药用植物金荞麦辐射诱变突变体无性繁殖遗传稳定性及cDNA-SRAP的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金荞麦(Fagopyrum dibotrys (D.Don) Hara)为蓼科(Polygonaceae)荞麦属(Fagopyrum)多年生草本植物,具有抑制肿瘤、抗癌等功效。由于需求量过大,野生资源过度采挖,以及人类的活动对生态环境的破坏,使野生金荞麦资源濒危,并于1999年列入《国家重点保护野生植物名录(第一批)》中。
     荞麦属部分种间存在着显著的自交不亲和性,因而进行荞麦种间常规杂交育种困难较大,野生金荞麦以根茎无性繁殖为主。本研究从60Coγ照射的江苏Ⅱ号金荞麦的根茎的后代中筛选出红茎和红叶突变株系,连续多代对突变株系的稳定性以及生理特征进行研究,对不同突变体纯化株系的染色体和同功酶进行分析,并利用cDNA-SRAP分子标记对差异表达基因片段进行研究。
     1农艺性状分析
     金荞麦在生长发育过程中,红茎和红叶的生育进程受到不同程度的推迟,扦插苗的推迟时间长于根繁苗。绿茎的株高较高,红茎较低且分枝数较多,红叶的叶面积较大。金荞麦根茎在7月-8月中旬进入快速增长期,根茎的干鲜重于10月份达到最高。绿茎的根茎干鲜重较高,红叶略低,与红茎差异显著。绿茎和红茎的分支数以及茎节数与根茎产量形成为负相关关系。连续两年的观察表明农艺性状和生育期趋于稳定。
     2抗氧化酶活性和同功酶谱研究
     金荞麦叶片的SOD、POD、APX和CAT酶活性随着植物的生长而逐渐升高。红茎和红叶的酶活性在苗期和生长期的高于绿茎株系,但是差异不显著。
     金荞麦叶片POD同功酶在不同时期和不同株系间各不一样。红叶远端谱带比红茎和绿茎多出2条;绿茎和红叶的近端酶谱带苗期时为3条,多出红茎1条;生长期绿茎为4条,比红茎和红叶多出1条;花期时都为4条带,绿茎的1条谱带的位置和红茎、红叶不一致。SOD同功酶和CAT同功酶谱带无差异。
     连续几代的试验表明金荞麦的酶活性和同功酶谱在不同代之间表现出一定的规律性,金荞麦的遗传趋于稳定。
     3光合特性研究
     金荞麦叶片中光合色素含量在苗期和花期较低,生长期较高。绿茎中的叶绿素含量较高,红叶中的叶绿素含量在苗期时逐渐超过红茎。Chla/Chlb的比值在苗期较低,生长期较高,花期时有所降低;红叶的Chla/Chlb比值在苗期和生长期都较高。红茎和红叶中的类黄酮和花青素含量都高于绿茎。红茎和绿茎中的类黄酮和花青素含量随着植株的生长逐渐升高,红叶中类黄酮含量随植株的生长逐渐升高,花青素含量随着植株的生长逐渐下降。
     金荞麦叶片的净光合速率在生长期较高,苗期和开花期较低。苗期时,绿茎叶片的净光合速率和表观羧化效率较高,红叶叶片中的花青素的存在可能抑制了红叶叶片的光合作用。生长期时,金荞麦的净光合速率日变化均呈双峰曲线,由于气孔限制的原因,具有不同程度的“光合午休”现象。
     红茎和红叶在苗期和生长期的Fv/Fm、qP、ΦPSⅡ和ETR等叶绿素荧光动力学参数低于绿茎,而NPQ值却高于绿茎株系。花期时,绿茎的NPQ升高,qP和中PSⅡ也降低,这可能与金荞麦各植株衰老程度有关。各荧光参数的变化,表明辐照后对突变体株系的光合能力有一定的影响,导致红叶和红茎的光合作用较弱。
     连续两年的试验,金荞麦中的光合色素含量、光合作用和叶绿素荧光的变化趋势基本上一致,遗传已经相对稳定。
     4染色体核型分析
     金荞麦染色体的核型均为2A型。绿茎的染色体核型组成为2n=2x=16=12m+4sm,红茎的染色体的核型组成为2n=2x=16=10m+6sm(2S AT),红叶的染色体核型组成为3n=3x=24=15m+9sm(3SAT)。
     5有效成分含量研究
     金荞麦根茎中的(-)-表儿茶素含量在7-8月份快速增加。红叶金荞麦根茎中的(-)-表儿茶素含量一直高于绿茎,而红茎的含量较低。收获时绿茎根茎中(-)-表儿茶素含量为0.034%,红叶为0.038%,而红茎为0.021%。扦插苗的根茎中有效成分的含量稍低于根繁苗的含量。
     6cDNA-SRAP研究
     通过改良的CTAB法提取叶片中的总RNA,经反转录后,用RT-PCR直接进行SRAP扩增,分析金荞麦基因的差异表达。从49对引物组合中的筛选出的26对引物对3个样品的cDNA进行扩增,获得576条长度在30-1000bp的条带。其中,特异性条带240条,占总条带数的41.7%,对其中18条特异性差异条带克隆分析,发现突变体中有2条片断功能类似,其中1条可能与天冬氨酸氨基转移酶有关。
Buckwheat (Fagopyrum dibotrys (D. Don.) Hara.) belongs to Fagopyrum genus of Polygonaceae family, its rhizome have function on tumor inhibition and anticancer. It had been one of the "list of national key conservative wild plants in China (the first group)" because of destruction by blind harvest and environment pollution. Buckwheat propagates mainly by asexual mode, and it becomes difficult create new genotypes by traditional breeding.
