TLR4受体及其信号通路在胰腺癌进展中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的研究Toll样受体4(TLR4)和低氧诱导因子-1α(HIF-1α)在胰腺癌中的表达及其临床意义。
     方法采用实时荧光定量PCR检测30例新鲜胰腺癌及相应癌旁组织标本中TLR4和HIF-1αmRNA水平,应用免疫组化检测TLR4、NF-κB p65和HIF-1α在65例胰腺癌及相应38例癌旁组织中的表达,分析其与临床病理特征间的关系以及TLR4和HIF-1α表达的相关性。应用Kaplan-Meier生存分析研究TLR4、HIF-1α蛋白表达对患者生存时间的影响。
     结果实时荧光定量PCR结果表明胰腺癌组织中的TLR4、HIF-1αmRNA水平分别为0.81±0.10、0.87±0.11,显著高于癌旁组织(0.70±0.16、0.68±0.13,p<0.05);免疫组化结果显示TLR4、NF-κB p65和HIF-1α蛋白在胰腺癌组织中的表达率分别为69.20%、66.15%和70.80%,显著高于癌旁组织(39.50%、31.58%和36.8%,p<0.05),TLR4和HIF-1α的表达与患者性别、年龄、肿瘤部位及分化程度无关,而与肿瘤大小、淋巴结转移、血管侵犯及临床TNM分期相关。TLR4和HIF-1α表达呈正相关。TLR4或HIF-1α阴性组患者的生存时间显著长于TLR4或HIF-1α阳性组。
     结论TLR4、NF-κB p65和HIF-1α在胰腺癌中高表达,TLR4可能通过NF-κBp65途径参与了HIF-1α的表达调控,共同促进了胰腺癌的恶性进展。
     目的构建针对人TLR4基因的shRNA真核表达质粒,并筛选出对胰腺癌细胞系PANC-1基因沉默效果最明显的shRNA质粒表达载体,转染胰腺癌细胞并筛选出稳定转染的克隆细胞株。
     方法针对TLR4基因的mRNA序列设计,分别构建3个shRNA质粒表达载体和1个阴性对照质粒表达载体,经大肠杆菌扩增,酶切,测序鉴定,脂质体法转染至胰腺癌PANC-1细胞,48h后实时荧光定量PCR检测TLR4 mRNA被抑制情况。将抑制效率最高的shRNA质粒转染PANC-1细胞,G418抗性筛选和有限稀释单克隆形成法挑选培育稳定转染TLR4 shRNA的单克隆细胞系,实时定量PCR和流式细胞技术检测单克隆细胞系中TLR4 shRNA转染效率和基因沉默效率。
     结果经测序证实,成功构建TLR4 shRNA真核表达质粒,插入的DNA片段的序列与设计序列完全一致。重组质粒转染PANC-1细胞48h后,转染效率为46.72%±5.06%, TLR4 mRNA水平明显下调;其中以TLR4 RNAi-3#重组质粒的沉默效应最强(0.019±0.006 vs 0.061±0.018,P=0.000)。将TLR4 RNAi-3#转染至PANC-1细胞,G418抗性筛选和有限稀释单克隆形成法形成稳转单克隆细胞系,与转染48h比较,转染效率显著提高(82.79%±8.16% vs 46.72%±5.06%, P=0.001), TLR4 mRNA显著被抑制(0.010±0.002 vs 0.019±0.006,P=0.01),稳转细胞TLR4蛋白表达率显著低于PANC-1细胞或转染阴性质粒细胞(0.54%±0.32%vs 87.42%±5%;0.54%±0.32%vs 82.9%±5%,P=0.000)。
     结论成功构建了携带以TLR4为靶向的shRNA的重组质粒,其对胰腺癌PANC-1细胞TLR4的表达具有显著抑制效应,TLR4 shRNA稳定转染细胞的转染效率以及基因沉默效率显著高于转染48h。该实验为进一步研究TLR4的功能提供了实验基础。
     目的研究胰腺癌细胞系PANC-1中TLR4信号通路对HIF-1αmRNA和蛋白表达的影响及调控机制。
     方法分别将PANC-1细胞、转染阴性对照质粒的PANC-1 RNAi Ctro细胞以及转染shRNA TLR4表达质粒的PANC-1 RNAi TLR4细胞用低氧模拟剂氯化钻(CoCl2,100μmol/L)、不同浓度的TLR4配体脂多糖(LPS, 0μg/ml, 1μg/ml,10μg/ml,)和NF-K B特异性抑制剂PDTC (25μM)进行不同时间(6h,12h,24h,48h)的干预,实时荧光定量PCR检测细胞中HIF-1αmRNA水平,免疫印迹检测HIF-1α蛋白表达情况。分别用LPS (1μg/ml, 10μg/ml)作用PANC-1细胞及PANC-1 RNAi TLR4细胞30min,电泳迁移率实验(EMSA)分析细胞中的NF-κB活性。
     结果胰腺癌细胞中LPS以时间和剂量依赖的方式上调了HIF-1αmRNA及蛋白的表达。NF-κB抑制剂PDTC和TLR4基因沉默均显著抑制了LPS诱导的HIF-1α表达,LPS诱导了PANC-1细胞中NF-KB的活化。
     结论TLR4信号通路通过NF-κB途径参与了HIF-1α的表达上调。
     目的研究TLR4信号通路对胰腺癌细胞粘附和侵袭能力的影响极其机制
     方法分别对PANC-1细胞、转染阴性对照质粒的PANC-1 RNAi Ctro细胞以及转染shRNA TLR4表达质粒的PANC-1 RNAi TLR4细胞用不同浓度的LPS和NF-κB特异性抑制剂PDTC进行不同时间的干预,粘附实验检测细胞和基质胶MaxGel的粘附率,Transwell小室侵袭实验检测干预后细胞的侵袭力,流式细胞技术检查癌细胞中整合素β1 (Integrinβ1)的表达,ELISA检测细胞培养上清夜中基质金属蛋白酶-9(MMP-9)的浓度,细胞免疫荧光实验观察LPS作用后PANC-1细胞中NF-κB核转位情况。
     结果LPS以时间和剂量依赖的方式促进了PANC-1细胞与基质胶的粘附,并增强了细胞侵袭力。NF-κB抑制剂PDTC和TLR4基因沉默抑制了细胞的粘附率及侵袭力。LPS上调了PANC-1细胞中Integrinβ1蛋白的表达,促进细胞分泌MMP-9。NF-κB抑制剂PDTC抑制了LPS对PANC-1细胞Integrinβ1和MMP-9表达的诱导作用。LPS未能引起PANC-1 RNAi TLR4细胞中Integrinβ1和MMP-9表达上调。LPS促进了PANC-1细胞NF-κB p65核转位,但对PANC-1 RNAi TLR4细胞未见LPS对NF-κB p65核转位的诱导。
     结论TLR4信号通路上调了胰腺癌细胞中整合素β1和基质金属蛋白酶-9的表达,从而促进了癌细胞与细胞外基质的粘附,增加了癌细胞的侵袭力。
AIM:To investigate the expression of Toll-like receptor (TLR) 4, nuclear factor-kappaB(NF-κB) p65 and hypoxia-inducible transcription factor 1α(HIF-1α) in pancreatic ductal adenocarcinoma.
