RASSF1A基因通过调控细胞凋亡、细胞周期和AKT/mTOR信号通路抑制黑色素瘤A375细胞的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[RASSF1A基因在黑色素瘤细胞和组织中表达下调]
     RASSFIA是定位于肿瘤高频杂合性丢失区域3p21.3位点的抑瘤基因,编码一个微管相关蛋白。该基因在多种实体瘤组织中因启动子高甲基化而表达沉默,是迄今为止在肿瘤组织中甲基化程度最高的基因之一。前期多项研究指出,除了在上皮性肿瘤中发生甲基化之外,RASSF1A基因在恶性黑色素瘤细胞中也存在高频甲基化,提示该基因在黑色素瘤的发生过程中也可能存在表达异常。在本研究中,我们首次采用免疫组织化学及western blot的方法研究了RASSFIA基因在正常皮肤组织、皮肤色素痣以及恶性黑色素瘤组织和细胞系中的表达,结果发现,RASSF1A蛋白在正常皮肤色素细胞和色素痣细胞中高表达,而在恶性黑色素瘤组织中表达下调甚至缺失,并与肿瘤的转移呈负相关。RASSFIA蛋白在非转移性黑色素瘤细胞系中有微弱表达,而在转移性黑色素瘤细胞系中表达缺失。该结果证实了RASSFIA在黑色素瘤组织和细胞中表达下调,强烈提示RASSFIA参与了黑色素瘤的发生与演进过程。
     [RASSFIA基因具有抑制黑色素瘤细胞生长、增殖的作用]
     以往关于RASSFIA基因功能的研究绝大部分都是在上皮性肿瘤中开展的,为了进一步探讨RASSF1A基因是否参与了恶黑的发生发展,我们在RASSF1A基因表达缺失的恶黑细胞系中转染RASSF1A基因,恢复其表达,建立稳定转染的细胞系,研究该基因对恶黑细胞生物学行为的影响。细胞生长曲线测定结果表明,稳定转染RASSF1A基因抑制了A375细胞的生长与增殖能力;平板集落形成实验表明该基因同时抑制了A375细胞的克隆集落形成能力;进一步采用裸鼠移植瘤的方法证实,稳定表达RASSF1A基因不仅抑制了A375细胞的体外增殖能力,而且抑制了该细胞在裸鼠体内形成移植瘤的能力。以上结果表明:RASSF1A基因具有抑制恶黑细胞生长增殖的能力,是一个黑色素瘤抑瘤基因。
     [RASSF1A基因通过促进细胞凋亡,引起细胞周期G1-S期阻滞抑制黑色素瘤细胞的生长与增殖]
     肿瘤细胞的生长与增殖受抑制,通常是通过影响细胞周期进程或者凋亡过程而实现。为了研究RASSF1A抑制恶黑的机制,我们对细胞周期及细胞凋亡进行了分析。Hochest 33258染色发现稳定表达RASSF1A基因的A375细胞存在细胞核固缩、浓染,是典型的细胞凋亡的形态;通过流式细胞仪检测进一步证明,稳定表达RASSF1A的A375细胞凋亡率增加;细胞周期进程分析结果表明,稳定表达RASSF1A基因的A375细胞停留于G1期的细胞比例增加,而S期细胞比例降低,两者相比具有统计学差异,说明RASSF1A稳定表达引起A375细胞周期G1-S期阻滞。Western blot检测发现RASSF1A抑制了cyclin D1和磷酸化Rb蛋白的表达;RASSF1A抑制cyclin D1蛋白表达是通过降低其蛋白稳定性。以上结果说明,RASSF1A是通过同时影响细胞凋亡与细胞周期而抑制恶黑细胞的增殖能力与致瘤性。
     [RASSF1A基因对黑色素瘤细胞A375基因表达谱的影响]
     为了研究RASSF1A基因稳定表达对A375细胞基因表达谱的影响,采用Affimatrix公司全基因组表达谱芯片筛查受RASSF1A表达所调控的差异表达基因。筛选出受RASSF1A基因调控黑色素瘤A375细胞中差异表达的基因共210个,其中上调184个,下调26个基因。为了验证基因芯片的数据的可靠性,采用realtime RT-PCR方法检测部分差异表达的基因,结果表明realtime RT-PCR检测结果与芯片检测结果一致,说明芯片数据可靠。通过生物信息学分析差异表达基因的功能归类,发现RASSF1A调控的差异基因功能涉及转录与信号通路调控、细胞生长与增殖调控、细胞周期、细胞凋亡、细胞间粘附、细胞免疫应答等过程,提示RASSF1A可能通过影响这些基因的表达从而影响A375细胞相应的生物学过程。
     [RASSF1A基因通过上调ASK1表达活化P38 MAPK,激活线粒体凋亡途径]
     基因芯片筛查发现RASSF1A基因稳定表达引起细胞凋亡相关分子ASK1表达上调,结合前期发现RASSF1A稳定表达促进A375细胞凋亡,我们认为RASSF1A可能是通过影响ASK1的表达从而促进恶黑细胞凋亡。通过realtime RT-PCR和western blot检测证实RASSF1A转染后ASK1的表达水平上调。由于ASK1是JNK、P38 MAPK的上游激酶,我们采用western blot分析了JNK、P38 MAPK的表达,结果表明磷酸化P38 MAPK表达增加,total P38 MAPK表达水平没有改变;在RASSF1A转染细胞和空载体对照细胞中,我们没有检测到磷酸化的JNK表达。说明RASSF1A引起ASK1表达上调促进了P38 MAPK的活化;western blot分析发现RASSF1A下调Bcl2表达,并引起cytochromec从线粒体漏出至胞浆,促进了caspase 3的表达与活化,说明RASSF1A通过活化P38 MAPK激活线粒体凋亡途径,是其促进细胞凋亡的分子机制。在RASSF1A稳定表达的细胞中采用RNAi的方法抑制ASK1表达,结果细胞凋亡率下降,说明RASSF1A促进恶黑细胞凋亡的作用部分依赖于ASK1。
     [RASSF1A负调控AKT/mTOR信号通路]
     RASSF1A抑制恶黑细胞增殖、促进凋亡的作用有可能是通过影响细胞信号传导。采用western blot分析与增殖、凋亡密切相关的细胞信号通路的表达与活化,结果发现RASSF1A抑制了AKT的磷酸化,并引起其下游mTOR通路的p70S6K与eIF4E磷酸化水平降低,对其总蛋白表达没有影响,表明RASSF1A抑制了A375细胞AKT/mTOR通路的活化。在RASSF1A稳定表达的细胞中瞬时转染myc-AKT1质粒,结果发现过表达AKT1可以逆转RASSF1A对凋亡、细胞周期相关分子的调节,具体表现为:瞬时转染分子myc-AKT1引起RASSF1A/A375细胞中磷酸化P38 MAPK表达下调,而磷酸化eIF4E、Bcl2和cycling D1表达水平上调,说明过表达AKT1可以逆转RASSF1A对这些分子的调控作用,也就是说,RASSF1A抑制eIF4E磷酸化、Bcl2和cycling D1表达的作用是通过抑制AKT的活性而实现,因此RASSFIA抑制AKT/mTOR信号通路是其调控细胞凋亡、细胞周期进程的上游分子事件。
[Background of RASSF1A]
     Malignant melanoma (MM) accounts for 80 percent of deaths from skin cancer, only 14 percent of patients with metastatic melanoma survive for five years. Numerous molecular events, many of them revealed by genomic and proteomic methods, have been associated with the development of MM. Several group reported that high frequency of Ras association domain family 1, isoform A (RASSF1A) gene promoter hypermethylation was detected in MM cell lines, tissues and serum of MM patients, which suggested that aberrant alteration of RASSFIA gene is also involved in melanoma progression. RASSFIA is a member of a new group of RAS effectors thought to regulate cell proliferation and apoptosis. It has been shown that introduction of RASSF1A into lung cancer cell lines lacking RASSF1A gene expression can reduce colony formation, growth in soft agar, and tumorigenesis in nude mice. At present, understanding the physiological role of RASSFIA is still in its early stages. The effect of RASSFIA expression on melanoma tumorigenic potential in vitro and in vivo has not been reported.
