.Tarpey,ES.,Raymond,F.L.,O'Meara,S.,Edkins,S.,Teague,J.,Butler,A.,Dicks,E.,Stevens,C.,Tofts,C.,Avis,T.,Barthorpe,S.,Buck,G,Cole,J.,Gray,K.,Halliday,K.,Harrison,R.,Hills,K.,Jenkinson,A.,Jones,D.,Menzies,A.,Mironenko,T.,Perry,J.,Raine,K.,Richardson,D.,Shepherd,R.,Small,A.,Varian,J.,West,S.,Widaa,S.,Mallya,U.,Moon,J.,Luo,Y.,Holder,S.,Smithson,S.E,Hurst,J.A.,Clayton-Smith,J.,Kerr,B.,Boyle,J.,Shaw,M.,Vandeleur,L.,Rodriguez,J.,Slaugh,R.,Easton,D.E,Wooster,R.,Bobrow,M.,Srivastava,A.K.,Stevenson,R.E.,Schwartz,C.E.,Turner,G,Gecz,J.,Futreal,P.A.,Stratton,M.R.,Partington,M.Mutations in CUL4B,which encodes a ubiquitin E3 ligase subunit,cause an X-linked mental retardation syndrome associated with aggressive outbursts,seizures,relative macrocephaly,central obesity,hypogonadism,pes cavus,and tremor[J].Am J Hum Genet,2007,80(2):345-52.
    160.Ohtake,F.,Baba,A.,Takada,I.,Okada,M.,Iwasaki,K.,Miki,H.,Takahashi,S.,Kouzmenko,A.,Nohara,K.,Chiba,T.,Fujii-Kuriyama,Y.,Kato,S.Dioxin receptor is a ligand-dependent E3 ubiquitin ligase[J].Nature,2007,446(7135):562-6.
    161.Daud,A.I.,Lanson,N.A.,Jr.,Claycomb,W.C.,Field,L.J.Identification of SV40 large T-antigen-associated proteins in cardiomyocytes from transgenic mice[J].Am J Physiol,1993,264(5 Pt 2):H1693-700.
    162.Kohrman,D.C.,Imperiale,M.J.Simian virus 40 large T antigen stably complexes with a 185-kilodalton host protein[J].J Virol,1992,66(3):1752-60.
    163.Ali,S.H.,Kasper,J.S.,Arai,T.,DeCaprio,J.A.Cul7/p185/p193 binding to simian virus 40large T antigen has a role in cellular transformation[J].J Virol,2004,78(6):2749-57.
    164.Kasper,J.S.,Kuwabara,H.,Arai,T.,Ali,S.H.,DeCaprio,J.A.Simian virus 40 large T antigen's association with the CUL7 SCF complex contributes to cellular transformation[J].J Virol,2005,79(18):11685-92.
    165.Andrews,P.,He,Y.J.,Xiong,Y.Cytoplasmic localized ubiquitin ligase cullin 7 binds to p53and promotes cell growth by antagonizing p53 function[J].Oncogene,2006,25(33):4534-48.
    166.Arai,T.,Kasper,J.S.,Skaar,J.R.,Ali,S.H.,Takahashi,C.,DeCaprio,J.A.Targeted disruption of p185/Cul7 gene results in abnormal vascular morphogenesis[J].Proc Natl,Acad Sci U S A,2003,100(17):9855-60.
    167.Huber,C.,Dias-Santagata,D.,Glaser,A.,O'Sullivan,J.,Brauner,R.,Wu,K.,Xu,X.,Pearce,K.,Wang,R.,Uzielli,M.L.,Dagonean,N.,Chemaitilly,W.,Superti-Furga,A.,Dos Santos,H.,Megarbane,A.,Morin,G.,Gillessen-Kaesbach,G.,Hennekam,R.,Van der Burgt,I.,Black,G.C.,Clayton,P.E.,Read,A.,Le Merrer,M.,Scambler,P.J.,Munnich,A.,Pan,Z.Q.,Winter,R.,Cormier-Daire,V.Identification of mutations in CUL7 in 3-M syndrome[J].Nat Genet,2005,37(10):1119-24.
    168.Maksimova,N.,Hara,K.,Miyashia,A.,Nikolaeva,I.,Shiga,A.,Nogovicina,A.,Sukhomyasova,A.,Argunov,V.,Shvedova,A.,Ikeuchi,T.,Nishizawa,M.,Kuwano,R.,Onodera,O.Clinical,molecular and histopathological features of short stature syndrome with novel CUL7 mutation in Yakuts:new population isolate in Asia[J].J Med Genet,2007,44(12):772-8.