     METHODS:TLR4 mRNA and HIF-1αmRNA were investigated by real-time polymerase chain reaction in 30 cases of pancreatic ductal adenocarcinoma and its adjacent tissues, and expression of TLR4, NF-κB p65 and HIF-1αprotein were detected by immunohistochemistry in 65 cases of pancreatic ductal adenocarcinoma tissues and 38 cases of corresponding adjacent tissues. The relationship between TLR4 or HIF-1αand pathologic features, association between TLR4 and HIF-1α, were also analyzed. Kaplan-Meier Method was used to assess the impact of TLR4 and HIF-1αexpression on survival of patients.
     RESULTS:The relative quantification of TLR4 mRNA and HIF-1αmRNA in tumor tissues were 0.81±0.10 and 0.87±0.11 respectively, which were significantly higher than that in adjacent tissues (0.70±0.16 and 0.68±0.13 respectively, P<0.05). The protein expression of TLR4, NF-κB p65 and HIF-1αin tumor tissues were 69.20%,66.15% and 70.80% respectively, significantly higher than that in adjacent normal tissues(39.50%, 31.58% and 36.80%, respectively, P< 0.05). There were no significant correlation between TLR4 or HIF-1αexpression and the age, gender, tumor location, the degree of tumor differentiation in patients (P>0.05). However, there were significant correlation between the expression of TLR4 or HIF-1αand tumor size, lymphnode metastasis, venous invasion and clinical staging(P<0.05). The expression of TLR4 and HIF-1αhad a significant impact on survival of patients with pancreatic adenocarcinoma.
     CONCLUSION:TLR4, NF-κB p65 and HIF-1αare overexpressed in pancreatic adenocarcinoma, TLR4 may be partly involved in up-regulating HIF-1α, and both synergyly accelerate progresis of pancreatic adenocarcinoma.
     AIM:To investigate the effects of eukaryotic plasmic expression vector mediated short hairpin RNA interference targeting TLR4 gene on pancreatic adenocarcinoma cells.
     METHODS:We constructed three short hairpin RNA (shRNA) interference expression plasmid vectors targeting the TLR4 gene and a control vector containing random DNA fragment.The recombinant plasmids were amplified in E.coli. DH5 a was identified by restriction digestion, PCR and sequencing. The vevtors were tansfected into PANC-1 cells. TLR4 mRNA was detected by real-time PCR, the most effective vector TLR4 RNAi-3# was transfected into PANC-1 and stably transfected clones was obtained by Geneticin (G418) and limiting dilution analysis. The transfection efficiency of plasmids were detected through evaluation of GFP by flow cytometry analysis, and the silencing effect of TLR4 was assayed with real-time quantitative PCR and Flow cytometry analysis.
     RESULTS:The successful construction of recombinant plasmids was confirmed by DNA sequencing of the inserted segments. At 48 h after transfection, the transfection efficiency of plasmids was 46.72%±5.06%, and TLR4 mRNA was significantly down-regulated, especially in cells transfected with TLR4 RNAi-3# vector (0.019±0.006 vs 0.061±0.018, P=0.000). The transfection efficiency of TLR4 RNAi-3# vector in stably transfected clones was significantly higher than that of transient transfection (82.79%±8.16%vs 46.72%±5.06%, P=0.001). TLR4 mRNA was absolutely silenced (0.010±0.002 vs 0.019±0.006, P=0.01). The expression of TLR4 protein on stably transfected clones was significantly lowed than that on PANC-1 cells or cells transfected with control plasmid(0.54%±0.32% vs 87.42%±5%; 0.54%±0.32% vs 82.9%±5%, P=0.000).
     CONCLUSION:Plasmid vector expressing shRNA against TLR4 has been successfully constructed and it can down-regulated TLR4 on pancreatic adenocarcinoma effctively.
     AIM:To explore the role of the crosstalk of TLR4 and HIF-1αin pancreatic ductal adenocarcinoma and the possible mechanism.