     Buckwheat rhizomes of Jiangsu Ⅱ were irradiated by gamma ray.Red stem and red leaves mutants were induced in M2generation. Agronomic traits, photosynthesis, antioxidative enzymes and (-) epicatechin of selected green and mutants were studied in the paper during2008to2009, and isoenzyme and chromosome were researched as well, and cDNA-SRAP technology was applied for genetic diversity and differential gene expression. Results showed as followed:
     (1) The growth process of mutants was retarded, and it was longer in plants propagation by cuttings than propagation from rhizome. The rhizome rapid growth was between July and August, and reached higher dry and wet weight in October. The plant height of green stem buckwheat was the highest, and red stem had the most branches, while the red leaves buckwheat leaf area were the biggest. Root yield of green stem buckwheat was higher than red stem and the difference reached extreme significant level. Branches and main stem of green and red stem have negative correlation with root yield. The results showed agronomic traits and growth process were almost stability heredity.
     (2) The activity of SOD, POD, CAT and APX increased accompany with plant growth, the activity of mutants were higher than green stem during seeding stage and growth stage. Two additional bands was found in distal isozymogram of POD of red leaves, while there were three bands on proximal during seedling stage in red leaves and green stem, but red stem had two bands; During growth stage, the green stem had four bands; while the mutant has three during flowering stage,; all had four bands, but one of the green stem had different mobility. The bands number of SOD and CAT was unchanged.
     The results showed antioxidative enzymes and isozymogram changed regularly among different descends, which indicated that heredity of the mutants were stability.(3)The photosynthetic pigments were higher during growth stage, and lower during seedling stage and flowering stage. The pigments of green leaves were higher than mutants. The ratio of Chla/Chlb varied as'low-high-low', and the red leaves were the highest during seedling stage and growth stage. Anthocyanin content and flavonoids in the green and red stem were always increasing, while anthocyanin content of red leaves were decreased, and flavonoids varied as red stem, but the anthocyanin content and flavonoids in the green were lower.
     Pn of green stems was higher than mutants, and it reached significantly during seedling stage and decreased dramatically during flower period. During seedling stage, Pn and CE of green stem were higher than mutants and increased as plant growth. Anthocyanin content of red leaves had negative correlation with Pn, CE and Fv/Fm, which indicated the existed of anthocyanin suppressed the red leaves photosynthesis. The diurnal net photosynthetic rate exhibited double-peak pattern during growth stage, which was caused principally by stomatal limitation and midday depression were appeared. The research indicated mutants had lower photosynthesis capacity than original plants.
     The Fv/Fm, qP,ΦPSⅡ and ETR of mutants were lower, and the red stems were lowest, and NPQ of red stems were highest while the green stems were lowest during seedling stage and growth stage. But during flowering stage, NPQ of green stems increased and qP and ΦPSⅡ lowered, this may be induced by leaves senescence.
     The trend of photosynthetic pigments and photosynthetic characteristics and chlorophyll fluorescence varied as the same from2008to2009, which indicated the heredity were stability.
     (4) The results of karyotype analysis showed that the green stem was2n=2x=16=12m+4sm, red stem was2n=2x=16=10m+6sm(2SAT), and the red leaves was3n=3x=24=15m+9sm(3SAT). All was belong to2A type, according to the Stebbins' karyotypic classification method.
     (5) Active ingredient of buckwheat accumulated swiftly in June and August. Active ingredients in red leaves were higher than green and red stems, and red stems were lowest. It reached0.034%in green stems and0.038%in red leaves and0.021%in red stems. Active ingredient in plants propagation from cuttings was lower than propagation from rhizome.
     (6) The RT-PCR and Sequence-related amplified polymorphism (SRAP) was used for analysing differential gene expression.26primer pairs were selected from49primer pairs, and amplified576polymorphic bands with an average of41.7%polymorphic bands per primer pair. Part differential expression bands were cloned and analysised, two special cDNA fragments were found in mutant, and one band had relationship with aspartate aminotransferase.
引文
1. 陈静,陈启林,程智慧.花青苷对低温弱光处理的番茄(L.esculentum Mill.)幼苗光合机构的保护作用[J].中国农业科学,2007,40(4):788-793.
    2.程荣花,邓菊芬,吴维群,等.60Co-γ射线对白三叶种子发芽影响的研究[J].草业与畜牧,2006,7:17-20.
    3.陈微微,陈传奇,刘鹏,徐根娣,何芳,范铭,池慧.荞麦和金荞麦根际土壤铝形态变化及对其生长的影响[J].水土保持学报,2007,1(21):176-179.
