CD88在肝癌侵袭转移中的作用及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝癌是国内常见的恶性肿瘤之一,其侵袭转移与复发是患者死亡的主要原因之一。因此,探索肝癌侵袭转移与复发的发生机制,寻求有效的抗肝癌转移与复发治疗措施,对改善肝癌患者的预后具有重要意义。
     研究依据:CD88又称补体5片段受体(complement component 5a receptor, C5aR),是一种在细胞膜表面的G蛋白偶联受体(GPCR),其在体内主要分布在髓来源细胞系,参与一系列炎症反应过程,如趋化作用,促进多种细胞的释放反应(如前列腺素、5-HT、组胺、IL-1、IL-6等),增加血管通透性等。近来研究发现CD88在肝脏再生实质细胞中表达,并且在肝损伤后的肝细胞再生修复过程中发挥重要作用。CD88还参与了细胞抗失巢凋亡、新生血管生成等。CD88与其配体C5a结合后可激活下游的G蛋白、WASP、β-arresting等信号分子,引起PI3K/AKT、Ras/Raf/MEK/ERK和c-Src/JAK等信号通路反应,可激活CREB、NF-κB、STAT3等核转录因子。近来研究发现CD88在乳腺癌、肺癌、脑胶质细胞瘤组织中表达较正常组织明显升高。Markiewski等报道在小鼠子宫颈癌模型中,通过补体5敲除或CD88拮抗剂应用后小鼠子宫颈癌肿瘤的增殖明显受到抑制,其机制可能与微环境中髓来源抑制细胞(myeloid-derived suppressor cells, MDSC)增加并抑制肿瘤微环境中CD8+T细胞的数量和功能。在我所前期实验中发现Micro-RNA26表达较低的肝癌患者预后较高表达的患者预后差,通过对两者基因芯片扫描结果显示低表达Micro-RNA26的癌组织较高表达Micro-RNA26的癌组织中CD88表达明显升高,这提示低表达Micro-RNA26可能通过上调CD88表达的同时上调IL-6、NF-κB促进肿瘤发展。
     但迄今为止,它对肝癌的影响尚未有明确报道。本实验首先在肝癌、相应癌旁组织以及不同转移潜能肝癌细胞系中检测CD88表达差异;研究其与肝癌发生、发展以及预后的相关性;通过转染与干扰调节CD88表达后,探讨CD88与肝癌细胞侵袭与转移的关系。
     目的:研究CD88在肝癌细胞株及肝癌、相应癌旁组织中的表达差异,初步分析其与肝癌发生的关系。
     方法:应用荧光定量PCR、免疫组织化学及Western Blot方法检测CD88在56例肝癌、相应癌旁组织中的表达。应用荧光定量PCR、Western Blot及免疫荧光检测不同转移潜能肝癌细胞的CD88表达情况。
     结果:荧光定量PCR显示CD88在肝癌、相应癌旁中的相对表达量分别为0.056±0.014vs0.003±0.0004,肝癌与癌旁两者间差异明显(p<0.001)。Western Blot结果同样显示肝癌组织CD88表达高于癌旁组织(3.71±0.92vs.0.91±0.34,p<0.01);在肝癌组织中早期复发组CD88表达要明显高于非早期复发组(4.43±0.48vs.1.64±0.28,p<0.05)。免疫组织化学显示两者都有CD88表达,但肝癌组织中的表达明显高于后者(p<0.05)。在肝癌细胞株中高转移潜能细胞HCCLM3和MHCC-97H的CD88mRNA和蛋白表达明显高于低转移潜能细胞MHCC-97L和HepG2。
     结论:CD88在肝癌发生发展中可能有重要作用。
     目的:研究CD88在原发性肝癌中的表达情况,探讨CD88在肝癌组织中表达的相关性、与原发性肝癌的关系及临床生物学意义。
     方法:组织芯片检测403例肝癌组织中CD88的表达,统计分析其与肝癌临床病理特征及预后的关系。
     结果:CD88蛋白的过表达与肝癌患者的血浆高AFP水平、肿瘤直径大于5cm、有肉眼癌栓、高BCLA临床分期和高CLIP分期等临床病理因素有明显关联(p<0.05)。CD88表达阳性组的7年总体生存率及无病生存率明显低于CD88阴性组(p<0.05),分层Kaplan-Meier分析显示在高AFP组、单个肿瘤组、高肿瘤分化组、无微血管侵犯组中肝癌组织中CD88过表达患者OS和DFS均较低表达组差。多因素分析表明血清GGT>54U/L、血清AFP>20ng/ml、有肝硬化、肿瘤直径>5cm、多个肿瘤、有微血管癌栓及CD88表达阳性是影响OS的独立预后因素;血清GGT>54U/L、血清AFP>20ng/ml、有肝硬化、多个肿瘤、有微血管癌栓及CD88表达阳性等为DFS的独立预后因素。
     结论:CD88与原发性肝癌的侵袭、转移及不良预后相关。
     目的:研究CD88与肝癌细胞侵袭与转移的关系。
     方法:转染pReceiver-M55-CD88 cDNA和GPHI/GFP/Neo-CD88-shRNA,筛选出稳定细胞株,经western blot, qRT-PCR验证CD88表达改变后,CSa刺激试验研究基质金属蛋白酶(MMP2、9)及血管内皮生长因子(VEGF) mRNA变化;MTT检测CD88表达改变后,细胞增殖能力变化;Transwell研究细胞迁移侵袭能力变化。细胞接种于裸鼠肝原位,研究CD88改变后,细胞成瘤与肺转移能力的改变;免疫组化检测移植瘤的CD88、MMP9和VEGF表达。
     结果:转染pReceiver-M55-CD88 cDNA和GPHI/GFP/Neo-CD88-shRNA于低转移能力的HepG2与高转移的HCCLM3,G418筛选出稳定细胞株,Western blot和qRT-PCR验证CD88表达明显上调或下调;Transwell实验结果显示上调或下调CD88表达后的肝癌细胞的迁移和侵袭能力明显增加或减少;rC5a刺激后细胞mRNA研究显示CD88的表达与MMP2,MMP9,VEGF的分泌呈正相关。CD88表达水平对肝癌细胞增殖有一定影响。高表达CD88的肝癌细胞体内成瘤能力较低表达肝癌细胞明显上升,高CD88表达组细胞的肺转移灶明显增加,且以Ⅲ、Ⅳ期为主;下调HCCLM3的CD88后较对照组MMP9和VEGF明显表达减少。