     METHODS:The expression of TLR4 and HIF-1αprotein were detected by immunohistochemistry in pancreatic ductal adenocarcinoma and its adjacent tissues. Then the expression of HIF-1αwas observed in the human pancreatic cancer cell line PANC-1 by real time PCR and Western blotting after treated with cobalt chloride (CoC12, a hypoxia mimicking agent), LPS and PDTC(NF-kappa B inhibitor) respectively. RNA interference expression vector for TLR4 was transfected into PANC-1 cells, and the stably transfected clones were treated with CoC12 and LPS, then the expression of HIF-la was detected by real time PCR and Western blotting, and the NF-kappa B p65 nuclear translocation in was analyzed using immunofluorescence staining.
     RESULTS:The protein expression of TLR4 and HIF-la in tumor tissues were 69.20% and 70.80% respectively, significantly higher than that in adjacent normal tissues respectively (69.2% v.s 39.5%, P=0.003;70.8% v.s 36.8%, P=0.001). HIF-1αexpression was positive correlation with TLR4 (rp=0.451, p<0.05). LPS and CoC12 significantly increase HIF-la mRNA and protein in PANC-1 cells compared with CoC12 alone, both silencing of TLR4 and a specific NF-κB inhibitor, PDTC, suppressed the increase of HIF-la induced by LPS. Nuclear translocation of NF-κB p65 was induced by LPS in PANC-1 cells.
     CONCLUSION:TLR4 and HIF-1αare overexpressed in pancreatic adenocarcinoma TLR4 signaling regulates HIF-la mRNA and protein expression via NF-κB activation in pancreatic tumor microenviroment.
     AIM:To investigate the role of TLR4 signal pathway in adhesion and invasion of human pancreatic cancer cells to cell-extracellular matrix.
     METHODS:PANC-1 cells, PANC-1 RNAi Ctro cells and PANC-1 RNAi TLR4 cells were stimulated with LPS respectively, in vitro tumour cell ECM adhesion and ECM invasion were analysed by ECM adhesion assay and ECM invasion chambers. The expression of Integrinβ1 and their alteration by LPS were examined by flow-cytometric analysis, and the level of MMP-9 in cellular supernatant was detected by enzyme-linked immunosorbent assay. Nuclear translocation of the NF-κB p65 induced by LPS was observed by immunofluorescence staining.
     RESULTS:PANC-1 cancer cells showed preferential tumour cell ECM adhesion and ECM invasion compared with PANC-1 RNAi TLR4 cells, and this was enhanced by LPS. These effects were abolished by shTLR4 and NF-κB inhibition. LPS upregulates Integrinβ1 and MMP-9 in a dose-dependent and time-dependent manner, and the expression of Integrinβ1 and MMP-9 was decreased by NF-kB inhibition and shRNA. Nuclear translocation of the NF-κB p65 is induced by LPS in PANC-1.
     CONCLUSION:In pancreatic cancer, LPS promotes tumour cell ECM adhesion and invasion through activation of Integrinβ1 and MMP-9 in a TLR-4- and NF-κB-dependent manner.
引文
1. Tanase CP, Dima S, Mihai M, et al. Caveolin-1 overexpression correlates with tumour progression markers in pancreatic ductal adenocarcinoma. J Mol Histol. Feb 2009;40(1):23-29.
    2. Neoptolemos JP, Dunn JA, Stocken DD, et al. Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer:a randomised controlled trial. Lancet. Nov 10 2001;358(9293):1576-1585.
    3. Miyamoto H, Murakami T, Tsuchida K, Sugino H, Miyake H, Tashiro S. Tumor-stroma interaction of human pancreatic cancer:acquired resistance to anticancer drugs and proliferation regulation is dependent on extracellular matrix proteins. Pancreas. Jan 2004;28(1):38-44.
    4. Chen KQ, Huang J, Gong WH, Iribarren P, Dunlop NM, Wang JM. Toll-like receptors in inflammation, infection and cancer. International Immunopharmacology. 2007;7:1271-1285.
    5. Rakoff-Nahoum S, Medzhitov R. Toll-like receptors and cancer. Nature Reviews Cancer.2009;9(1):57-63.
    6. Huang B, Zhao J, Unkeless JC, Feng ZH, Xiong H. TLR signaling by tumor and immune cells:a double-edged sword. Oncogene. Jan 7 2008;27(2):218-224.
    7. Cui H, Darmanin S, Natsuisaka M, et al. Enhanced expression of asparagine synthetase under glucose-deprived conditions protects pancreatic cancer cells from apoptosis induced by glucose deprivation and cisplatin. Cancer Res. Apr 1 2007;67(7):3345-3355.
    8. Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 4.469. Nov 2006;70(5):1469-1480.
    9. Gorlach A. The cross-talk between NF kappa B and HIF-1:further evidence for a significant liaison. BIOCHEMICAL JOURNAL-LONDON-.2008;412(3):17.
    10. Oh YT, Lee JY, Yoon H, et al. Lipopolysaccharide induces hypoxia-inducible factor-1 alpha mRNA expression and activation via NADPH oxidase and Spl-dependent pathway in BV2 murine microglial cells. Neurosci Lett. Jan 312008;431(2):155-160.
    11. Nishi K, Oda T, Takabuchi S, et al. LPS induces hypoxia-inducible factor 1 activation in macrophage-differentiated cells in a reactive oxygen species-dependent manner. Antioxid Redox Signal. May 2008;10(5):983-995.
    12. Lall H, Coughlan K, Sumbayev VV. HIF-1 alpha protein is an essential factor for protection of myeloid cells against LPS-induced depletion of ATP and apoptosis that supports Toll-like receptor 4-mediated production of IL-6. Mol Immunol. Jun 2008;45(11):3045-3049.
    13. van Uden P, Kenneth NS, Rocha S. Regulation of hypoxia-inducible factor-1alpha by NF-kappaB. Biochem J. Jun 15 2008;412(3):477-484.