    169.Kasper,J.S.,Arai,T.,DeCaprio,J.A.A novel p53-binding domain in CUL7[J].Biochem Biophys Res Commun,2006,348(1):132-8.
    170.Kim,S.S.,Shago,M.,Kaustov,L.,Boutros,P.C.,Clendening,J.W.,Sheng,Y.,Trentin,G.A.,Barsyte-Lovejoy,D.,Mao,D.Y.,Kay,R.,Jurisica,I.,Arrowsmith,C.H.,Penn,L.Z.CUL7 is a novel antiapoptotic oncogene[J].Cancer Res,2007,67(20):9616-22.
    171.Tsunematsu,R.,Nishiyama,M.,Kotoshiba,S.,Saiga,T.,Kamura,T.,Nakayama,K.I.Fbxw8is essential for Cull-Cul7 complex formation and for placental development[J].Mol Cell Biol,2006,26(16):6157-69.
    172.Xu,X.,Sarikas,A.,Dias-Santagata,D.C.,Dolios,G.,Lafontant,P.J.,Tsai,S.C.,Zhu,W.,Nakajima,H.,Nakajima,H.O.,Field,L.J.,Wang,R.,Pan,Z.Q.The CUL7 E3 ubiquitin ligase targets insulin receptor substrate 1 for ubiquitin-dependent degradation[J].Mol Cell,2008,30(4):403-14.
    173.Okabe,H.,Lee,S.H.,Phuchareon,J.,Albertson,D.G.,McCormick,F.,Tetsu,O.A critical role for FBXW8 and MAPK in cyclin D1 degradation and cancer cell proliferation[J].PLoS ONE,2006,1(e128.
    174.Wimuttisuk,W.,Singer,J.D.The Cullin3 ubiquitin ligase functions as a Nedd8-bound heterodimer[J].Mol Biol Cell,2007,18(3):899-909.
    175.Kitahara,R.,Yamaguchi,Y.,Sakata,E.,Kasuya,T.,Tanaka,K.,Kato,K.,Yokoyama,S.,Akasaka,K.Evolutionally conserved intermediates between ubiquitin and NEDDS[J].J Mol Biol,2006,363(2):395-404.
    176.Pan,Z.Q.,Kentsis,A.,Dias,D.C.,Yamoah,K.,Wu,K.Nedd8 on cullin:building an expressway to protein destruction[J].Oncogene,2004,23(11):1985-97.
    177.Hochstrasser,M.Evolution and function of ubiquitin-like protein-conjugation systems[J].Nat Cell Biol,2000,2(8):E153-7.
    178.Wada,H.,Yeh,E.T.,Kamitani,T.Identification of NEDD8-conjugation site in human cullin-2[J].Biochem Biophys Res Commun,1999,257(1):100-5.
    179.Read,M.A.,Brownell,J.E.,Gladysheva,T.B.,Hottelet,M.,Parent,L.A.,Coggins,M.B.,Pierce,J.W.,Podust,V.N.,Luo,R.S.,Chau,V.,Palombella,V.J.Nedd8 modification of cul-1activates SCF(beta(TrCP))-dependent ubiquitination of IkappaBalpha[J].Mol Cell Biol,2000,20(7):2326-33.
    180.Zhou,C.,Seibert,V.,Geyer,R.,Rhee,E.,Lyapina,S.,Cope,G.,Deshaies,R.J.,Wolf,D.A.The fission yeast COP9/signalosome is involved in cullin modification by ubiquitin-related Ned8p[J].BMC Biochem,2001,2(7).
    181.Osaka,F.,Saeki,M.,Katayama,S.,Aida,N.,Toh,E.A.,Kominami,K.,Toda,T.,Suzuki,T.,Chiba,T.,Tanaka,K.,Kato,S.Covalent modifier NEDD8 is essential for SCF ubiquitin-ligase in fission yeast[J].Embo J,2000,19(13):3475-84.
    182.Hori,T.,Osaka,F.,Chiba,T.,Miyamoto,C.,Okabayashi,K.,Shimbara,N.,Kato,S.,Tanaka,K.Covalent modification of all members of human cullin family proteins by NEDD8[J].Oncogene,1999,18(48):6829-34.
    183.Morimoto,M.,Nishida,T.,Honda,R.,Yasuda,H.Modification of cullin-1 by ubiquitin-like protein Nedd8 enhances the activity of SCF(skp2) toward p27(kip1)[J].Biochem Biophys Res Commun,2000,270(3):1093-6.