     结论:肝癌细胞CD88表达上调或下调能促进或降低肝癌的侵袭与转移能力。
Hepatocellular carcinoma (HCC) is one of the most common cancers in China in terms of number of cases, and the invasion and metastasis are the leading cause for the HCC death, so it is of great clinical importance to investigate the mechanism of invasion and metastasis, and the effectual therapeutic way of anti-metastasis and relapse of HCC.
     Previous study has showed that CD88, also known as complement component 5a receptor, is a kind of cell surface G protein-coupled receptor (GPCR). CD88 is mainly expressed in the surface of marrow-derived cells, are mainly distributed in line to participate in a series of inflammatory reactions, such as chemotaxis, promote multi-kinds of cells, the release reaction (such as prostaglandins,5-HT, histamine, IL-1, IL-6, etc.), increased vascular permeability and so on. Recently, research showed that CD88 is also expressed in the liver parenchymal cells and play an important role in the course of liver regeneration after partial liver resection. Recent it was found that CD88 mRNA expression in the tissue of primary glioblastomas was significantly higher than in normal brain tissue. Markiewski et al. reported that in the mouse cervical cancer model, knock-out the expression of CD88 in the mouse can reduce the tumor proliferation by increase the MDS cells infiltration and inhibit the number and function of intra-tumor CD8+ T cell. It has not yet been clearly reported the relationship of expression of CD88with hepatocellular carcinoma.
     In the present study, we investigated the expression of CD88 in HCC cell lines with different metastatic potential, and HCC and their adjacent nontumorous tissues, and then explored the changes of invasive and metastatic ability in non-metastatic cell line HepG2 through CD88 cDNA transfection and high metastatic cell line HCCLM3 through silencing CD88 in vivo and vitro. We assayed the clinical significance of CD88 in HCC samples using tissue microarrays (TMAs) and quantitative reverse transcription-polymerase chain reaction (qRT-PCR).
     Objective: To investigate the relationship between the expression of CD88 and the carcinogenesis of HCC.
     Methods:The expression of CD88 was evaluated in HCC and their adjacent nontumorous by qRT-PCR, western blot and immunohistochemistry. qRT-PCR and western blot was used to detect the expression of CD88 in different HCC cell lines with different metastatic potential.