    14. Vonlaufen A, Xu Z, Daniel B, et al. Bacterial endotoxin:a trigger factor for alcoholic pancreatitis? Evidence from a novel, physiologically relevant animal model. Gastroenterology 12.457. Oct 2007;133(4):1293-1303.
    15. Sawa H, Ueda T, Takeyama Y, et al. Role of toll-like receptor 4 in the pathophysiology of severe acute pancreatitis in mice. Surg Today 0.698. 2007;37(10):867-873.
    16. Li Y, Zhou ZG, Zhang J, et al. Microcirculatory detection of Toll-like receptor 4 in rat pancreas and intestine. Clin Hemorheol Microcirc 1.242.2006;34(1-2):213-219.
    1. Tanase CP, Dima S, Mihai M, et al. Caveolin-1 overexpression correlates with tumour progression markers in pancreatic ductal adenocarcinoma. J Mol Histol. Feb 2009;40(1):23-29.
    2. Neoptolemos JP, Dunn JA, Stocken DD, et al. Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer:a randomised controlled trial. Lancet. Nov 10 2001;358(9293):1576-1585.
    3. Miyamoto H, Murakami T, Tsuchida K, Sugino H, Miyake H, Tashiro S. Tumor-stroma interaction of human pancreatic cancer:acquired resistance to anticancer drugs and proliferation regulation is dependent on extracellular matrix proteins. Pancreas. Jan 2004;28(1):38-44.
    4. Frede S, Stockmann C, Freitag P, Fandrey J. Bacterial lipopolysaccharide induces HIF-1 activation in human monocytes via p44/42 MAPK and NF-kappaB. Biochem J. Jun 15 2006;396(3):517-527.
    5. Peyssonnaux C, Cejudo-Martin P, Doedens A, Zinkernagel AS, Johnson RS, Nizet V. Cutting edge:Essential role of hypoxia inducible factor-1 alpha in development of lipopolysaccharide-induced sepsis. J Immunol. Jun 15 2007;178(12):7516-7519.
    6. Yu L, Chen S. Toll-like receptors expressed in tumor cells:targets for therapy. Cancer Immunol Immunother. Sep 2008;57(9):1271-1278.
    7. Schmausser B, Andrulis M, Endrich S, Muller-Hermelink HK, Eck M. Toll-like receptors TLR4, TLR5 and TLR9 on gastric carcinoma cells:an implication for interaction with Helicobacter pylori. Int J Med Microbiol. Jun 2005;295(3):179-185.
    8. Fukata M, Chen A, Vamadevan AS, et al. Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology. 2007;133(6):1869-1881.
    9. Xie WJ, Wang YS, Huang YF, Yang HZ, Wang JP, Hu ZW Toll-like receptor 2 mediates invasion via activating NF-kappa B in MDA-MB-231 breast cancer cells. Biochemical and Biophysical Research Communications.2009;379(4):1027-1032.
    10. Kelly MG, Alvero AB, Chen R, et al. TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res. Apr 1 2006;66(7):3859-3868.
    11. He WG, Liu QY, Wang L, Chen W, Li N, Cao XT. TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Molecular Immunology.2007;44(11):2850-2859.
    12. Molteni M, Marabella D, Orlandi C, Rossetti C. Melanoma cell lines are responsive in vitro to lipopolysaccharide and express TLR-4. Cancer Lett. Apr 8 2006;235(1):75-83.
    13. Rakoff-Nahoum S, Medzhitov R. Toll-like receptors and cancer. Nature Reviews Cancer.2009;9(1):57-63.
    14. Birner P, Schindl M, Obermair A, Plank C, Breitenecker G, Oberhuber G. Overexpression of hypoxia-inducible factor 1alpha is a marker for an unfavorable prognosis in early-stage invasive cervical cancer. Cancer Res. Sep 1 2000;60(17):4693-4696.
    15. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. Dec 2001;25(4):402-408.
    16. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. Jul 2004;4(7):499-511.
    17. Gorlach A. The cross-talk between NF kappa B and HIF-1:further evidence for a significant liaison. BIOCHEMICAL JOURNAL-LONDON-.2008;412(3):17.
    18. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annual Review of Immunology. 2003;21:335-376.
    19. Yusuf N, Nasti TH, Long JA, et al. Protective role of toll-like receptor 4 during the initiation stage of cutaneous chemical carcinogenesis. Cancer Research. Jan 2008;68(2):615-622.
    20. Rakoff-Nahoum S, Medzhitov R. Toll-like receptors and cancer. Nat Rev Cancer. Jan 2009;9(1):57-63.
    21. Szczepanski MJ, Czystowska M, Szajnik M, et al. Triggering of Toll-like receptor 4 expressed on human head and neck squamous cell carcinoma promotes tumor development and protects the tumor from immune attack. Cancer Res. Apr 1 2009;69(7):3105-3113.
    22. Zhang YB, He FL, Fang M, et al. Increased expression of Toll-like receptors 4 and 9 in human lung cancer. Mol Biol Rep. Sep 2 2008.
    23. He W, Liu Q, Wang L, Chen W, Li N, Cao X. TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Molecular Immunology.2007;44(11):2850-2859.
    24. Zhou M, McFarland-Mancini MM, Funk HM, Husseinzadeh N, Mounajjed T, Drew AF. Toll-like receptor expression in normal ovary and ovarian tumors. Cancer Immunol Immunother.2009;58(9):1375-1385.
    25. Xie W, Wang Y, Huang Y, Yang H, Wang J, Hu Z. Toll-like receptor 2 mediates invasion via activating NF-kappaB in MDA-MB-231 breast cancer cells. Biochem Biophys Res Commun. Feb 20 2009;379(4):1027-1032.
    26. Goto Y, Arigami T, Kitago M, et al. Activation of toll-like receptors 2,3, and 4 on human melanoma cells induces inflammatory factors. Molecular Cancer Therapeutics. Nov 2008;7(11):3642-3653.