    184.Podust,V.N.,Brownell,J.E.,Gladysheva,T.B.,Luo,R.S.,Wang,C.,Coggins,M.B.,Pierce,J.W.,Lightcap,E.S.,Chau,V.A Nedd8 conjugation pathway is essential for proteolytic targeting of p27Kip1 by ubiquitination[J].Proc Natl Acad Sci U S A,2000,97(9):4579-84.
    185.Wu,K.,Cben,A.,Pan,Z.Q.Conjugation of Nedd8 to CUL1 enhances the ability of the ROC1-CUL1 complex to promote ubiquitin polymerization[J].J Biol Chem,2000,275(41):32317-24.
    186.Sakata,E.,Yamaguchi,Y.,Miyauchi,Y.,Iwai,K.,Chiba,T.,Saeki,Y.,Matsuda,N.,Tanaka,K.,Kato,K.Direct interactions between NEDD8 and ubiquitin E2 conjugating enzymes upregulate cullin-based E3 ligase activity[J].Nat Struct Mol Biol,2007,14(2):167-8.
    187.Kawakami,T.,Chiba,T.,Suzuki,T.,Iwai,K.,Yamanaka,K.,Minato,N.,Suzuki,H.,Shimbara,N.,Hidaka,Y.,Osaka,E,Omata,M.,Tanaka,K.NEDD8 recruits E2-ubiquitin to SCF E3 ligase[J].Embo J,2001,20(15):4003-12.
    188.Ohh,M.,Kim,W.Y.,Moslehi,J.J.,Chela,Y.,Chau,V.,Read,M.A.,Kaelin,W.G.,Jr.An intact NEDD8 pathway is required for Cullin-dependent ubiquitylation in mammalian cells[J].EMBO Rep,2002,3(2):177-82.
    189.Lammer,D.,Mathias,N.,Laplaza,J.M.,Jiang,W.,Liu,Y.,Callis,J.,Goebl,M.,Estelle,M.Modification of yeast Cdc53p by the ubiquitin-related protein rublp affects function of the SCFCdc4 complex[J].Genes Dev,1998,12(7):914-26.
    190.Liakopoulos,D.,Doenges,G.,Matuschewski,K.,Jentsch,S.A novel protein modification pathway related to the ubiquitin system[J].Embo J,1998,17(8):2208-14.
    191.Kurz,T.,Chou,Y.C.,Willems,A.R.,Meyer-Schaller,N.,Hecht,M.L.,Tyers,M.,Peter,M.,Sicheri,F.Dcn1 functions as a scaffold-type E3 ligase for cullin neddylation[J].Mol Cell,2008,29(1):23-35.
    192.Kurz,T.,Ozlu,N.,Rudolf,F.,O'Rourke,S.M.,Luke,B.,Hofmann,K.,Hyman,A.A.,Bowerman,B.,Peter,M.The conserved protein DCN-1/Dcn1p is required for cullin neddylation in C.elegans and S.cerevisiae[J].Nature,2005,435(7046):1257-61.
    193.Sufan,R.I.,Ohh,M.Role of the NEDD8 modification of Cul2 in the sequential activation of ECV complex[J].Neoplasia,2006,8(11):956-63.
    194.Furukawa,M.,Zhang,Y.,McCarville,J.,Ohta,T.,Xiong,Y.The CUL1 C-terminal sequence and ROC1 are required for efficient nuclear accumulation,NEDD8 modification,and ubiquitin ligase activity of CUL1[J].Mol Cell Biol,2000,20(21):8185-97.
    195.Yang,X.,Zhou,J.,Sun,L.,Wei,Z.,Gao,J.,Gong,W.,Xu,R.M.,Rao,Z.,Liu,Y.Structural basis for the function of DCN-1 in protein Neddylation[J].J Biol Chem,2007,282(34):24490-4.
    196.Bornstein,G.,Ganoth,D.,Hershko,A.Regulation of neddylation and deneddylation of cullinl in SCFSkp2 ubiquitin ligase by F-box protein and substrate[J].Proc Natl Acad Sci U S A,2006,103(31):11515-20.
    197.Chew,E.H.,Hagen,T.Substrate-mediated regulation of cullin neddylation[J].J Biol Chem,2007,282(23):17032-40.
    198.Wei,N.,Deng,X.W.COP9:a new genetic locus involved in light-regulated development and gene expression in arabidopsis[J].Plant Cell,1992,4(12):1507-18.