     [Downexpression of RASSF1A protein in melanoma cell lines and tissues]
     In this study, we analyzed the expression level of RASSFIA protein in MM tissues and cell lines. Firstly, we have screened the expression levels of RASSFIA in MM biopsies, navus pigmentosus and normal skins. By immunohistochemical analysis,10 of 10 (100%) paraffin-embedded archival normal skins showed positive to strong cytoplasmic staining of RASSFIA in most of the melanocyte cells.8 of 9 (88.9%) of paraffin-embedded navus pigmentosus showed strong cytoplasmic staining of RASSFIA in pigmentosus nest. Only 8 of 23 (34.8%) showed weak positive to moderate staining of RASSFIA in MM samples. Thus the percentage of MM tissues with a positive to strong staining intensity was significantly lower than that observed in normal or benign melanocytes(P<0.01). The relative importance of RASSF1A expression levels and clinical parameters of the patients were analyzed. The positive expression rate of RASSFIA was 57.1%(8/14) in the group of 14 MM patients without metastasis, while it was 0%(0/9) in the group of 9 MM patients with metastasis (P=0.007). Thus the positive ratio of RASSF1A expression was higher in the non-metastasis group than that in the metastasis group.
     [Exogenous expression of RASSFIA suppresses melanoma tumorigenecity in vitro and in vivo]
     We have screened the expression levels of RASSFIA in several melanoma cell lines, it shows a absent pattern in metastatic melanoma cell lines(1205Lu, MeWo, A375SM, M14 and A375 cell lines), while a weak expression pattern in non-metastatic melanoma cells(WM1552C, WM1341D, WM793, WM164). To identify the effect of RASSFIA expression on melanoma tumorigenic potential in vitro and in vivo, the wild-type RASSF1A was stablely introducted into melanoma A375 cells. By quantitative RT-PCR, variable levels of RASSFIA expression were observed in RASSF1A-expressing clones. In contrast, undetectable level of RASSFIA expression was found in pIRESneo3 transfected cells. RASSFIA protein expression of the pooled clones was further confirmed by Western blotting. To investigate the effect of RASSFIA in cell growth, we then examined the proliferation rate of the RASSF1A-expressing cells. Expression of wild-type RASSFIA in the stable transfectants significantly reduced the number of colonies formed. The number of colonies formed in the RASSF1A-expressing clones was decreased markedly (-43%) (P=0.005). The proliferation rate of the RASSF1A-transfected clones were retarded when we compared to the vector control. The in vivo tumorigenicity potential of transfectants was then tested in athymic nude mice. Monitoring the injected mice showed that RASSF1A-expressing clones resulted in a drastic reduction in tumor sizes when compared to vector control. The wet weight of tumors in RASSF1A-expressing cells was also decreased significantly by the time of sacrifice (P-0.005).
     [Exogenous expression of RASSFIA induces apoptosis and cell cycle G1-S phase arrest in melanoma cells]
     RASSFIA may function as a mediator of apoptosis. To characterize the putative antioncogenic properties of RASSFIA on melanoma cells, we then examined whether inhibition of tumorigenicity was through RASSF1A-induced apoptosis. We used Hoechst33258 staining to measure the apoptosis of RASSF1A expressing A375 cell. RASSF1A-expressing cells showed a increase in apoptosis relative to control cells. Samilar result was obtained from FCAs analysis. We also used propidium iodide incorporation to investigate the effect of RASSF1A on cell cycle progression in the melanoma cell line A375. RASSF1A expression resulted in an increase of cells in the G1 phase while a decrease of cells in the S phase of the cell cycle compared with the mocked-transfected cells. This was correlated to decreased levels of cyclin Dl and phosphorylated Rb protein level in RASSF1A-expressing cells.
     [Analysis of RASSF1A target genes in melanoma cell lines]
     In order to identify genes modulated by RASSF1A in melanoma, the expression profile of RASSF1A expressing melanoma cells and controls were investigated. High-density oligonucleotide microarray was performed on well-characterized RASSF1A-expressing pooled clones and the vector control clones. Change of gene expression between transfected clones and control cells with a minimum of two-fold was scored as significant. Using these selection criteria, we identified 210 differentially expressed genes in the microarray analysis. Totally,26 genes were downregulated whereas 184 were upregulated. Microarray analysis of melanoma cells stably expressing RASSF1A identified expression changes consistent with the observed phenotypic effects such as increased apoptosis modifiers (ASK1, MST1 and RASSF2), reduced cell cycle effectors (cyclins D2 and GAS1), and alterations in the levels of a number of cell adhesion molecules.
     [RASSF1A mediates mitochondrion apoptosis pathway through upregulation of ASK1 in melanoma cells]
     Quantitative RT-PCR analysis confirmed changes in the mRNA levels of apoptosis signal-regulating kinase 1(ASK1) and RASSF2 in accordance with the microarray data. RASSF1A mediated up-regulation of ASK1 mRNA levels was also reflected by increases in the level of ASK1 protein. ASK1 activated stress-activated protein kinase (SAPK, also known as JNK; c-Jun amino-terminal kinase) and P38 subgroups of MAP kinases, respectively. Hence we questioned whether up-regulation ASK1 by overexpression of RASSF1A would promote activation of JNK and P38 MAP kinase. Indeed, although basal expression of P38 was unaffected in RASSF1A overexpressing cells, phosphorylation of P38 was found to be increased in cells overexpressing RASSF1A. However, activation of JNK was undetectable both in cultured RASSF1A overexpressing A375 cells and vector control cells. RASSF1A also induced a decrease of Bcl2 protein. Cleaved caspase 3, a marker of active effector caspase activity, appeared at elevated levels in RASSF1A expressing cells. RASSF1A expression also promoted precocious cytochrome c release, as determined by subcellular fraction and western blot. To assess the relevance of ASK1 for the RASSF1A-mediated apoptotic cell death, we tested the effect of reducing ASK1 expression on RASSF1A-induced apoptosis. To that end, A375 cells expressing RASSF1A were transfected with either ASK 1-specific siRNA or irrelevant siRNA. Two distinct ASK1-specific siRNAs were pooled and used, and expression of ASK1-specific siRNAs significantly impaired ASK1 expression. As expected, silencing ASK1 with siRNAs partially rescued cells from RASSF1A induced apoptosis, as revealed by FCAs analysis. These data indicate that up-regulation of ASK1 contributes to RASSF1A-induced apoptosis in MM cells.