    27. Pidgeon GP, Harmey JH, Kay E, Da Costa M, Redmond HP, Bouchier-Hayes DJ. The role of endotoxin/lipopolysaccharide in surgically induced tumour growth in a murine model of metastatic disease. Br J Cancer. Dec 1999;81(8):1311-1317.
    28. Yang HZ, Cui B, Liu HZ, et al. Blocking TLR2 activity attenuates pulmonary metastases of tumor. PLoS One.2009;4(8):e6520.
    29. Wei H, Wang C, Chen L. Proliferating cell nuclear antigen, survivin, and CD34 expressions in pancreatic cancer and their correlation with hypoxia-inducible factor 1alpha. Pancreas. Mar 2006;32(2):159-163.
    30. Semenza GL. Targeting HIF-1 for cancer therapy. Nature Reviews Cancer. 2003;3(10):721-732.
    31. Oh YT, Lee JY, Yoon H, et al. Lipopolysaccharide induces hypoxia-inducible factor-1 alpha mRNA expression and activation via NADPH oxidase and Sp1-dependent pathway in BV2 murine microglial cells. Neurosci Lett. Jan 312008;431(2):155-160.
    32. Nishi K, Oda T, Takabuchi S, et al. LPS induces hypoxia-inducible factor 1 activation in macrophage-differentiated cells in a reactive oxygen species-dependent manner. Antioxid Redox Signal. May 2008;10(5):983-995.
    33. Lall H, Coughlan K, Sumbayev VV. HIF-1 alpha protein is an essential factor for protection of myeloid cells against LPS-induced depletion of ATP and apoptosis that supports Toll-like receptor 4-mediated production of IL-6. Mol Immunol. Jun 2008;45(11):3045-3049.
    34. van Uden P, Kenneth NS, Rocha S. Regulation of hypoxia-inducible factor-1alpha by NF-kappaB. Biochem J. Jun 15 2008;412(3):477-484.
    1. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol.2003;21:335-376.
    2. Nerren JR, Swaggerty CL, MacKinnon KM, et al. Differential mRNA expression of the avian-specific toll-like receptor 15 between heterophils from Salmonella-susceptible and -resistant chickens. Immunogenetics. Jan 2009;61(1):71-77.
    3. Beutler B. Endotoxin, toll-like receptor 4, and the afferent limb of innate immunity. Curr Opin Microbiol. Feb 2000;3(1):23-28.
    4. Rakoff-Nahoum S, Medzhitov R. Toll-like receptors and cancer. Nature Reviews Cancer. 2009;9(1):57-63.
    5. Sato Y, Goto Y, Narita N, Hoon DS. Cancer Cells Expressing Toll-like Receptors and the Tumor Microenvironment. Cancer Microenviron. Sep 2009;2 Suppl 1:205-214.
    6. McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet. Oct 2002;3(10):737-747.
    7. Agrawal N, Dasaradhi PV, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK. RNA interference:biology, mechanism, and applications. Microbiol Mol Biol Rev. Dec 2003;67(4):657-685.
    8. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. Dec 2001;25(4):402-408.
    9. Scherr M, Morgan MA, Eder M. Gene silencing mediated by small interfering RNAs in mammalian cells. Curr Med Chem. Feb 2003;10(3):245-256.
    10. Bagasra O, Prilliman KR. RNA interference:the molecular immune system. J Mol Histol. Aug 2004;35(6):545-553.
    11. Ichim TE, Li M, Qian H, et al. RNA interference:a potent tool for gene-specific therapeutics. Am J Transplant. Aug 2004;4(8):1227-1236.
    12. Liu XD, Ma SM, Liu Y, Liu SZ, Sehon A. Short hairpin RNA and retroviral vector-mediated silencing of p53 in mammalian cells. Biochem Biophys Res Commun. Nov 26 2004;324(4):1173-1178.
    13. Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. Journal of Biological Chemistry.1999;274(16):10689.
    14. Zhou M, McFarland-Mancini MM, Funk HM, Husseinzadeh N, Mounajjed T, Drew AF. Toll-like receptor expression in normal ovary and ovarian tumors. Cancer Immunol Immunother. Sep 2009;58(9):1375-1385.
    15. Xie W, Wang Y, Huang Y, Yang H, Wang J, Hu Z. Toll-like receptor 2 mediates invasion via activating NF-kappaB in MDA-MB-231 breast cancer cells. Biochem Biophys Res Commun. Feb 20 2009;379(4):1027-1032.
    16. Yang HZ, Cui B, Liu HZ, et al. Blocking TLR2 activity attenuates pulmonary metastases of tumor. PLoS One.2009;4(8):e6520.
    17. He W, Liu Q, Wang L, Chen W, Li N, Cao X. TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Molecular Immunology.2007;44(11):2850-2859.
    1. Semenza GL. Targeting HIF-1 for cancer therapy. Nature Reviews Cancer. 2003;3(10):721-732.
    2. Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol. Nov 2006;70(5):1469-1480.
    3. Blouin CC, Page EL, Soucy GM, Richard DE. Hypoxic gene activation by lipopolysaccharide in macrophages:implication of hypoxia-inducible factor 1 alpha.
    Blood. Feb 1 2004;103(3):1124-1130.
    4. Frede S, Stockmann C, Freitag P, Fandrey J. Bacterial lipopolysaccharide induces HIF-1 activation in human monocytes via p44/42 MAPK and NF-kappaB. Biochem J. Jun 15 2006;396(3):517-527.
    5. Peyssonnaux C, Cejudo-Martin P, Doedens A, Zinkernagel AS, Johnson RS, Nizet V. Cutting edge:Essential role of hypoxia inducible factor-1 alpha in development of lipopolysaccharide-induced sepsis. J Immunol. Jun 15 2007;178(12):7516-7519.