    4.陈燕珍,胡丽莲,陶毅明,梁杨琳.不同生育期菊芋叶片过氧化物酶同工酶表达特点的研究[J].生物学杂志,2007,24:25-27.
    5.陈一华,陈正华.植物离体培养细胞的类减数分裂[J].遗传,1996,18(6):32-36.
    6. 白政忠,孙煌,曹菲,莫凤奎,金荞麦蒸馏产物的GC/MS分析[J].药物分析杂志,2007,27(11):1832-1835.
    7. 卞先晟,王安虎.不同辐射剂量对苦荞根系的影响[J].西昌农业高等专科学校学报,1996,13(2):36-38.
    8. 丁玲,陈发棣,滕年军,房伟民.菊花品种间过氧化物酶、酯酶同工酶的遗传多样性分析[J].中国农业科学,2008,41(4):1142-1150.
    9.董玉宁,于曦,段丹丽,等.威麦宁抑制DENA诱发小鼠肺肿瘤发生的实验研究[J].四川肿瘤防治,1996,9(1):5-8.
    10.傅体辉,谢之容,吴友仁,等.威麦宁增强荷瘤小鼠脾LAK活性的实验研究[J].中国实验临床免疫学杂志,1994,6(1):43-45.
    11.高丽霞,刘念,黄邦海.姜花属SRAP分子标记连锁图谱构建[J].云南植物研究,2009,31(4):317-325.
    12.国家中医药管理局《中华本草》编委会.中华本草(第2卷)[M].1999,629-631.
    13.国家药典委员会.《中华人民共和国药典》2005年版一部[M].北京:化学工业出版社,2005:15.
    14.郭大勇,徐育海,张靖国,罗正荣.湖北海棠种内遗传变异的SRAP分析[J].果树学报,2009,26(6):886-890.
    15.郭品心,曹鸣庆.芸蔓属植物起源、演化及分类的分子标记研究进展[J].生物技术通报.2001,(1):26-30
    16.蒋高明,何维明.一种在野外自然光照条件下快速测定光合作用—光响应曲线的新方法[J].植物学通报,1999,16(6):712-718.
    17.海棠,马鹤林.草木樨不同种对60Co-γ射线敏感性及生物学效应的研究[J].内蒙古草业,1991,1:22-24.
    18.胡超,洪亚辉,黄丽华,等.菊花辐射后代生理生化特性的研究[J].湖南农业大学学报(自然科学版),2003,29(6):471-473.
    19.冀花存,张志勇,何平,龚传秀,罗涛,张春平.药用保护植物金荞麦的生态位研究[J].西南大学学报(自然科学版),2007,29(6):114-117.
    20.贾彩凤,李艾莲.药用植物金荞麦的光合特性研究[J].中国中药杂志,2008,33(2):129-132.
    21.金则新,柯世省.云锦杜鹃叶片光合作用日变化特征[J].植物研究,2004,24(4):447-452.
    22.李合生.植物生理生化实验原理与技术[M].北京:高等教育出版社,2000.
    23.李严,张春庆,新型分子标记-SRAP技术体系优化及应用前景分析[J].中国农学通报,2005,21(5):108-112.
    24.李廷春,樊洪泓,高正良,周应兵,杨华应.丹参遗传多样性的SRAP标记分析[J].核农学报,2008,22(5):576-580.
    25.李艳冬.药用植物金荞麦悬浮体系的建立及其次生代谢物的生产调控[D].重庆:西南大学,2008.
    26.李赞,石荫坪,束怀瑞.应用气孔性状对苹果与梨的倍性差别分析[J].果树科学,1999,16(1):9-13.
    27.林汝法.中国荞麦[M].北京:中国农业出版社,1994:97-105.
    28.林忠旭,张献龙,聂以春.新型标记SRAP在棉花F2分离群体及遗传多样性评价中的适用性分析[J].遗传学报,2004,31(6):622-626.
    29.凌磊.利用SRAP标记和形态标记分析彩色棉和白色棉遗传差异[D].2009,合肥:安徽农业大学.
    30.刘红岩,韩锐.金荞麦提取物抑制肿瘤细胞侵袭、转移和HT-1080细胞产生Ⅳ型胶原酶的研究[J].中国药理学通报,1998,14(1):36-39.
    31.刘建丰,王志德,刘艳华,牟建民.应用SRAP标记研究烟草种质资源的遗传多样性[J].中国烟草科学,2007,28(5):49-53.
    32.刘光德,李名扬,祝钦泷.资源植物野生金荞麦的研究进展[J].中国农学通报,2006,22(10):380-389.
    33.刘永隆,房其年,张秀琴,等.金荞麦有效成分的研究[J].药学学报,1983,18(7):545-547.
    34.刘志远,范卫红,沈世华.构树SRAP分子标记[J].林业科学,2009,45(12):54-58.
    35.娄金丽.复方威麦宁抗肺癌转移作用及其分子机制研究[D].北京:北京中医药大学,2004.
    36.刘铁城,吕瑞绵,张秀琴,等.金荞麦的引种与繁殖方法的研究初报[J].中国中药杂志,1981,(01):6-7.
    37.刘铁城,刘惠卿.金荞麦的引种栽培与类型选择[J].中药材,1993,16(01):4-7.