     [Exogenous expression of RASSF1A blocks the AKT-p70S6K-eIF4E pathway]
     To identify the pathway upstream of RASSF1A-induced apoptosis and cell cycle arrest, we did Western blot analysis. It is interesting that phosphorylated AKT was downregulated in the RASSF1A expressing A375 cells. This result is consistent with a previous report, which showed that the exogenous expression of RASSF1A down-regulated the expression of phosphorylated AKT. The downstream mediators of AKT were also examined by Western blot analysis. The exogenous expression of RASSF1A inhibited the phosphorylation of p70S6K and eIF4E. To analyze whether overexpression of AKT in RASSF1A transfected cells could restore PI3K/AKT/eIF4E signaling, we exogenously expressed a myc-tagged AKT in RASSF1A stable transfected A375 cells. Exogenous expression of myc-AKT1 increased the phosphorylation of eIF4E and expression level of Bcl2 and cyclin D1, while the expression level of phosphorylated P38 MAPK decreased. Thus these result indicates that RASSF1A inhibits AKT-mTOR (p70S6K and eIF4E) signal pathway in melanoma A375 cells, which at least partially contribute to mediate the expression level of apoptosis regulator Bcl2 and cell cycle molecules such as cyclin D1, which in turn induced apoptosis and cell cycle G1-S arrest.
引文
1. Greenlee RT, Hill-Harmon MB, Murray T, Thun M. Cancer statistics,2001. CA: a cancer journal for clinicians 2001;51(1):15.
    2. Miller AJ, Mihm Jr MC. Melanoma. The New England journal of medicine 2006;355(1):51.
    3. Lucas R, McMichael T, Smith W, Armstrong B. Solar ultraviolet radiation: Global burden of disease from solar ultraviolet radiation. Environmental burden of disease series, No.13.2006.
    4.祝伟星,王启俊,李玲,邢秀梅.北京城区1993—1997年恶性肿瘤发病率分析.肿瘤防治杂志2003;10(008):785-7.
    5. 乌新春,段晰所.恶性黑色素瘤的研究进展.承德医学院学报2008;25(003):309-12.
    6. Greene MH. The genetics of hereditary melanoma and nevi.1998 update. Cancer 1999;86(11 Suppl):2464.
    7. Alonso SR, Ortiz P, Pollan M, et al. Progression in cutaneous malignant melanoma is associated with distinct expression profiles:a tissue microarray-based study. American Journal of Pathology 2004;164(1):193.
    8. Curtin JA, Fridlyand J, Kageshita T, et al. Distinct sets of genetic alterations in melanoma. New England Journal of Medicine 2005;353(20):2135.
    9. Halachmi S, Gilchrest BA. Update on genetic events in the pathogenesis of melanoma. Current opinion in oncology 2001;13(2):129.
    10. Wang SQ, Setlow R, Berwick M, et al. Ultraviolet A and melanoma:a review. JOURNAL-AMERICAN ACADEMY OF DERMATOLOGY 2001;44(5):837-46.
    11.黄庆,郭颖,府伟灵.人类表观基因组计划.生命的化学2004;24(002):101-3.
    12. Soares J, Pinto AE, Cunha CV, et al. Global DNA hypomethylation in breast carcinoma. CA A Cancer Journal for Clinicians;85(1):112-8.
    13. Dammann R, Li C, Yoon JH, Chin PL, Bates S, Pfeifer GP. Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nature genetics 2000;25(3):315-9.
    14. Astuti D, Agathanggelou A, Honorio S, et al RASSF 1 A promoter region CpG island hypermethylation in phaeochromocytomas and neuroblastoma tumours. Oncogene(Basingstoke)2001;20(51):7573-7.
    15. Burbee DG, Forgacs E, Zochbauer-Muller S, et al. Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. JNCI Journal of the National Cancer Institute 2001;93(9):691.
    16. Dammann R, Takahashi T, Pfeifer GP. The CpG island of the novel tumor suppressor gene RASSF 1 A is intensely methylated in primary small cell lung carcinomas. Oncogene(Basingstoke) 2001;20(27):3563-7.
    17. Dreijerink K, Braga E, Kuzmin I, et al. The candidate tumor suppressor gene, RASSF1A, from human chromosome 3p21.3 is involved in kidney tumorigenesis. Proceedings of the National Academy of Sciences 2001;98(13):7504.
    18. Lee MG, Kim HY, Byun DS, et al. Frequent epigenetic inactivation of RASSF1A in human bladder carcinoma. Cancer research 2001;61(18):6688.
    19. Lo KW, Kwong J, Hui ABY, et al. High frequency of promoter hypermethylation of RASSF1A in nasopharyngeal carcinoma. Cancer research 2001;61(10):3877.
    20. Morrissey C, Martinez A, Zatyka M, et al. Epigenetic inactivation of the RASSF1A 3p21.3 tumor suppressor gene in both clear cell and papillary renal cell carcinoma. Cancer research 2001;61(19):7277.
    21. Yoon JH, Dammann R, Pfeifer GP. Hypermethylation of the CpG island of the RASSF1A gene in ovarian and renal cell carcinomas. International Journal of Cancer 2001;94(2):212-7.
    22. Harada K, Toyooka S, Maitra A, et al. Aberrant promoter methylation and silencing of the RASSF1A gene in pediatric tumors and cell lines. Oncogene 2002;21(27):4345.
    23. Kuzmin I, Gillespie JW, Protopopov A, et al. The RASSF1A tumor suppressor gene is inactivated in prostate tumors and suppresses growth of prostate carcinoma cells. Cancer research 2002;62(12):3498.
    24. Lusher ME, Lindsey JC, Latif F, Pearson ADJ, Ellison DW, Clifford SC. Biallelic epigenetic inactivation of the RASSF1A tumor suppressor gene in medulloblastoma development. Cancer research 2002;62(20):5906.
    25. Schagdarsurengin U, Gimm O, Hoang-Vu C, Dralle H, Pfeifer GP, Dammann R. Frequent epigenetic silencing of the CpG island promoter of RASSF1A in thyroid carcinoma. Cancer research 2002;62(13):3698.