    6. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. Jul 2004;4(7):499-511.
    7. Rius J, Guma M, Schachtrup C, et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1 alpha. Nature. Jun 5 2008;453(7196):807-811.
    8. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. Dec 2001;25(4):402-408.
    9. Belaiba RS, Bonello S, Zahringer C, et al. Hypoxia up-regulates hypoxia-inducible factor-1 alpha transcription by involving phosphatidylinositol 3-kinase and nuclear factor kappaB in pulmonary artery smooth muscle cells. Mol Biol Cell. Dec 2007; 18(12):4691-4697.
    10. van Uden P, Kenneth NS, Rocha S. Regulation of hypoxia-inducible factor-1 alpha by NF-kappaB. Biochem J. Jun 15 2008;412(3):477-484.
    11. Hoffmann AC, Mori R, Vallbohmer D, et al. High expression of HIF1a is a predictor of clinical outcome in patients with pancreatic ductal adenocarcinomas and correlated to PDGFA, VEGF, and bFGF. Neoplasia. Jul 2008;10(7):674-679.
    12. Buchler P, Reber HA, Buchler M, et al. Hypoxia-inducible factor 1 regulates vascular endothelial growth factor expression in human pancreatic cancer. Pancreas. Jan 2003;26(1):56-64.
    13. Chen C, Yu Z. siRNA targeting HIF-1 alpha induces apoptosis of pancreatic cancer cells through NF-kappaB-independent and -dependent pathways under hypoxic conditions. Anticancer Res. Apr 2009;29(4):1367-1372.
    14. Yang L, Kang WK. The effect of HIF-1 alpha siRNA on growth and chemosensitivity of MIA-paca cell line. Yonsei Med J. Apr 30 2008;49(2):295-300.
    15. Dery MAC, Michaud MD, Richard DE. Hypoxia-inducible factor 1:regulation by hypoxic and non-hypoxic activators. International Journal of Biochemistry & Cell Biology.2005;37(3):535-540.
    16. Gorlach A. The cross-talk between NF kappa B and HIF-1:further evidence for a significant liaison. BIOCHEMICAL JOURNAL-LONDON-.2008;412(3):17.
    17. Oh YT, Lee JY, Yoon H, et al. Lipopolysaccharide induces hypoxia-inducible factor-1 alpha mRNA expression and activation via NADPH oxidase and Spl-dependent pathway in BV2 murine microglial cells. Neurosci Lett. Jan 312008;431(2):155-160.
    18. Nishi K, Oda T, Takabuchi S, et al. LPS induces hypoxia-inducible factor 1 activation in macrophage-differentiated cells in a reactive oxygen species-dependent manner. Antioxid Redox Signal. May 2008;10(5):983-995.
    19. Lall H, Coughlan K, Sumbayev VV. HIF-1 alpha protein is an essential factor for protection of myeloid cells against LPS-induced depletion of ATP and apoptosis that supports Toll-like receptor 4-mediated production of IL-6. Mol Immunol. Jun 2008;45(11):3045-3049.
    20. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol.2003;21:335-376.
    21. Yu L, Chen S. Toll-like receptors expressed in tumor cells:targets for therapy. Cancer Immunol Immunother. Sep 2008;57(9):1271-1278.
    22. Szczepanski MJ, Czystowska M, Szajnik M, et al. Triggering of Toll-like Receptor 4 Expressed on Human Head and Neck Squamous Cell Carcinoma Promotes Tumor Development and Protects the Tumor from Immune Attack. Cancer Research. 2009;69(7):3105-3113.
    23. Zhang YB, He FL, Fang M, et al. Increased expression of Toll-like receptors 4 and 9 in human lung cancer. Molecular Biology Reports.2009;36(6):1475-1481.
    24. Schmausser B, Andrulis M, Endrich S, Muller-Hermelink HK, Eck M. Toll-like receptors TLR4, TLR5 and TLR9 on gastric carcinoma cells:an implication for interaction with Helicobacter pylori. Int JMed Microbiol. Jun 2005;295(3):179-185.
    25. Zhou M, McFarland-Mancini MM, Funk HM, Husseinzadeh N, Mounajjed T, Drew AF. Toll-like receptor expression in normal ovary and ovarian tumors. Cancer Immunol Immunother.2009;58(9):1375-1385.
    26. Etokebe GE, Knezevic J, Petricevic B, Pavelic J, Vrbanec D, Dembic Z. Single-nucleotide polymorphisms in genes encoding toll-like receptor-2,-3,-4, and -9 in case-control study with breast cancer. Genet Test Mol Biomarkers. Dec 2009;13(6):729-734.
    27. Goto Y, Arigami T, Kitago M, et al. Activation of toll-like receptors 2,3, and 4 on human melanoma cells induces inflammatory factors. Molecular Cancer Therapeutics. 2008;7(11):3642-3653.
    28. Bonello S, Zahringer C, BelAiba RS, et al. Reactive oxygen species activate the HIF-1 alpha promoter via a functional NFkappaB site. Arterioscler Thromb Vasc Biol. Apr 2007;27(4):755-761.
    29. Wang W, Abbruzzese JL, Evans DB, Larry L, Cleary KR, Chiao PJ. The nuclear factor-kappa B RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin Cancer Res. Jan 1999;5(1):119-127.
    1. Keleg S, Buchler P, Ludwig R, Buchler MW, Friess H. Invasion and metastasis in pancreatic cancer. Mol Cancer. Jan 22 2003;2:14.
    2. Lyons AJ, Jones J. Cell adhesion molecules, the extracellular matrix and oral squamous carcinoma. Int J Oral Maxillofac Surg. Aug 2007;36(8):671-679.