     Result: CD88 mRNA can be detected in HCC and their adjacent nontumorous tissue, the CD88 mRNA level was significantly higher in HCC than those in their adjacent nontumorous tissues (0.056±0.014 vs.0.003±0.0004,p<0.001),. CD88 protein level detected by western blot was significantly higher in HCC than those in their adjacent nontumorous tissues (3.71±0.92 vs.0.91±0.34, P<0.01). The CD88 protein was located mainly in the cellular membrane of HCC cell, and partly in the cytoplasm. The level of CD88 protein and protein in HCCLM3 and MHCC-97H with high metastasis potential was higher than in MHCC-97L and HepG2 with low metastasis potential.
     Conclusion:The overexpression of CD88 may be related to the carcinogenesis of HCC.
     Objective: To investigate the correlation and clinical significance of CD88 with hepatocellular carcinoma.
     Methods:The TMA was used to detect the expression of CD88 in 403 HCC patients, then the clinical significance of overexpression of CD88 was analyzed by SPSS 15.
     Result: Overexpression CD88 accounted of 41.7%(168/403) of total patients. Overexpression CD88 was found to correlate significantly with high serum AFP level, tumor diameter greater than 5cm, portal vein tumor thrombus(PVTT), high BCLA clinical stage and high-CLIP staging (p<0.05).7-year overall survival and disease-free survival rate in the group of CD88-positive was significantly lower than that in the group of CD88-negative group (p<0.05). Multivariate analysis showed that serum GGT>54U/L, serum AFP>20ng/ml, cirrhosis, tumor diameter>5cm, multiple tumors, there is micro-vascular thrombosis and CD88 positive expression were independent prognostic factors for OS; serum GGT>54U/L, serum AFP>20ng/ml, cirrhosis, multiple tumors, there is micro-vascular thrombosis and positive expression of CD88 were independent prognostic factors for DFS.
     Conclusion:The overexpression of CD88 can be a new marker in predicting the prognosis of HCC.
     Objective: To investigate the relationship between the expression of CD88 and the invasion and metastasis of HCC cells.
     Method:We transfected the pReceiver-M55-CD88 cDNA and GPHI/GFP/Neo-CD88-shRNA plasmid into the non-metastatic cell line HepG2 and the highly metastatic cell line HCCLM3, the expression of CD88 was determined by qRT-PCR, western blot in the stable transfection HCC cell lines. MMP2,9 and VEGF expression change were detected by qRT-PCR after stimulated by recombination C5a in transfected HCC cell lines previously, and the ability of proliferation and invasion was tested by MTT and transwell in the the stable transfection HCC cell and their parental cell lines, respectively. At the last, HCC cell lines were implanted in the liver of nude mice. Metastasis assays in vivo was performed, and CD88, MMP9 and VEGF expression in the tumor were detected by immunohistochemistry.
     Result: Stable cell line HepG2 and HCCLM3 cells transfected by pReceiver-M55-CD88 cDNA and GPHI/GFP/Neo-CD88-shRNA plasmid respectively, were selected by G418. HCC cell lines with high CD88 expression increase higher mRNA expression of MMP2, MMP9, VEGF in the cell lines rather than the cell lines with low CD88 expression stimulated by recombination human C5a. Cell proliferation was lightly influenced by CD88 expression levels in HCC cell lines; high CD88 expression enhanced capability of cell movement and invasion in vitro, and remarkably increased lung metastases in vivo, especially in stageⅢandⅣ.
     Conclusion:The CD88 expression in HCC cell lines was positive correlation with the ability of HCC cell invasion and metastasis.
引文
成因子分泌。这些证据均提示CD88分子表达上调可能促进炎症相关分子表达,从而促进肿瘤发生发展。虽然,很多研究提示CD88与炎症、肿瘤发生关系密切;但是到目前为止,CD88在肝癌中的表达以及与肝癌转移、复发的关系还未有报道。
    C5a/CD88在肝癌转移与复发中的作用还无任何研究,但大量炎症方面研究已表明CD88表达对细胞的趋化移动、MMP和VEGF分泌等有重要作用,预示其潜在的研究价值。我们拟对肝癌中对CD88的表达、与肝癌转移与复发的关系等进行研究,以期为抑制肝癌转移与复发提供新的治疗靶点。
    1. Parkin, D.M., et al., Global cancer statistics,2002. CA Cancer J Clin,2005. 55(2):p.74-108.
    2. Stravitz, R.T., et al., Surveillance for hepatocellular carcinoma in patients with cirrhosis improves outcome. Am J Med,2008.121(2):p.119-26.