    38.吕桂兰,张荫麟,赵葆华,等.金荞麦引种栽培与其产量和有效成分含量[J].中国兽药杂志,1995,29(04):19-22.
    39.吕桂兰,张荫麟,李英,等.金荞麦营养成分的研究:金荞麦不同部位及制剂中蛋白质、氨基酸及维生素含量的测定及分析[J].中国兽药杂志,1996,30(1)19-21.
    40.吕振岳,黄东东,周达民AFLP标记在植物中的应用[J].生物技术,2001,11(6):40-43
    41.罗虹,刘鹏,徐根娣,李倩倩.铝对荞麦和金荞麦根际土壤微生物及酶活性的影响[J].生态环境,2008,17(6):2381-2386.
    42.马国斌,王鸣,郑学勤.甜瓜组织培养再生植株中的四倍体变异[J].园艺学报,1999,26(2):128-130.
    43.马云鹏,程佳,傅晓沧,等.金荞麦提取物治疗肺癌的临床前预测研究[J].中国肿瘤临床,1989,16(5):309-312.
    44.孟凡虹,包群,高倬.金荞麦根体外培养人肿瘤细胞的抗癌研究[J].昆明医学院学报,1994,15(2):18-23.
    45.倪鹏.金荞麦提取物抗氧化、抗肿瘤作用研究[D],吉林:吉林大学,2008.
    46.潘灿飞.Ri质粒介导金荞麦的遗传转化及毛状根中类黄酮合成的调节[D].重庆:西南大学.
    47.潘宏林,林静.金荞麦的生药学研究[J].中药材,2006,29(1):14-15.
    48.彭绿春,黄丽萍,余朝秀,等.四种兰花辐射育种研究初报[J].云南农业大学学报,2004,22(3)332-336.
    49.彭飒.红花种质资源的SRAP分子鉴定及其与品质相广的分子标记研究[D].2006,乌鲁木齐,新疆农业大学.
    50.彭勇,孙载明,肖培根.金荞麦的研究与开发[J].中草药.1996.26(10):629-631.
    51.钱丹,黄璐琦,崔光红,等.不同产地蒙古黄芪遗传关系的SRAP分析[J].2009,34(4):382-385
    52.秦华.射线辐射水仙花鳞茎对植株生长与开花的影响[J].核农学报,2005,19(5):360-362.
    53.秦敏,浩刚.马铃薯再生体系的建立及其遗传分析[J].中国马铃薯,2005,19(5):270-273.
    54.宋恒,王长泉,巩向忠.γ射线辐照杜鹃试管苗诱发突变体的研究[J].核农学报,2003,17(5):347-349.
    55.邵萌,杨跃辉,高慧嫒,等.金荞麦的化学成分研究[J].沈阳药科大学学报,2005,2(22):100-102.
    56.沈晓霞,王志安,俞旭平,等.γ射线对薏苡诱变效应的初步研究[J].中国中药杂志,2007,32(11):1016-1018.
    57.宋锡金,夏光敏,陈惠民.小麦族儿种近缘植物细胞在长期离体培养中的染色体变异[J].植物生理学报,2000,26(1):33-38
    58.陶梅.北京地区常温贮藏条件下八种作物种子的最佳含水量研究[D].北京:中国农业科学院研究生院,2000.
    59.田磊,徐丽珍,杨世林.金荞麦地上部分化学成分的研究[J].中国中药杂志,1997,12(22):743-745.
    60.王继锋,王石泉,汤国枝,等.山楂原花色素的抗氧化作用研究[J].天然产物研究与开发,2001,13(2):46-49.
    61.王美玲,艾希珍,郑楠.紫甘蓝不同叶位叶片色素含量及需光特性的研究[J].西北农业学报,2008,17(1):221-225.
    62.王强.花生的SRAP分子遗传连锁图谱构建[D].2006,武汉:华中农业大学.
    63.王少平.辐射育种在园林植物育种中的应用[J].种子,2008,12(27):63-68.
    64.王述民.小豆种质资源核心样品构建及其遗传多样性和分类研究[D].北京:中国农业科学院研究生院,2001.
    65.王正询,刘鸿先,周伯春.香蕉试管苗混倍性变异的研究[J].遗传学报,2000,27(3):257-269.
    66.王志芬,闰树林,苏学合.60Co-γ射线辐照菘蓝种子的生物学效应[J].核农学报,2006,20(1):47-48.
    67.翁伯琦,徐国忠,郑向丽,等.60Co-γ射线辐照处理对决明若干生长特性的影响[J].热带作物学报,2005,26(2):94-99.
    68.吴惠群,等.金荞麦生态环境研究[J].云南师范人学学报.1994,14(4):102-109.
    69.吴洁,谭文芳,何俊蓉,蒲志刚.甘薯SRAP连锁图构建淀粉含量QTL检测[J].分子植物育种,2005,3(6):841-845.
    70.吴清,向素琼,闫勇,梁国鲁.金荞麦的离体快繁及同源四倍体的诱导[J].西南农业大学学报,2001,2(23):108-110.