    26. Wagner KJ, Cooper WN, Grundy RG, et al. Frequent RASSF1A tumour suppressor gene promoter methylation in Wilms' tumour and colorectal cancer. Oncogene 2002;21(47):7277.
    27. Endoh H, Yatabe Y, Shimizu S, et al. RASSF1A gene inactivation in non-small cell lung cancer and its clinical implication. International Journal of Cancer 2003;106(1):45-51.
    28. Zhong S, Yeo W, Tang MW, Wong N, Lai P, Johnson PJ. Intensive hypermethylation of the CpG island of Ras association domain family 1A in hepatitis B virus-associated hepatocellular carcinomas. Clinical Cancer Research 2003;9(9):3376.
    29. Murray PG, Qiu GH, Fu L, et al. Frequent epigenetic inactivation of the RASSF1A tumor suppressor gene in Hodgkin's lymphoma. Oncogene 2004;23(6):1326-31.
    30. Spugnardi M, Tommasi S, Dammann R, Pfeifer GP, Hoon DSB. Epigenetic inactivation of RAS association domain family protein 1 (RASSF1A) in malignant cutaneous melanoma. Cancer research 2003;63(7):1639.
    31. Reifenberger J, Knobbe CB, Sterzinger AA, et al. Frequent alterations of Ras signaling pathway genes in sporadic malignant melanomas. International Journal of Cancer 2004;109(3):377-84.
    32. Merhavi E, Cohen Y, Avraham BCR, et al. Promoter methylation status of multiple genes in uveal melanoma. Investigative Ophthalmology & Visual Science 2007;48(10):4403.
    33. Rastetter M, Schagdarsurengin U, Lahtz C, et al. Frequent intra-tumoural heterogeneity of promoter hypermethylation in malignant melanoma. Histology and histopathology 2007;22(9):1005.
    34. Tanemura A, Terando AM, Sim MS, et al. CpG Island Methylator Phenotype Predicts Progression of Malignant Melanoma. Clinical Cancer Research 2009;15(5):1801.
    35. Tellez CS, Shen L, Estecio MRH, Jelinek J, Gershenwald JE, Issa JPJ. CpG island methylation profiling in human melanoma cell lines. Melanoma Research 2009;19(3):146.
    36. Hoon DSB, Spugnardi M, Kuo C, Huang SK, Morton DL, Taback B. Profiling epigenetic inactivation of tumor suppressor genes in tumors and plasma from cutaneous melanoma patients. Oncogene 2004;23(22):4014-22.
    37. Marini A, Mirmohammadsadegh A, Nambiar S, Gustrau A, Ruzicka T, Hengge UR. Epigenetic inactivation of tumor suppressor genes in serum of patients with cutaneous melanoma. Journal of Investigative Dermatology 2005;126(2):422-31.
    38. Thompson JF, Scolyer RA, Kefford RF. Cutaneous melanoma in the era of molecular profiling. The Lancet 2009;374(9687):362-5.
    39. Palmieri G, Capone ME, Ascierto ML, et al. Main roads to melanoma. Journal of Translational Medicine 2009;7(1):86.
    40. Wolchok JD, Saenger YM. Current topics in melanoma. Current opinion in oncology 2007; 19(2):116.
    41. Xing M, Cohen Y, Mambo E, et al. Early occurrence of RASSF1A hypermethylation and its mutual exclusion with BRAF mutation in thyroid tumorigenesis. Cancer research 2004;64(5):1664.
    42. Uong A, Zon LI. Melanocytes in development and cancer. Journal of Cellular Physiology 2009.
    43. Kashuba VI, Pavlova TV, Grigorieva EV, et al. High Mutability of the Tumor Suppressor Genes RASSF1 and RBSP3 (CTDSPL) in Cancer. PLoS ONE 2009;4(5).
    44. Pan ZG, Kashuba VI, Liu XQ, et al. High frequency somatic mutations in RASSF 1 A in nasopharyngeal carcinoma. Commentary. Cancer biology & therapy 2005;4(10):1116-24.
    45. Vos MD, Martinez A, Elam C, et al. A role for the RASSF1A tumor suppressor in the regulation of tubulin polymerization and genomic stability. Cancer research 2004;64(12):4244.
    46. Shibata D, Peinado MA. Genomic instability in repeated sequences is an early somatic event in colorectal tumorigenesis that persists after transformation. Nature genetics 1994;6(3):273-81.
    47. Anderson GR. Genomic instability in cancer. Curr Sci 2001;81(5):501-7.
    48. Sch r P. Spontaneous DNA damage, genome instability, and cancer-when DNA replication escapes control. Cell 2001;104(3):329-32.
    49. Charames GS, Bapat B. Genomic instability and cancer. Current Molecular Medicine 2003;3(7):589-96.
    50. Storchova Z, Pellman D. From polyploidy to aneuploidy, genome instability and cancer. Nature Reviews Molecular Cell Biology 2004;5(1):45-54.
    51. Chow LSN, Lo KW, Kwong J, et al. RASSF1A is a target tumor suppressor from 3p21.3 in nasopharyngeal carcinoma. International Journal of Cancer 2004;109(6):839-47.
    52.司徒镇强,吴军正,刘斌.细胞培养:世界图书出版公司;1996.
    53. Scala G, Quinto I, Ruocco MR, et al. Expression of an exogenous interleukin 6 gene in human Epstein Barr virus B cells confers growth advantage and in vivo tumorigenicity. Journal of Experimental Medicine 1990;172(1):61.
    54. Colombo MP, Ferrari G, Stoppacciaro A, et al. Granulocyte colony-stimulating factor gene transfer suppresses tumorigenicity of a murine adenocarcinoma in vivo. Journal of Experimental Medicine 1991;173(4):889.
    55. Siprashvili Z, Sozzi G, Barnes LD, et al. Replacement of Fhit in cancer cells suppresses tumorigenicity. Proceedings of the National Academy of Sciences of the United States of America 1997;94(25):13771.
    56. Tu SP, Jiang XH, Lin M, et al. Suppression of survivin expression inhibits in vivo tumorigenicity and angiogenesis in gastric cancer. Cancer research 2003;63(22):7724.
    57. Dallol A, Agathanggelou A, Fenton SL, et al. RASSF1A interacts with microtubule-associated proteins and modulates microtubule dynamics. Cancer research 2004;64(12):4112.
    58. Liu L, Tommasi S, Lee DH, Dammann R, Pfeifer GP. Control of microtubule stability by the RASSF1 Atumor suppressor. Oncogene 2003;22(50):8125-36.
    59. Rong R, Jin W, Zhang J, Sheikh MS, Huang Y. Tumor suppressor RASSF1A is a microtubule-binding protein that stabilizes microtubules and induces G2/M arrest. Oncogene 2004;23(50):8216-30.