    199.Wei,N.,Chamovitz,D.A.,Deng,X.W.Arabidopsis COP9 is a component of a novel signaling complex mediating light control of development[J].Cell,1994,78(1):117-24.
    200.Schweehbeimer,C.The COP9 sigualosome(CSN):an evolutionary conserved proteolysis regulator in eukaryotie development[J].Biochira Biophys Acta,2004,1695(1-3):45-54.
    201.Wei,N.,Deng,X.W.The COP9 signalosome[J].Annu Rev Cell Dev Biol,2003,19(261-86.
    202.Wolf,D.A.,Zhou,C.,Wee,S.The COP9 signalosome:an assembly and maintenance platform for cullin ubiquitin ligases?[J].Nat Cell Biol,2003,5(12):1029-33.
    203.Cope,G.A.,Deshaies,R.J.COP9 sigualosome:a multifunctional regulator of SCF and other cullin-based ubiquitin ligases[J].Cell,2003,114(6):663-71.
    204.Lyapina,S.,Cope,G.,Shevchenko,A.,Serino,G.,Tsuge,T.,Zhou,C.,Wolf,D.A.,Wei,N.,Shevchenko,A.,Deshaies,R.J.Promotion of NEDD-CUL1 conjugate cleavage by COP9signalosome[J].Science,2001,292(5520):1382-5.
    205.Schwechheimer,C.,Serino,G.,Callis,J.,Crosby,W.L.,Lyapina,S.,Deshaies,R.J.,Gray,W.M.,Estelle,M.,Deng,X.W.Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIRI in mediating auxin response[J].Science,2001,292(5520):1379-82.
    206.Menon,S.,Chi,H.,Zhang,H.,Deng,X.W.,Flavell,R.A.,Wei,N.COP9 signalosome subunit 8 is essential for peripheral T cell homeostasis and antigen receptor-induced entry into the cell cycle from quiescence[J].Nat Immunol,2007,8(11):1236-45.
    207.Yang,X.,Menon,S.,Lykke-Andersen,K.,Tsuge,T.,Di,X.,Wang,X.,Rodriguez-Suarez,R.J.,Zhang,H.,Wei,N.The COP9 signalosome inhibits p27(kip1) degradation and impedes G1-S phase progression via deneddylation of SCF Cull[J].Curr Biol,2002,12(8):667-72.
    208.Wee,S.,Geyer,R.K.,Toda,T.,Wolf,D.A.CSN facilitates Cullin-RING ubiquitin ligase function by counteracting autocatalytic adapter instability[J].Nat Cell Biol,2005,7(4):387-91.
    209.Wu,J.T.,Lin,H.C.,Hu,Y.C.,Chien,C.T.Neddylation and deneddylation regulate Cull and Cul3 protein accumulation[J].Nat Cell Biol,2005,7(10):1014-20.
    210.Peth,A.,Berndt,C.,Henke,W.,Dubiel,W.Downregulation of COP9 signalosome subunits differentially affects the CSN complex and target protein stability[J].BMC Biochem,2007,8(27.
    211.Heffeld,B.K.,Helfrich,A.,Kapelari,B.,Scheel,H.,Hofmann,K.,Guterman,A.,Glickman,M.,Schade,R.,Kloetzel,P.M.,Dubiel,W.The zinc finger of the CSN-assoeiated deubiquitinating enzyme USP 15 is essential to rescue the E3 ligase Rbx1[J].Curr Biol,2005,15(13):1217-21.
    212.He,Q.,Cheng,P.,He,Q.,Liu,Y.The COP9 sigualosome regulates the Neurospora circadian clock by controlling the stability of the SCFFWD-1 complex[J].Genes Dev,2005,19(13):1518-31.
    213.Zheng,J.,Yang,X.,Harrell,J.M.,Ryzhikov,S.,Shim,E.H.,Lykke-Andersen,K.,Wei,N.,Sun,H.,Kobayashi,R.,Zhang,H.CAND1 binds to uuneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex[J].Moi Cell,2002,10(6):1519-26.
    214.Liu,J.,Furukawa,M.,Matsumoto,T.,Xiong,Y.NEDD8 modification of CUL1 dissociates p120(CAND1),an inhibitor of CUL1-SKP1 binding and SCF ligases[J].Mol Cell,2002,10(6):1511-8.
    215.Min,K.W.,Hwang,LW.,Lee,J.S.,Park,Y.,Tamura,T.A.,Yoon,J.B.TIP120A associates with cullins and modulates ubiquitin ligase activity[J].J Biol Chem,2003,278(18):15905-10.