    71.吴学敏,金艳书,娄金丽,刘运芝.威麦宁抑制小鼠Lewis市癌移植瘤的生长及其血管生成的实验研究[J].基础医学研究,2007,5(20):630-631.
    72.谢宗传,邢小黑,赵永富,等.60Coγ,射线辐照大蒜色素变化的若干因素[J].核农学报,1999,13(5):257-260.
    73.许钢,张虹.大麦麦叶中黄酮类化合物清除自由基动态研究[J].营养学报,2003,25(4):401-404.
    74.徐国辉,合天惠,周贵华,等.金荞麦根的抗癌实验研究[J].中草药,1982,13(4):48.
    75.许晓燕,余梦瑶,罗霞,等.利用AFLP和SRAP标记分析19株毛木耳的遗传多样性[J].西南农业学报,2008,21(1):121-124.
    76.薛崧,汪沛洪,许大全.水分胁迫对冬小麦CO2同化作用的影响[J].植物生理学报,1992,18:1-7.
    77.杨坪,梁剑,段宏伟.温度和PEG浓度对金荞麦种子萌发的效应[J].西昌学院学报(自然科学版),2007,4(21):17-19.
    78.杨体模,荣祖元,许世跃,等.金荞麦E药理作用的研究[J].中国药理通讯,1988,5(3):24.
    79.杨体模,荣祖元,吴友仁.金荞麦E对小鼠网状内皮系统吞噬功能的影响[J].四川生理科学杂志,1992,14(1):9-12.
    80.杨小艳,陈惠,邵继荣,吴琦,唐宇.川西北荞麦种间亲缘关系初步研究[J].西北植物学报,2007,27(9):1752-1758.
    81.姚荣成,吴友仁,杨崇仁,等.云南产金养麦根茎抗肿瘤有效部位的化学研究[J].云南植物研究,1989,11(2):215-218.
    82.叶力勤.小剂量60Co-γ射线辐照对甘草根茎产量及品质的影响[J].核农学通报,1997,18(6):267-269.
    83.印德贤,林树楠.金荞麦对小鼠腹腔巨噬细胞吞噬功能的影响[J].首都医药,1999,6(12):28-29.
    84.袁志发,周静芋,郭满才.决策系数-通径分析中的决策指标[J].西北农林科技大学学报(自然科学版),2001,29(5):129-133.
    85.余凤英,凌绪柏等.中粒种咖啡小抱子染色体加倍方法的研究[J].热带作物学报.1990,11(1):45-54.
    86.郁有健,张耀伟,张德双.大白菜紫色性状的SRAP连锁标记的筛选[J].分子植物育种,2009,7(3)573-578.
    87.于拴仓,柴敏,姜立纲.主要番茄品种的分子鉴别研究[J].中国农学通报,2005,21(5):84-89.
    88.张建军,殷丽青,范昆华等.应用组织培养诱导白菜和葛芭四倍体[J].上海农业学报,1997,13(4):21-27.
    89.张春平,何平,张志勇,胡世俊,冀花存,高姗,李俊慧,渝东地区药用保护植物金荞麦群落数量分类和排序研究[J].西南大学学报(自然科学版),2007,29(8):107-113.
    90.张吉祥.黑琥珀李光合特性的研究[J].果树学报,2005,22(1):84-86.
    91.张金文,曹孜义,崔建恒.继代十七年的玉米花粉胚性细胞系的异常核和异常分裂现象[J].实验生物学报,1997,30(4):407-415.
    92.张雯洁,李兴从,刘玉青,等.威麦宁的酚性成分[J].云南植物研究,1994,16(4):354-356.
    93.张霞,王金胜.重力处理对绿豆EST、POD和SOD同工酶的影响[J].山西农业科学,2007,35(11):31-33.
    94.张荫麟,吕桂兰,周新华,等.金荞麦发状根培养的研究[J].植物学报,1992,34(8):603-608.
    95.张政,林设法.金荞麦籽粒营养成分分析[J].营养学报,1999,21(4):480-482.
    96.赵钢,等苦养新品示87-15原种的比较研究[J].科技通报,1994(4),47-56.
    97.赵佐成,周明德,王中仁,等.中国苦荞麦及其近缘种的遗传多样性研究[J].遗传学报,2002,29(8):723-734.
    98.周朴华,何立珍,刘选明.组织培养中用秋水仙素诱发黄花菜同源四倍体的研究[J].中国农业科学,1995,25(1):49-55
    99.朱凤绥,林汝法,李永青,等.荞麦不同类型的染色体研究初报[J].细胞生物学杂志,1984,6(3):130-131.
    100.朱凤绥.荞麦不同类型染色体研究初报[J].细胞生物学杂志,1984,(3):130-131.
    101.朱佳庭,刘践,陈忠.60Co-y射线辐照大蒜色素变化的若干因素[J].核农学报,1999,13(5):257-260.
    102.朱彦涛,张新,刘湛,等.2个油菜CMS系统的酯酶和过氧化物酶同工酶分析[J].西北植物学报,2009,29(4):711-716.