    60. van der Weyden L, Tachibana KK, Gonzalez MA, et al. The RASSF1A isoform of RASSF1 promotes microtubule stability and suppresses tumorigenesis. Molecular and Cellular Biology 2005;25(18):8356.
    61. Dallol A, Agathanggelou A, Tommasi S, Pfeifer GP, Maher ER, Latif F. Involvement of the RASSF1A tumor suppressor gene in controlling cell migration. Cancer research 2005;65(17):7653.
    62. Shivakumar L, Minna J, Sakamaki T, Pestell R, White MA. The RASSF1A tumor suppressor blocks cell cycle progression and inhibits cyclin D1 accumulation. Molecular and Cellular Biology 2002;22(12):4309.
    63. Baksh S, Tommasi S, Fenton S, et al. The tumor suppressor RASSF1A and MAP-1 link death receptor signaling to Bax conformational change and cell death. Molecular cell 2005;18(6):637-50.
    64. Sherr CJ. Cancer cell cycles. Science 1996;274(5293):1672.
    65. Sherr CJ, Roberts JM. CDK inhibitors:positive and negative regulators of G1-phase progression. Genes & Development 1999;13(12):1501.
    66. Esteve PO, Chin HG, Benner J, et al. Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proceedings of the National Academy of Sciences 2009; 106(13):5076.
    67. Moroz E, Carlin S, Dyomina K, et al. Real-Time Imaging of HIF-1α Stabilization and Degradation. PLoS ONE 2009;4(4).
    68. Ishida-Yamamoto A, Tanaka H, Nakane H, Takahashi H, Hashimoto Y, Iizuka H. Programmed cell death in normal epidermis and loricrin keratoderma. Multiple functions of profilaggrin in keratinization.1999:Nature Publishing Group; 1999. p. 145-9.
    69. Ziegler A, Jonason AS, Leffellt DJ, et al. Sunburn and p53 in the onset of skin cancer.1994.
    70. Gilchrest BA, Eller MS, Geller AC, Yaar M. The pathogenesis of melanoma induced by ultraviolet radiation. New England Journal of Medicine 1999;340(17):1341.
    71. Bowen AR, Hanks AN, Allen SM, Alexander A, Diedrich MJ, Grossman D. Apoptosis regulators and responses in human melanocytic and keratinocytic cells. Journal of Investigative Dermatology 2003;120(1):48-55.
    72. Soengas MS, Lowe SW. Apoptosis and melanoma chemoresistance. Oncogene 2003;22(20):3138-51.
    73. Li G, Tang L, Zhou X, Tron V, Ho V. Chemotherapy-induced apoptosis in melanoma cells is p53 dependent. Melanoma Research 1998;8(1):17.
    74. Mooney EE, Ruis Peris JM, O'Neill A, Sweeney EC. Apoptotic and mitotic indices in malignant melanoma and basal cell carcinoma. British Medical Journal 1995;48(3):242.
    75. Staunton MJ, Gaffney EF. Tumor type is a determinant of susceptibility to apoptosis. American journal of clinical pathology 1995;103(3):300.
    76. Glinsky GV, Glinsky VV, Ivanova AB, Hueser CJ. Apoptosis and metastasis: increased apoptosis resistance of metastatic cancer cells is associated with the profound deficiency of apoptosis execution mechanisms. Cancer letters 1997;115(2):185-93.
    77. Fisher DE. Apoptosis in cancer therapy:crossing the threshold. Cell(Cambridge) 1994;78(4):539-42.
    78. Grossman D, Altieri DC. Drug resistance in melanoma:mechanisms, apoptosis, and new potential therapeutic targets. Cancer and Metastasis Reviews 2001;20(1):3-11.
    79. Satyamoorthy K, Bogenrieder T, Herlyn M. No longer a molecular black box-new clues to apoptosis and drug resistance in melanoma. Trends in Molecular Medicine 2001;7(5):191-4.
    80. Adams JM, Cory S. The Bcl-2 protein family:arbiters of cell survival. Science 1998;281(5381):1322.
    81. Cerroni L, Soyer HP, Kerl H. bcl-2 protein expression in cutaneous malignant melanoma and benign melanocytic nevi. The American Journal of Dermatopathology 1995;17(1):7.
    82. Collins KA, White WL. Intercellular adhesion molecule 1 (ICAM-1) and bcl-2 are differentially expressed in early evolving malignant melanoma. The American Journal of Dermatopathology 1995;17(5):429.
    83. Selzer E, Schlagbauer-Wadl H, Okamoto I, Pehamberger H, P tter R, Jansen B. Expression of Bcl-2 family members in human melanocytes, in melanoma metastases and in melanoma cell lines. Melanoma Research 1998;8(3):197.
    84. Tang L, Tron VA, Reed JC, et al. Expression of apoptosis regulators in cutaneous malignant melanoma. Clinical Cancer Research 1998;4(8):1865.
    85. Oh HJ, Lee KK, Song SJ, et al. Role of the tumor suppressor RASSF1A in Mstl-mediated apoptosis. Cancer research 2006;66(5):2562.
    86. Agathanggelou A, Cooper WN, Latif F. Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer research 2005;65(9):3497.
    87. Brown PO, Botstein D. Exploring the new world of the genome with DNA microarrays. Nature genetics 1999;21(1 Suppl):33-7.
    88. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science(Washington) 1995;270(5235):467-70.
    89. Bonome T, Lee JY, Park DC, et al. Expression profiling of serous low malignant potential, low-grade, and high-grade tumors of the ovary. Cancer research 2005;65(22):10602.
    90. Harbig J, Sprinkle R, Enkemann SA. A sequence-based identification of the genes detected by probesets on the Affymetrix U133 plus 2.0 array. Nucleic Acids Research 2005;33(3):e31.
    91. Ashburner M, Ball CA, Blake JA, et al. Gene Ontology:tool for the unification of biology. Nature genetics 2000;25(1):25-9.
    92. Kanehisa M, Goto S. KEGG:Kyoto encyclopedia of genes and genomes. Nucleic Acids Research 2000;28(1):27.
    93. Faussillon M, Monnier L, Junien C, Jeanpierre C. Frequent overexpression of cyclin D2/cyclin-dependent kinase 4 in Wilms' tumor. Cancer letters 2005;221(1):67-75.
    94. Buschges R, Weber RG, Actor B, Lichter P, Collins VP, Reifenberger G. Amplification and expression of cyclin D genes (CCND1, CCND2 and CCND3) in human malignant gliomas. BRAIN PATHOLOGY-ZURICH-1999;9:435-44.
    95. Czajkowski R, Drewa T, Wozniak A, Krzyzynska-Malinowska E. Cell cycle in sporadic melanoma. International journal of dermatology 2002;41(9):550.
    96. Kalejs M, Erenpreisa J. Cancer/testis antigens and gametogenesis:a review and" brain-storming" session. Cancer cell international 2005;5(1):4.