    216.Oshikawa,K.,Matsumoto,M.,Yada,M.,Kamura,T.,Hatakeyama,S.,Nakayama,K.I.Preferential interaction of TIP120A with Cull that is not modified by NEDD8 and not associated with Skp1[J].Biochem Biophys Res Commun,2003,303(4):1209-16.
    217.Chew,E.H.,Poobalasingam,T.,Hawkey,C.J.,Hagen,T.Characterization of cullin-based E3ubiquitin ligases in intact mammalian cells—evidence for cullin dimerization[J].Cell Signal, 2007,19(5):1071-80.
    218.Starostina,N.G.,Lim,J.M.,Schvarzstein,M.,Wells,L.,Spence,A.M.,Kipreos,E.T.A CUL-2ubiquitin ligase containing three FEM proteins degrades TRA-1 to regulate C.elegans sex determination[J].Dev Cell,2007,13(1):127-39.
    219.Luke-Glaser,S.,Roy,M.,Larsen,B.,Le Bihan,T.,Metalnikov,P.,Tyers,M.,Peter,M.,Pintard,L.CIF-1,a shared subunit of the COP9/signalosome and eukaryotic initiation factor 3complexes,regulates MEL-26 levels in the Caenorhabditis elegans embryo[J].Mol Cell Biol,2007,27(12):4526-40.
    220.Min,K.W.,Kwon,M.J.,Park,H.S.,Park,Y.,Yoon,S.K.,Yoon,J.B.CAND1 enhances deneddylation of CUL1 by COP9 signalosome[J].Biochem Biophys Res Commun,2005,334(3):867-74.
    221.Lo,S.C.,Hannink,M.CAND1-mediated substrate adaptor recycling is required for efficient repression of Nrf2 by Keapl[J].Mol Cell Biol,2006,26(4):1235-44.
    222.Tang,X.,Orlicky,S.,Lin,Z.,Willems,A.,Neculai,D.,Ceccarelli,D.,Mercurio,E,Shilton,B.H.,Sicheri,F.,Tyers,M.Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination[J].Cell,2007,129(6):1165-76.
    223.Suzuki,H.,Chiba,T.,Suzuki,T.,Fujita,T.,Ikenoue,T.,Omata,M.,Furuichi,K.,Shikama,H.,Tanaka,K.Homodimer of two F-box proteins betaTrCP1 or betaTrCP2 binds to IkappaBalpha for signal-dependent ubiquitination[J].J Biol Chem,2000,275(4):2877-84.
    224.Dixon,C.,Brunson,L.E.,Roy,M.M.,Smothers,D.,Sehorn,M.G.,Mathias,N.Overproduction of polypeptides corresponding to the amino terminus of the F-box proteins Cdc4p and Met30p inhibits ubiquitin ligase activities of their SCF complexes[J].Eukaryot Cell,2003,2(1):123-33.
    225.Kominami,K.,Ochotorena,I.,Toda,T.Two F-box/WD-repeat proteins Pop1 and Pop2 form hetero-and homo-complexes together with cullin-1 in the fission yeast SCF (Skp1-Cullin-1-F-box) ubiquitin ligase[J].Genes Cells,1998,3(11):721-35.
    226.Wolf,D.A.,MeKeon,F.,Jackson,P.K.F-box/WD-repeat proteins poplp and Sud1p/Pop2p form complexes that bind and direct the proteolysis of ode 18p[J].Curr Biol,1999,9(7):373-6.
    227.Weleker,M.,Clurman,B.E.Fbw7/hCDC4 dimerization regulates its substrate interactions[J].Cell Div,2007,2(7.
    228.Hao,B.,Oehlmann,S.,Sowa,M.E.,Harper,J.W.,Pavletich,N.P.Structure of a Fbw7-Skp1-cyclin E complex:multisite-phosphorylated substrate recognition by SCF ubiquitin ligases[J].Mol Cell,2007,26(1):131-43.
    229.Zhang,W.,Koepp,D.M.Fbw7 isoform interaction contributes to cyclin E proteolysis[J].Mol Cancer Res,2006,4(12):935-43.
    230.McMahon,M.,Thomas,N.,Itoh,K.,Yamamoto,M.,Hayes,J.D.Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a "tethering" mechanism:a two-site interaction model for the Nrf2-Keap1 complex[J].J Biol Chem,2006,281(34):24756-68.
    231.Wilkins,A.,Ping,Q.,Carpenter,C.L.RhoBTB2 is a substrate of the mammalian Cul3ubiquitin ligase complex[J].Genes Dev,2004,18(8):856-61.