    3. Hua D, Liu MY, Cheng ZD, et al. Small interfering RNA-directed targeting of Toll-like receptor 4 inhibits human prostate cancer cell invasion, survival, and tumorigenicity. Mol Immunol. Sep 2009;46(15):2876-2884.
    4. Killeen SD, Wang JH, Andrews EJ, Redmond HP. Bacterial endotoxin enhances colorectal cancer cell adhesion and invasion through TLR-4 and NF-kappa B-dependent activation of the urokinase plasminogen activator system. British Journal of Cancer.2009;100(10):1589-1602.
    5. Wang JH, Manning BJ, Wu QD, Blankson S, Bouchier-Hayes D, Redmond HP. Endotoxin/lipopolysaccharide activates NF-kappa B and enhances tumor cell adhesion and invasion through a beta 1 integrin-dependent mechanism. J Immunol. Jan 15 2003;170(2):795-804.
    6. Molteni M, Marabella D, Orlandi C, Rossetti C. Melanoma cell lines are responsive in vitro to lipopolysaccharide and express TLR-4. Cancer Lett. Apr 8 2006;235(1):75-83.
    7. Cordes N, Park CC. betal integrin as a molecular therapeutic target. Int J Radiat Biol. Nov-Dec 2007;83(11-12):753-760.
    8. Joergensen MT, Brunner N, De Muckadell OB. Comparison of circulating MMP-9, TIMP-1 and CA19-9 in the detection of pancreatic cancer. Anticancer Res. Feb 2010;30(2):587-592.
    9. Hynes RO. The extracellular matrix:not just pretty fibrils. Science. Nov 27 2009;326(5957):1216-1219.
    10. Lomberk G. The Extracellular Matrix and Cell Migration. Pancreatology. Mar 19 2010;10(1):4-5.
    11. Rathinam R, Alahari SK. Important role of integrins in the cancer biology. Cancer Metastasis Rev. Mar 2010;29(1):223-237.
    12. Walsh N, Clynes M, Crown J, O'Donovan N. Alterations in integrin expression modulates invasion of pancreatic cancer cells. JExp Clin Cancer Res.2009;28:140.
    13. Moschos SJ, Drogowski LM, Reppert SL, Kirkwood JM. Integrins and cancer. Oncology (Williston Park). Aug 2007;21(9 Suppl 3):13-20.
    14. Fong YC, Hsu SF, Wu CL, et al. Transforming growth factor-betal increases cell migration and betal integrin up-regulation in human lung cancer cells. Lung Cancer. Apr 2009;64(1):13-21.
    15. Andrews EJ, Wang JH, Winter DC, Laug WE, Redmond HP. Tumor cell adhesion to endothelial cells is increased by endotoxin via an upregulation of beta-1 integrin expression. J Surg Res. May 1 2001;97(1):14-19.
    16. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases:regulators of the tumor microenvironment. Cell. Apr 2 2010;141(1):52-67.
    17. Deryugina El, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. Mar 2006;25(1):9-34.
    18. Yoshizaki T, Sato H, Furukawa M, Pagano JS. The expression of matrix metalloproteinase 9 is enhanced by Epstein-Barr virus latent membrane protein 1. Proc Natl Acad Sci USA. Mar 31 1998;95(7):3621-3626.
    1. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003;21:335-376.
    2. Yu L, Chen S. Toll-like receptors expressed in tumor cells:targets for therapy. Cancer Immunol Immunother. Sep 2008;57(9):1271-1278.
    3. Bianchi ME. DAMPs, PAMPs and alarmins:all we need to know about danger. J Leukoc Biol. Jan 2007;81(1):1-5.
    4. Lotze MT, Zeh HJ, Rubartelli A, et al. The grateful dead:damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev. Dec 2007;220:60-81.
    5. Ellerman JE, Brown CK, de Vera M, et al. Masquerader:high mobility group box-1 and cancer. Clin Cancer Res. May 15 2007;13(10):2836-2848.
    6. Klein JR, Hoon DS, Nangauyan J, Okun E, Cochran AJ. S-100 protein stimulates cellular proliferation. Cancer Immunol Immunother.1989;29(2):133-138.
    7. Helfman DM, Kim EJ, Lukanidin E, Grigorian M. The metastasis associated protein S100A4:role in tumour progression and metastasis. Br J Cancer. Jun 6 2005;92(11):1955-1958.
    8. Hiratsuka S, Watanabe A, Sakurai Y, et al. The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol. Nov 2008;10(11):1349-1355.
    9. Voelcker V, Gebhardt C, Averbeck M, et al. Hyaluronan fragments induce cytokine and metalloprotease upregulation in human melanoma cells in part by signalling via TLR4. Exp Dermatol. Feb 2008;17(2):100-107.
    10. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. Jul 2004;4(7):499-511.
    11. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. Jul 24 2008;454(7203):436-444.
    12. Kuper H, Adami HO, Trichopoulos D. Infections as a major preventable cause of human cancer. J Intern Med. Sep 2000;248(3):171-183.
    13. Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer. Apr 2005;5(4):263-274.
    14. Schmausser B, Andrulis M, Endrich S, Muller-Hermelink HK, Eck M. Toll-like receptors TLR4, TLR5 and TLR9 on gastric carcinoma cells:an implication for interaction with Helicobacter pylori. Int JMed Microbiol. Jun 2005;295(3):179-185.
    15. Fukata M, Abreu MT. TLR4 signalling in the intestine in health and disease. Biochem Soc Trans. Dec 2007;35(Pt 6):1473-1478.
    16. Fukata M, Chen A, Vamadevan AS, et al. Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology. 2007;133(6):1869-1881.