    3. Forner, A., et al., Diagnosis of hepatic nodules 20 mm or smaller in cirrhosis: Prospective validation of the noninvasive diagnostic criteria for hepatocellular carcinoma. Hepatology,2008.47(1):p.97-104.
    4. Itamoto, T., et al., Repeat hepatectomy for recurrent hepatocellular carcinoma. Surgery,2007.141(5):p.589-97.
    5. Llovet, J.M., Clinical and molecular classification of hepatocellular carcinoma. Liver Transpl,2007.13(11 Suppl 2):p. S13-6.
    6. Llovet, J.M., A. Burroughs, and J. Bruix, Hepatocellular carcinoma. Lancet, 2003.362(9399):p.1907-17.
    7. Tang, Z.Y., et al., A decade's studies on metastasis of hepatocellular carcinoma. J Cancer Res Clin Oncol,2004.130(4):p.187-96.
    8. Mantovani, A., et al., Cancer-related inflammation. Nature,2008.454(7203): p.436-44.
    9. Markiewski, M.M., et al., Modulation of the antitumor immune response by complement. Nat Immunol,2008.9(11):p.1225-35.
    10. Drouin, S.M., et al., Expression of the complement anaphylatoxin C3a and C5a receptors on bronchial epithelial and smooth muscle cells in models of sepsis and asthma. J Immunol,2001.166(3):p.2025-32.
    11. Braun, M. and A.E. Davis,3rd, Cultured human glomerular mesangial cells express the C5a receptor. Kidney Int,1998.54(5):p.1542-9.
    12. Buchner, R.R., et al., Expression of functional receptors for human C5a anaphylatoxin (CD88) on the human hepatocellular carcinoma cell line HepG2. Stimulation of acute-phase protein-specific mRNA and protein synthesis by human C5a anaphylatoxin. J Immunol,1995.155(1):p.308-15.
    13. Schlaf, G., et al., Expression and induction of anaphylatoxin C5a receptors in the rat liver. Histol Histopathol,2003.18(1):p.299-308.
    14. Markiewski, M.M., et al., The regulation of liver cell survival by complement. J Immunol,2009.182(9):p.5412-8.
    15. Daveau, M., et al., Expression of a functional C5a receptor in regenerating hepatocytes and its involvement in a proliferative signaling pathway in rat. J Immunol,2004.173(5):p.3418-24.
    16. Strey, C.W., et al., The proinflammatory mediators C3a and C5a are essential for liver regeneration. J Exp Med,2003.198(6):p.913-23.
    17. Tso, C.L., et al., Primary glioblastomas express mesenchymal stem-like properties. Mol Cancer Res,2006.4(9):p.607-19.
    18. Ramaswamy, S., et al., Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci U S A,2001.98(26):p.15149-54.
    19. Ji, J., et al., MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med,2009.361(15):p.1437-47.
    20. Pan, Z.K., Anaphylatoxins C5a and C3a induce nuclear factor κB activation in human peripheral blood monocytes Biochim Biophys Acta 1998.1443:p. 90-8.
    21. Nozaki, M., et al., Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci U S A,2006.103(7):p. 2328-33.
    22. Albrecht, E.A., et al., C5a-induced gene expression in human umbilical vein endothelial cells. Am J Pathol,2004.164(3):p.849-59.
    1. Coussens, L.M.W., Z., Inflammation and cancer.. Nature,2002.420:p. 860-867
    2. Mantovani, A., et al., Cancer-related inflammation. Nature,2008.454(7203): p.436-44.
    3. Kim, J., et al., Chemokine receptor CXCR4 expression in colorectal cancer patients increases the risk for recurrence and for poor survival. J Clin Oncol, 2005.23(12):p.2744-53.
    4. Monk, P.N., et al., Function, structure and therapeutic potential of complement C5a receptors. Br J Pharmacol,2007.152(4):p.429-48.
    5. Ramaswamy, S., et al., Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci U S A,2001.98(26):p.15149-54.
    6. Markiewski, M.M., et al., Modulation of the antitumor immune response by complement. Nat Immunol,2008.9(11):p.1225-35.