    97. Simpson AJG, Caballero OL, Jungbluth A, Chen YT, Old LJ. Cancer/testis antigens, gametogenesis and cancer. Nature Reviews Cancer 2005;5(8):615-25.
    98. Bredenbeck A, Hollstein VM, Trefzer U, Sterry W, Walden P, Losch FO. Coordinated expression of clustered cancer/testis genes encoded in a large inverted repeat DNA structure. Gene 2008;415(1-2):68-73.
    99. Navarro-Sanchez E, Altmeyer R, Amara A, et al. Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO reports 2003;4(7):723.
    100. Bossy D, Mattei MG, Simmons DL. The human intercellular adhesion molecule 3 (ICAM3) gene is located in the 19p 13.2-p13.3 region, close to the ICAM1 gene. Genomics 1994;23(3):712.
    101. Simmons DL. The role of ICAM expression in immunity and disease. Cancer surveys 1995;24:141.
    102. Verkarre V, Patey-Mariaud de Serre N, Vazeux R, et al. ICAM-3 and E-selectin endothelial cell expression differentiate two phases of angiogenesis in infantile hemangiomas. Journal of cutaneous pathology 1999;26:17-24.
    103. Van Buul JD, Mul FPJ, Van Der Schoot CE, Hordijk PL. ICAM-3 activation modulates cell-cell contacts of human bone marrow endothelial cells. Journal of Vasc Res 2004;41(1):28-37.
    104. Patey N, Vazeux R, Canioni D, Potter T, Gallatin WM, Brousse N. Intercellular adhesion molecule-3 on endothelial cells. Expression in tumors but not in inflammatory responses. The American journal of pathology 1996; 148(2):465.
    105. Chung YM, Kim BG, Park CS, et al. Increased expression of ICAM-3 is associated with radiation resistance in cervical cancer. International Journal of Cancer 2005; 117(2):194-201.
    106. Kim YG, Kim MJ, Lim JS, Lee MS, Kim JS, Yoo YD. ICAM-3-induced cancer cell proliferation through the PI3K/Akt pathway. Cancer letters 2006;239(1):103-10.
    107. Bishop AL, Hall A. Rho GTPases and their effector proteins. BIOCHEMICAL JOURNAL-LONDON-2000;348(2):241-55.
    108. Aronheim A, Broder YC, Cohen A, Fritsch A, Belisle B, Abo A. Chp, a homologue of the GTPase Cdc42Hs, activates the JNK pathway and is implicated in reorganizing the actin cytoskeleton. Current Biology 1998;8:1125-8.
    109. del Pulgar TG, Benitah SA, Valeron PF, Espina C, Lacal JC. Rho GTPase expression in tumourigenesis:evidence for a significant link. Bioessays 2005;27(6):602-13.
    110. Gouw LG, Scott Reading N, Jenson SD, Lim MS, Elenitoba-Johnson KSJ. Expression of the Rho-family GTPase gene RHOF in lymphocyte subsets and malignant lymphomas. British journal of haematology 2005;129(4):531-3.
    111.Huang M, Prendergast GC. RhoB in cancer suppression. Histology and histopathology 2006;21(2):213.
    112.Liu AX, Rane N, Liu JP, Prendergast GC. RhoB is dispensable for mouse development, but it modifies susceptibility to tumor formation as well as cell adhesion and growth factor signaling in transformed cells. Molecular and Cellular Biology 2001;21(20):6906.
    113.Jiang K, Sun J, Cheng J, Djeu JY, Wei S, Sebti S. Akt mediates Ras downregulation of RhoB, a suppressor of transformation, invasion, and metastasis. Molecular and Cellular Biology 2004;24(12):5565.
    114.Baldwin RM, Parolin DAE, Lorimer IAJ. Regulation of glioblastoma cell invasion by PKCι and RhoB. Oncogene 2008;27(25):3587-95.
    115.Knowles MA, Aveyard JS, Taylor CF, Harnden P, Bass S. Mutation analysis of the 8p candidate tumour suppressor genes DBC2 (RHOBTB2) and LZTS1 in bladder cancer. Cancer letters 2005;225(1):121-30.
    116. Beder LB, Gunduz M, Ouchida M, et al. Identification of a candidate tumor suppressor gene RHOBTB1 located at a novel allelic loss region 10q21 in head and neck cancer. Journal of cancer research and clinical oncology 2006:132(1):19-27.
    117.Vega FM, Ridley AJ. Rho GTPases in cancer cell biology. FEBS letters 2008;582(14):2093-101.
    118. McKinnon C, Mellor H. RhoBTB Proteins in Cancer. The Rho GTPases in Cancer:111-22.
    119. Sahai E, Marshall CJ. RHO-GTPases and cancer. Nature Reviews Cancer 2002;2(2):133-42.
    120. Skonier J, Neubauer M, Madisen L, Bennett K, Plowman GD, Purchio AF. cDNA cloning and sequence analysis of Pig-h3, a novel gene induced in a human adenocarcinoma cell line after treatment with transforming growth factor-β. DNA and cell biology 1992; 11(7):511-22.
    121. Shao G, Berenguer J, Borczuk AC, Powell CA, Rei TK, Zho YL. Epigenetic inactivation of TGFBI gene in human cancer cells. Cancer Res 2006;66(9):4566-73.
    122. Genini M, Schwalbe P, Scholl FA, Sch fer BW. Isolation of genes differentially expressed in human primary myoblasts and embryonal rhabdomyosarcoma. International Journal of Cancer 1996;66(4):571-7.
    123. Tk Z. Downregulation of Betaig-h3 gene is causally linked to tumorigenie phenotype in asbestos treated immortalized human bronchial epithelial cells. Oncogene2002;21:49.
    124. Zhao Y, El-Gabry M, Hei TK. Loss of Betaig-h3 protein is frequent in primary lung carcinoma and related to tumorigenic phenotype in lung cancer cells. Molecular Carcinogenesis 2006;45(2):84-92.
    125. Calaf GM, Echiburu-Chau C, Zhao YL, Hei TK. BigH3 protein expression as a marker for breast cancer. International journal of molecular medicine 2008;21(5):561.
    126. Shah JN, Shao G, Hei TK, Zhao Y. Methylation screening of the TGFBI promoter in human lung and prostate cancer by methylation-specific PCR. BMC cancer 2008;8(1):284.
    127. Ahmed AA, Mills AD, Ibrahim AEK, et al. The extracellular matrix protein TGFBI induces microtubule stabilization and sensitizes ovarian cancers to paclitaxel. Cancer Cell 2007;12(6):514-27.
    128. Liu YX, Wang J, Guo J, Wu J, Lieberman HB, Yin Y. DUSP1 is controlled by p53 during the cellular response to oxidative stress. Molecular Cancer Research 2008;6(4):624.