    103. Ashmore, S.E. Status reports on the development and application of in vitro techniques for the conservation and use of plant Genetic resources[J]. International Plant Genetic Resources Institute,Rome,1997
    104. Barata, R.M., Chapparro, A., Chabregas, S.M., et al. Targeting of the soybean leghemoglobin to tobacco chloroplasts:Effects on aerobic metabolism in transgenic plants [J]. Plant Science,2000, 155(2):193-202.
    105. Berry, J. A., Downton, W. J., Environmental regulation of photosynthesis [A]. In:Photosynthesis: Development, Carbon metabolism and plant productivity (Vol. Ⅱ)[C].New York:Academic Press,1982.
    106. Budak, H., Shearman, R.C., Parmaksiz, I., Dweikat, I., et al. Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs, SSRs, RAPDs, and SRAPs[J]. Theoretical and Applied Genetics,2004a,109:280-288.
    107. Budak,H., Shearman, I., Parmaksiz, R.E.,Gaussoin, T.P., et al. Molecular characterization of buffalograssgermplasm using sequence-related amplifiedpolymorphism markers[J]. Theoretical and Applied Genetics,2004b,108:328-334.
    108. Borrino,E.M.,Powell,W., Stomatal guard cell length as an indictor of ploidy in microspore derived plants of barely[J].Genome,1988,30:158-160.
    109. Bowler, C., Montagu, M.V., Inze, D. Superoxide dismutase and stress tolerance [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1992,43:83-116.
    110. Chan, P.K. Inhibition of tumor growth in vitro by the extract of Fagopyrum cymosum(fago-c)[J]. Life Sciences,2003,72(16):1851-1858.
    111. Chalker-Scott L. Disruption of an ice-nucleation barrier in cold hardy Azalea buds by sublethal heat stress[J]. Annals of Botany,1992,70:409-418.
    112. D Anato, F. Edoplyploidy as a factor in plant tissue development.Caryologia[J].1964,17:41-52.
    113. Darlington, C. D., Wylie, A. P. Chromosome atlas of flowering plants[M].1955.George Allen and Unwin, London, UK.
    114. Dalton, D.A., Hanus, F.J., Russell, S.A., Evans, H.J. Purification, properties and distribution of ascorbate peroxidase in legume root nodules [J]. Plant Physiology,1987,83:789-794.
    115. Demmig-Adams B. Carotenoids and photoprotection in plants:a role for the xanthophyll zeaxanthin [J]. Biochimica et Biophysica Acta,1990,1020:1-24.
    116. Dhindsa, R.S., Matowe, W. Drought tolerance in two mosses:correlated with defense against lipid peroxidation [J]. Journal of Experimental Botany,1981,32:79-91.
    117. Dolezel, J., Lucretti, S., Novak, F.J. The influence of 2,4-dichlorophenoxyacetic acid on cell cycle kinetics and sister-chromatid exchanged frequency in garlic (Allium sativa L.) meristem cells[J]. Biologia Plantarum,1987,29:253-257
    118. Espo'sito, M.A., Martin, E.A., Cravero, V.P., Cointry, E. Characterization of pea accessions by SRAP's markers[J] Scientia Horticulturae,2007,113:329-335.
    119. Feng Na, Xue Qie, Guo Qinghua, Zhao Ru, Guo Meili,Genetic Diversity and Population Structure of Celosia argentea and Related Species Revealed by SRAP[J]. Biochemical Genetics, 2009,47:521-532.
    120. Ferriol, M.B., Pico, P. F., Cordova, D., Nuez, F. et al. Molecular diversity of a germ-plasm collection of squash (Cucurbita moschata). determined by SRAP and AFLP marker[J]. Crop Science,2004,44:653-664
    121. Fourre, J.L., Berger, P., Niquet, L., Andre, P. Somatic embryogenesis and somaclonal variation in Norway spruce:morphogenetic, cytogenetic and molecular approaches[J]. Theoretical and Applied Genetics,1997,94:159-169.
    122. Fukuzawa, K.Y., Inokami, A., Tokumura, J.T., et al. Rate constants for quenching singlet oxygen and activities for inhibiting lipid peroxidation of carotenoids and alpha-tocopherol in liposomes [J]. Lipids,1998,33:751-756.
    123. Gill,B-S. Nueleo-cytoplasmic interaction(NCI) hypothesis of genome evolution and speciation in plant, Proeeedings of the Kihara Memorial International Symposium on CytoPlasmic Engineering in wheat, Yokohoma.Japan,1991,48-53.
    124. Gizem Dinler, Hikmet Budak. Analysis of Expressed Sequence Tags (ESTs) from Agrostis Species Obtained Using Sequence Related Amplified Polymorphism[J]. Biochemical Genetics,2008,46:663-676.
    125.Goldbach, H.E. A critical review on current hypotheses concerning the role of boron in higher plants:Suggestions for further research and methodological requirements [J]. J. Journal of Trace and Microprobe Techniques,1997,15(1):51-91.
    126. Gould, K.S., Kyhn, D.N., Lee, D.W., Oberbauer, S. F. Why leaves are sometimes red[J]. Nature, 1995,378:241-242.
    127. Griffin, J.J., Ranney, T.G., Pharr, D.M. Photosynthesis chlorophyll fluorescence and carbohydrate content of Illicium taxa grown under varied irradiance [J]. Journal of the America Society for Horticultural Science,2004,129(1):46-53.