    17. Furrie E, Macfarlane S, Thomson G, Macfarlane GT. Toll-like receptors-2,-3 and -4 expression patterns on human colon and their regulation by mucosal-associated bacteria. Immunology. Aug 2005;115(4):565-574.
    18.Zhou M, McFarland-Mancini MM, Funk HM, Husseinzadeh N, Mounajjed T, Drew AF. Toll-like receptor expression in normal ovary and ovarian tumors. Cancer Immunol Immunother.2009;58(9):1375-1385.
    19. Salaun B, Romero P, Lebecque S. Toll-like receptors' two-edged sword:when immunity meets apoptosis. Eur J Immunol. Dec 2007;37(12):3311-3318.
    20. Watson RW, Redmond HP, McCarthy J, Burke PE, Bouchier-Hayes D. Exposure of the peritoneal cavity to air regulates early inflammatory responses to surgery in a murine model. Br J Surg. Aug 1995;82(8):1060-1065.
    21. Pidgeon GP, Harmey JH, Kay E, Da Costa M, Redmond HP, Bouchier-Hayes DJ. The role of endotoxin/lipopolysaccharide in surgically induced tumour growth in a murine model of metastatic disease. Br J Cancer. Dec 1999;81 (8):1311-1317.
    22. Luo JL, Maeda S, Hsu LC, Yagita H, Karin M. Inhibition of NF-kappaB in cancer cells converts inflammation-induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell. Sep 2004;6(3):297-305.
    23. Szczepanski MJ, Czystowska M, Szajnik M, et al. Triggering of Toll-like Receptor 4 Expressed on Human Head and Neck Squamous Cell Carcinoma Promotes Tumor Development and Protects the Tumor from Immune Attack. Cancer Research. 2009;69(7):3105-3113.
    24. Pei ZY, Lin DG, Song XY, Li H, Yao HF. TLR4 signaling promotes the expression of VEGF and TGF beta(1) in human prostate epithelial PC3 cells induced by lipopolysaccharide. Cellular Immunology.2008;254(1):20-27.
    25. Song J, Duncan MJ, Li G, et al. A novel TLR4-mediated signaling pathway leading to IL-6 responses in human bladder epithelial cells. PLoS Pathog. Apr 2007;3(4):e60.
    26. Huang B, Zhao J, Li HX, et al. Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Research.2005;65(12):5009-5014.
    27. Hua D, Liu MY, Cheng ZD, et al. Small interfering RNA-directed targeting of Toll-like receptor 4 inhibits human prostate cancer cell invasion, survival, and tumorigenicity. Mol Immunol. Sep 2009;46(15):2876-2884.
    28. Goto Y, Arigami T, Kitago M, et al. Activation of toll-like receptors 2,3, and 4 on human melanoma cells induces inflammatory factors. Molecular Cancer Therapeutics. 2008;7(11):3642-3653.
    29. Killeen SD, Wang JH, Andrews EJ, Redmond HP. Bacterial endotoxin enhances colorectal cancer cell adhesion and invasion through TLR-4 and NF-kappa B-dependent activation of the urokinase plasminogen activator system. British Journal of Cancer. 2009;100(10):1589-1602.
    30. Wang JH, Manning BJ, Wu QD, Blankson S, Bouchier-Hayes D, Redmond HP. Endotoxin/lipopolysaccharide activates NF-kappa B and enhances tumor cell adhesion and invasion through a beta 1 integrin-dependent mechanism. J Immunol. Jan 15 2003;170(2):795-804.
    31. Molteni M, Marabella D, Orlandi C, Rossetti C. Melanoma cell lines are responsive in vitro to lipopolysaccharide and express TLR-4. Cancer Lett. Apr 82006;235(1):75-83.
    32. Andrews EJ, Wang JH, Winter DC, Laug WE, Redmond HP. Tumor cell adhesion to endothelial cells is increased by endotoxin via an upregulation of beta-1 integrin expression. J Surg Res. May 1 2001;97(1):14-19.
    33. Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology.2005;69 Suppl 3:4-10.
    34. van Beijnum JR, Buurman WA, Griffioen AW. Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis. 2008;11(1):91-99.
    35. Qian YG, Deng JF, Geng L, et al. TLR4 signaling induces B7-H1 expression through MAPK pathways in bladder cancer cells. Cancer Investigation.2008;26(8):816-821.
    36. Strauss L, Bergmann C, Whiteside TL. Human circulating CD4+CD25highFoxp3+ regulatory T cells kill autologous CD8+ but not CD4+ responder cells by Fas-mediated apoptosis. J Immunol. Feb 12009; 182(3):1469-1480.
    37. Linehan DC, Goedegebuure PS. CD25+CD4+regulatory T-cells in cancer. Immunol Res.2005;32(1-3):155-168.
    38. Perrone G, Ruffini PA, Catalano V, et al. Intratumoural FOXP3-positive regulatory T cells are associated with adverse prognosis in radically resected gastric cancer. Eur J Cancer. Sep 2008;44(13):1875-1882.
    39. Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci.2008;13:453-461.
    40. Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V. Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev. Apr 2008;222:162-179.
    41. Li H, Han Y, Guo Q, Zhang M, Cao X. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol. Jan 1 2009;182(1):240-249.
    42. Rodriguez PC, Ochoa AC. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer:mechanisms and therapeutic perspectives. Immunol Rev. Apr 2008;222:180-191.
    43. Kryczek I, Lange A, Mottram P, et al. CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res. Jan 15 2005;65(2):465-472.
    44. Li H, Fan X, Houghton J. Tumor microenvironment:the role of the tumor stroma in cancer. J Cell Biochem. Jul 1 2007;101(4):805-815.
    45. Bhowmick NA, Chytil A, Plieth D, et al. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science. Feb 6 2004;303(5659):848-851.