    129. Keyse SM. Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer and Metastasis Reviews 2008;27(2):253-61.
    130. Agathanggelou A, Bieche I, Ahmed-Choudhury J, et al. Identification of novel gene expression targets for the Ras association domain family 1 (RASSF1A) tumor suppressor gene in non-small cell lung cancer and neuroblastoma. Cancer research 2003;63(17):5344.
    131. Chow LSN, Lam CW, Chan SYY, et al. Identification of RASSF1A modulated genes in nasopharyngeal carcinoma. Oncogene 2005;25(2):310-6.
    132. Ura S, Masuyama N, Graves JD, Gotoh Y. Caspase cleavage of MST1 promotes nuclear translocation and chromatin condensation. Proceedings of the National Academy of Sciences 2001;98(18):10148.
    133. Cheung WL, Ajiro K, Samejima K, et al. Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell 2003;113(4):507-17.
    134. Ichijo H, Nishida E, Irie K, et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 1997;275(5296):90.
    135. Chang HY, Nishitoh H, Yang X, Ichijo H, Baltimore D. Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx. Science 1998;281(5384):1860.
    136. Nishitoh H, Saitoh M, Mochida Y, et al. ASK1 is essential for JNK/SAPK activation by TRAF2. Molecular cell 1998;2(3):389-95.
    137. Chen Z, Seimiya H, Naito M, et al. ASK1 mediates apoptotic cell death induced by genotoxic stress. Oncogene 1999;18(1):173.
    138. Liu H, Nishitoh H, Ichijo H, Kyriakis JM. Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Molecular and Cellular Biology 2000;20(6):2198.
    139. Nishitoh H, Matsuzawa A, Tobiume K, et al. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes & Development 2002;16(11):1345.
    140. Hatai T, Matsuzawa A, Inoshita S, et al. Execution of apoptosis signal-regulating kinase 1 (ASK1)-induced apoptosis by the mitochondria-dependent caspase activation. Journal of Biological Chemistry 2000;275(34):26576.
    141. Yamamoto K, Ichijo H, Korsmeyer SJ. BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G2/M. Molecular and Cellular Biology 1999;19(12):8469.
    142. Tobiume K, Matsuzawa A, Takahashi T, et al. ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO reports 2001;2(3):222.
    143. Takeda K, Matsuzawa A, Nishitoh H, Ichijo H. Roles of MAPKKK ASK1 in stress-induced cell death. Cell structure and function 2003;28(1):23-9.
    144. Matsuzawa A, Saegusa K, Noguchi T, et al. ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nature Immunology 2005;6(6):587-92.
    145. Whang YM, Kim YH, Kim JS, Yoo YD. RASSF1A suppresses the c-Jun-NH2-kinase pathway and inhibits cell cycle progression. Cancer research 2005;65(9):3682.
    146. Chang F, Lee JT, Navolanic PM, et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation:a target for cancer chemotherapy. Leukemia 2003;17(3):590-603.
    147. Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C. PI3K/Akt and apoptosis:size matters. Oncogene 2003;22(56):8983-98.
    148. Luo J, Manning BD, Cantley LC. Targeting the PI3K-Akt pathway in human cancer Rationale and promise. Cancer Cell 2003;4(4):257-62.
    149. Osaki M, Oshimura M, Ito H. PI3K-Akt pathway:its functions and alterations in human cancer. Apoptosis 2004;9(6):667-76.
    150. Vara J, Casado E, de Castro J, Cejas P, Belda-Iniesta C, Gonzalez-Baron M. PI3K/Akt signalling pathway and cancer. Cancer treatment reviews 2004;30(2):193-204.
    151. Bellacosa A, Kumar CC, Cristofano AD, Testa JR. Activation of AKT kinases in cancer:implications for therapeutic targeting. Advances in Cancer Research 2005:29-86.
    152. West KA, Sianna Castillo S, Dennis PA. Activation of the PI3K/Akt pathway and chemotherapeutic resistance. Drug resistance updates 2002;5(6):234-48.
    153. Zhang R, Luo D, Miao R, et al. Hsp90-Akt phosphorylates ASK1 and inhibits ASK1-mediated apoptosis. Oncogene 2005;24(24):3954-63.
    154. Wu DN, Pei DS, Wang Q, Zhang GY. Down-regulation of PTEN by sodium orthovanadate inhibits ASK1 activation via PI3-K/Akt during cerebral ischemia in rat hippocampus. Neuroscience Letters 2006;404(1-2):98-102.
    155. Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997;91(2):231-41.
    156. Diehl JA, Cheng M, Roussel MF, Sherr CJ. Glycogen synthase kinase-3β regulates cyclin D1 proteolysis and subcellular localization. Genes & Development 1998;12(22):3499.
    157. van Weeren PC, de Bruyn KMT, de Vries-Smits AMM, Van Lint J, Burgering BMT. Essential role for protein kinase B (PKB) in insulin-induced glycogen synthase kinase 3 inactivation. Journal of Biological Chemistry 1998;273(21):13150.
    158.Cantley LC. The phosphoinositide 3-kinase pathway. Science 2002;296(5573):1655.
    159. Bjornsti MA, Houghton PJ. The TOR pathway:a target for cancer therapy. Nature Reviews Cancer 2004;4(5):335-48.
    160. Hay N. The Akt-mTOR tango and its relevance to cancer. Cancer Cell 2005;8(3):179-83.
    161. Harada H, Andersen JS, Mann M, Terada N, Korsmeyer SJ. p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proceedings of the National Academy of Sciences 2001;98(17):9666.
    162. Fang X, Yu S, Eder A, et al. Regulation of BAD phosphorylation at serine 112 by the Ras-mitogen-activated protein kinase pathway. Oncogene(Basingstoke) 1999;18(48):6635-40.
    163. Virdee K, Parone PA, Tolkovsky AM. Phosphorylation of the pro-apoptotic protein BAD on serine 155, a novel site, contributes to cell survival. Current Biology 2000;10(18):1151-4.
    164. Cohen N, Sharma M, Kentsis A, Perez JM, Strudwick S, Borden KLB. PML RING suppresses oncogenic transformation by reducing the affinity of eIF4E for mRNA. The EMBO Journal 2001;20(16):4547.
    165. Graff JR, Konicek BW, Vincent TM, et al. Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity. Journal of Clinical Investigation 2007;117(9):2638-48.
    166. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes & Development 2004;18(16):1926.
    167. Larsson O, Perlman DM, Fan D, et al. Apoptosis resistance downstream of eIF4E:posttranscriptional activation of an anti-apoptotic transcript carrying a consensus hairpin structure. Nucleic Acids Research 2006;34(16):4375.
    1.Cancer facts & figures,2003. Atlanta:American Cancer Society,2003.
    2.Miller AJ, Mihm MC:Melanoma. N Engl J Med 2006,355:51-65.
    3.Wolchok JD, Saenger YM:Current topics in melanoma. CurrOpin Oncol 2007, 19:116-20.