    128. Gui Qin, Wang Jialu, Xu Yanhao, Wang Jianbo. Expression Changes of Duplicated Genes in Allotetraploids of Brassica Detected by SRAP-cDNA Technique[J] Molecular Biology,2009, 43(1):1-7.
    129. Ishikawa, M. Deep supercooling in most tissues of wintering Sasa senanensis and its mechanism in leaf blade tissues[J]. Plant Physiology,1984,75:196-202.
    130. Jiang H, Xu D-Q. The cause of the difference in leaf photosynthetic rate between two soybean cultivars[J]. Photosynthetica,2001,39(3):453-459.
    131. Jorgensen, C.A.The experimental formation of heteroploid plants in the genus solanum[J]. Journal of Genetics,1928,11:133-210.
    132. Joyce, S.M., Cassells, A.C. Variation in potato microplant morphology in vitro and DNA methylation. Plant Cell, Tissue and Organ Culture,2002,70:125-137.
    133. Kakiuchi, N., Hattori, M., Namba, T., el al. Inhibitory effect of tannins on reverse transcriptase from RNA tumor virus[J]. Journal of Natural Products,1985,48(4):614-621.
    134. Koca, H., Ozdemir, F., Turkan, I. Effect of salt stress on lipid peroxidation and superoxide dismutase and peroxidase activities of Lycopersicon esculentum and L. pennellii[J]. Biologia Plantarum,2006,50(4):745-748.
    135. Koul, A.K.,Dhar,M.K.Plant aneuploids:Suggestions for their classification[J]. Euphytica,1998, 104:93-106.
    136. Kootstra, A. Protection from UV-B induced DNA damage by flavonoids [J]. Plant Molecular Biology,1994,26:771-774
    137. Larkin, P.J., Scowcroft, W,R. Somaclonal variation-a novel source of variability from cell cultures for plant improvement[J]. Theoretical and Applied Genetics,1981,60:197-214
    138. Levan,A., et al. Nomenclature for centromeric position on chromosomes[J]. Hereditas,1964, 52:201-220.
    139. Lee, M., Geadelmann, J.L., Phillips, R. Agronomic evaluation of inbred lines derived from tiddue cultures of maize. Theoretical and Applied Genetics,1988,75:841-849.
    140. Li, G., Quiros, C.F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica[J]. Theoretical and Applied Genetics,2001,103:455-461.
    141. Li, G., Quiros, C. F. Cloning a major gene involved in the synthesis of Glucosinolates in B rassica. Plant[J]. Animal Microbe Genomes X Conference, San Diego, CA,2002a,1:12-16.
    142. Li, G., Quiros, C.F. Analysis, Expression and molecular characterization of BoGSL-ELONG, a major gene involved in the Aliphatic Glucosinolate pathway of B rassica species [J]. Genetics, 2002b,162:1937-1943.
    143. Li, G., Gao, M., Yang, B., Quiros, C.F. Gene for gene alignment between the B rassica and A robi dopsis genomes by direct transcriptome mapping [J]. Theoretical and Applied Genetics, 2003,107:1608-1801.
    144. Liakopoulos, G., Nikolopoulos, D., Klouvatou, A., Vekkosl, K.A., et al. The photoprotective role of epidermal anthocyanins and surface pubescence in young leaves of grapevine (Vitis vinifera)[J]. Annals of Botany,2006,98(1):257-265.
    145. Lin, Z.X., Zhang, X.L., Nie, Y.C., et al. Construction of genetic linkagemap for cotton based on SRAP [J]. Chinese Science Bulletin,2003,48 (9):2063-2067.
    146. Liu Li-jun, PENG Ding-xiang, WANG Bo, Genetic Relation Analysis on Ramie [Boehmeria nivea (L.) Gaud.] Inbred Lines by SRAP Markers[J]. Agricultural Sciences in China,2008,7(8): 944-949.
    147. Mepsted, R., Paul, N.D., Stephen, J., et al. Effects of enhanced UV-B radiation on pea (Pisum sativum L.) grown under field conditions in the UK [J]. Global Change Biology,1996,2(4): 325-334.
    148. Merzlyak, M.N., Chivkunova, O.B. Light-stress-induced pigment changes and evidence for anthocyanin photoprotection in apples[J]. Journal of Photochemistry Photobiology B,2000, 55(2-3):155-163.
    149. Miiller, P., Li, X.P., Niyogit, K.K. Non-photochemical quenching. A response to excess light energy [J]. Plant Physiology,2001,125:1558-156.
    150. Nagaki, K., Tsujimoto, H., Sasakuma, T., et al. Dynamics of tandem repetitive A fa-family sequences in Tritiaeae, wheat related species[J]. Journal of Molecular Evolution,1998,47: 182-189.
    151. Ohsako, T., Ohnishi, O. Inter- and Interspecific phylogeny of wild Fagopyrum (Polygonaceae) species Based on Nucleotide Sequences of Noncoding regions in Chloroplast DNA[J]. American Journal of Botany,2000,87(4):573-582.
    152. Ogren, E. Prediction of photoinhibition of photosynthesis from measurements of fluorescence quenching components[J]. Planta,1991,184:538-544.
    153. Okuda, T., Mori, K., Hatano, T. Relationship of the structures of tannins to the binding activities with hemoglobin and methylene blue[J]. Chemical Pharmaceutical Bulletin-(Tokyo),1985, 33(4):1424-1433.
    154. Pang, J.S, Wang, G., Li, X.Z., et al. Construction of a genetic map with SRAP markers and localization of the gene responsible for the first-flower-node trait in cucumber (Cucumis sativus L.)[J]. Progress in Natural Science,2005,15 (2):167-172.
    155. Peschke, V.M., Phillips, R.L. Genetic implication of somaclonal variation in plants[J]. Advances in Genetics,1992,30:41-75.
    156. Phillips, R. L., Kaeppler, S.M., Olhoft, P. Genetic instability of plant tissue cultures:Break down of normal controls. Proceedings of the National Academy of Sciences,1994,91:5222-5227.
    157. Rahman, M.H., Rajora, O.P. Microsatellite DNA somaclonal variation in micropropagated trembling aspen (Populus tremuloides). Plant Cell Reports.2001,20:531-536.
    158. Sharma, A.K., Chatterji, T. Chromosome studies of some members of Polygonaceae[J]. Caryologia,1960,13:486-506.
    159. Sharma,T. R., Jana, S. Species relationships in Fagopyrum revealed by PCR-based DNA fingerprinting[J]. Theoretical and Applied Genetics,2002,105:306-312.
    160. Song, K.M., et al. Rapid genome change in synthetic polyploids of Brassica and its implications for evolution[J]. Proceedings of the National Academy of Sciences,1995,92:7719-7723.
    161. Song, Z.Q., Li, X.F., Wang, H.G., et al. Genetic diversity and population structure of Salvia miltiorrhiza Bge in China revealed by ISSR and SRAP[J].Genetica,2010,138:241-249.
    162. Stebbins, G.L.,Chromosomal evolution in higher plants.Edward Arhold[J], London.1971,85-105.
    163. Tanaka,Y., Tsuda, S., Kusumi, T. Metabolic engineering to modify flower color [J]. Plant Cell Physiology,1998,11:1119-1126.
    164. Tsuda, T., Shiga, K., Ohshima, K., Kawakishi, S., Osawa, T. Inhibition of lipid peroxidation and the active oxygen radical scavenging effect of anthocyanin pigments isolated from Phaseolus vulgaris L [J]. Biochemical Pharmacology,1996,52:1033-1039.
    165. Urbanova, M., Cellarova, E., Kimakova, K. Chromosome number stability and mitotic activity of cryopreserved Hypericum perforatum L. meristems. Plant Cell Reports.2002,20:1082-1086.
    166. Vandenhout, H., Ortiz, R., Vaylsteke, D., et al. Effect of ploidy on stomatal and other quantitative traits in plaptain and bansns hybrids [J]. Euphytica,1995,83:117-122.
    167. Volkov, R.A., Borisjuk, N.V., Panchuk, Ⅱ., et al. Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum[J]. Molecular Biology and Evolution,1999, 16:311-320.
    168. Von Caemmerer, S., Farquhar, G.D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves [J]. Planta,1981,153:376-387.
    169. Wang, G., Pan, J., Li X., et al. Construction of a cucumber genetic linkage map with SRAP markers and ion of the genes for lateral branch traits [J]. Science in China C Life Science,2004, 34(6):510-516.
    170. Wang Jianshe, Yao Jianchun, LI Wei. Construction of a molecular map for melon (Cucumis melo L.) based on SRAP[J], Frontiers of Agriculture in China,2008,2(4):451-455.
    171. Wang Kai-Jin, Zhang Ying-Jun, Yang Chong-Ren. Antioxidant phenolic constituents from Fagopyrum dibotrys[J]. Journal of Ethnopharmacology,2005,99 (2):259-264.
    172. Wang,Y.X., Sun, X.Y., Tan, B.Y., et al. A genetic linkage map of Populus adenopoda Maxim.× P. alba L. hybrid based on SSR and SRAP markers[J]. Euphytica,2010,173:193-205.
    173. Willekens, H., Van Camp, W., Van Montagu, M., el al.Ozone, sulfur dioxide, and ozone ultraviolet B have similar effect on mRNA accumulation of antioxidant genes in Nicotiana plumbatginifolia [J]. Plant Physiology,1994,106:1007-1014.
    174. Yasui, Y, Ohnishi, O. Comparative study of rbcL gene sequences in Fagopyrum and related taxa[J]. Genes Genetic Systems,1996,71:219-224.
    175. Yasui, Y., Ohnishi, O. Phylogenetic relationships among Fagopyrum Species revealed by the nucleotide sequences of the ITS region of the nuclear rRNA gene[J]. Genes Genetic Systems, 1998,73:201-210.
    176. Zhang Weiwei, He Huanle, Guan Yuan, Du Hui, et al. Identification and mapping of molecular markers linked to the tuberculate fruit gene in the cucumber (Cucumis sativus L.)[J]. Theoretical Applied Genetics,2010,120:645-654.