    4.Giuseppe Palmieri,Mariaelena Capone,Maria Libera Ascierto,et al,mina road to melanoma.Journal of Translational Medicine.2009,7:86
    5.Davies H, Bignell GR,et al, Mutations of the BRAF gene in human cancer. Nature 2002,417:949-54.
    6.The Melanoma Molecular Map Project at [http://www.mmmp.org/MMMP]
    7.Hong SK, Pusapati RV, Powers JT, Johnson DG:Oncogenes and the DNA damage response-Myc and E2F1 engage the ATM signaling pathway to activate p53 and induce apoptosis. Cell Cycle 2006,5:801-803.
    8.Di Micco R, Cicalese A, Fumagalli M, Dobreva M, Verrecchia A, Pelicci PG, di Fagagna F:DNA damage response activation in mouse embryonic fibroblasts undergoing replicative senescence and following spontaneous immortalization. Cell Cycle 2008,7:3601-3606.
    9.Bennett DC:Familial melanoma genes, melanocyte immortalization and melanoma initiation. In Melanocytes to Melanoma:The Progression to Malignancy Edited by:Hearing VJ, Leong SPL. New Jersey:Humana Press; 2006:183-96.
    10.Thompson JF, Scolyer RA, Kefford RF:Cutaneous melanoma. The Lancet 2005, 365:687-701.
    11.Haluska FG, Tsao H, Wu H, Haluska FS, Lazar A, Goel V:Genetic alterations in signaling pathways in melanoma. Clin Cancer Res 2006,12:2301s-7s.
    12.Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L,Chin L, Potes J, Chen K, Orlow I, Lee HW, Cordon-Cardo C,DePinho RA:The Ink4a tumor suppressor gene product,19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 1998,92:713-23.
    13.Soengas MS, Lowe SW:Apoptosis and melanoma chemoresistance.Oncogene 2003,22:3138-51.
    14.Bowen AR, Hanks AN, Allen SM, Alexander A, Diedrich MJ, Grossman D: Apoptosis regulators and responses in human melanocytic and keratinocytic cells. J Invest Dermatol 2003,120:48-55.
    15.Gray-Schopfer V,Wellbrock C,Marais R.Melanoma biology and new targeted therapy[J].Nature,2007,445(7130):851-857
    16.Zhang BH,Guan KL Activation of B-Raf kinase requires phosphorylation of the conserved residues Thr598 and Ser601[J].EMBO J,2000,19(20):5429-5439.
    17.Satyamoorthy K,Li QGernero MR,et al.Constitutive mitogenactivated protein kinase activation in melanoma is mediated by both BRAF mutations and autocrinw growth factor stimulation[J].Cancer Res,2003,63(4):756-759.
    18.Rodolfo M,Daniotti M,Vallacchi V. Genetic progression of metastatic melanoma.Cancer Lett 2004;214;133-147.
    19.Garnett MJ,Marais R.Guilty as charged;B-RAF is a human oncogene.Cancer Cell 2004;6;313-319.
    20.Emuss V,Garnett M,Mason C,Marais R.Mutations of C-RAF are rare in human cancer because C-RAF has a low basal kinase acticity compared with B-RAF,Cancer Res 2005;65;9719-9726.
    21.Meyskens FL Jr,Farmer PJ,Anton-Culver H,Etiologic pathogenesis of melanoma:a unifying hypothesis for the missing attributabale risk.Clin Cance Res 2004;10;2581-2583.
    22.Thmas NE,Alexander A,Edmiston SN,Oarrish E,Millikan RC,Rerwick M,et al.Tandem BRAF mutations in primary invasive melanomas.J Invest Dermatol 2004;122;1245-1250.
    23.Newcomb TG,Allen KJ,Tkeshelashvilli L,Loeb LA,Detection of tandem CC-TT mutations induced by oxygen radicals using mutation-specific PCR.mutat Res 1999;427;21-30.
    24.Sauter ER, Yeo UC von Stemm A, et al. Cyclin D1 is a candidate oncogene in cutaneous melanoma.Cancer Res.2002;62:3200-3206.
    25.Zuo L,Weger J, Yang Q, Goldstein AM, et al. Germline mutations in the p161NK4ab inding domain of CDK4 in familial melanoma.Nat Genet.1996; 12: 97-99.
    26.Soufir N, Avril MF, Chompret A, et al. Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France. The French Familial Melanoma Study Group.Hum Mol Genet.1998;7:209-216.
    27.Sotillo R, Garcia JF,Ortega S,et al.Invasive melanoma in Cdk4-targeted mice.Proc Natl Acad Sci U S A.2001;98:13312-13317.
    28.Rane SG;Cosenza SC,Mettus RV and Reddy EP.Germ line transmission of the Cdk4(R24C) mutation facilitates tumorigenesis and escape from cellular senescence.Mol Cell Biol.2002;22:644-656.
    29.Palmieri G, Capone ME, Ascierto ML, et al. Main roads to melanoma. Journal of Translational Medicine 2009;7(1):86.
    30.Stahl JM, Cheung M, Sharma A, Trivedi NR, Shanmugam S, Robertson GP. Loss of PTEN promotes tumor development in malignant melanoma. Cancer Res,2003, 63(11):2881-2890.
    31.Guldberg P, thor Straten P, Birck A, et al. Disruption of the MMAC1/PTEN gene by deletion or mutation is a frequent event in malignant melanoma. Cancer Res,1997,57(17):3660-3663.
    32.Du J,Widlund HR,Horstmann MA,et al.Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell,2004,6:565-576.
    33.McGill GG, Horstmann M, Widlund HR, et al. Bcl 2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell, 2002,109:707-718
    34.Carreira S,Goodall J, Aksan 1, et al. Mitf cooperates with Rbl and activates 口 1Cip1 expression to regulate cell cycle progression.Nature,2005,433:764-769.
    35.Mouriaux F,Vincent S,Kherrouche Z,et al.Microphthalmia transcription factor analysis in posterior uveal melanomas. Exp Eye Res,2003,76:653-661.
    36.Widlund HR,Horstmann MA,Price ER,et al,Beta-catenin-induced melanoma growth requires the downstream target Micoph-thalmia-associated transcription factor.J Cell Biol,2002,158:1097-1087.
    37.Kim K, Daniels KJ, Hay ED. Tissue-specific expression of (3-catenin in normal mesenchyme and uveal melanomas and its effect on invasiveness. Exp Cell Res, 1998,245:79-90.
    38.Rubinfeld B,Robbins P.El-Gamil M,et al.Stabilization of beta-catenin by genetic defects in melanoma cell lines,Science,1997,275:1790-1792.
    39.Bedogni, B. et al. Notch 1 is an effector of Akt and hypoxia in melanoma development. J. Clin. Invest.2008,118,3660-3670
    40.Denko, N. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nature Rev. Cancer 2008,8,705-713