    7. Li, Y., et al., Stepwise metastatic human hepatocellular carcinoma cell model system with multiple metastatic potentials established through consecutive in vivo selection and studies on metastatic characteristics. J Cancer Res Clin Oncol,2004.130(8):p.460-8.
    8. Guan, X., et al., A novel, rapid strategy to form dendritomas from human dendritic cells and hepatocellular carcinoma cell line HCCLM3 cells using mature dendritic cells derived from human peripheral blood CD 14+ monocytes within 48 hours of in vitro culture. World J Gastroenterol,2004. 10(24):p.3564-8.
    9. Li, Y., et al., [Gene expression profile of human hepatocellular carcinoma cell lines with different metastatic potentials]. Zhonghua Zhong Liu Za Zhi,2002. 24(6):p.533-6.
    10. Boulay, F., et al., Expression cloning of a receptor for C5a anaphylatoxin on differentiated HL-60 cells. Biochemistry,1991.30(12):p.2993-9.
    11. Gerard, N.P. and C. Gerard, The chemotactic receptor for human C5a anaphylatoxin. Nature,1991.349(6310):p.614-7.
    12. Gerard, N.P., et al., Human chemotaxis receptor genes cluster at 19q13.3-13.4. Characterization of the human C5a receptor gene. Biochemistry,1993.32(5): p.1243-50.
    13. Surgand, J.S., et al., A chemogenomic analysis of the transmembrane binding cavity of human G-protein-coupled receptors. Proteins,2006.62(2):p.509-38.
    14. Oppermann, M., et al., Probing the human receptor for C5a anaphylatoxin with site-directed antibodies. Identification of a potential ligand binding site on the NH2-terminal domain. J Immunol,1993.151(7):p.3785-94.
    15. Sheth, B., et al., The regulation of actin polymerization in differentiating U937 cells correlates with increased membrane levels of the pertussis-toxin-sensitive G-protein Gi2. Biochem J,1991.275 (Pt 3):p.809-11.
    16. Buhl, A.M., et al., Mapping of the C5a receptor signal transduction network in human neutrophils. Proc Natl Acad Sci U S A,1994.91(19):p.9190-4.
    17. Fureder, W., et al., Differential expression of complement receptors on human basophils and mast cells. Evidence for mast cell heterogeneity and CD88/C5aR expression on skin mast cells. J Immunol,1995.155(6):p. 3152-60.
    18. Gasque, P., et al., Identification and characterization of the complement C5a anaphylatoxin receptor on human astrocytes. J Immunol,1995.155(10):p. 4882-9.
    19. Nilsson, G., et al., C3a and C5a are chemotaxins for human mast cells and act through distinct receptors via a pertussis toxin-sensitive signal transduction pathway. J Immunol,1996.157(4):p.1693-8.
    20. Buchner, R.R., et al., Expression of functional receptors for human C5a anaphylatoxin (CD88) on the human hepatocellular carcinoma cell line HepG2. Stimulation of acute-phase protein-specific mRNA and protein synthesis by human C5a anaphylatoxin. J Immunol,1995.155(1):p.308-15.
    21. Haviland, D.L., et al., Cellular expression of the C5a anaphylatoxin receptor (C5aR):demonstration of C5aR on nonmyeloid cells of the liver and lung. J Immunol,1995.154(4):p.1861-9.
    22. Drouin, S.M., et al., Expression of the complement anaphylatoxin C3a and C5a receptors on bronchial epithelial and smooth muscle cells in models of sepsis and asthma. J Immunol,2001.166(3):p.2025-32.
    23. Braun, M. and A.E. Davis,3rd, Cultured human glomerular mesangial cells express the C5a receptor. Kidney Int,1998.54(5):p.1542-9.
    24. Rahpeymai, Y., et al., Complement: a novel factor in basal and ischemia-induced neurogenesis. EMBO J,2006.25(6):p.1364-74.
    25. Schlaf, G., et al., Expression and induction of anaphylatoxin C5a receptors in the rat liver. Histol Histopathol,2003.18(1):p.299-308.
    26. de Boer, J.P., et al., Interplay of complement and cytokines in the pathogenesis of septic shock. Immunopharmacology,1992.24(2):p.135-48.
    27. Gardinali, M., et al., Complement activation and polymorphonuclear neutrophil leukocyte elastase in sepsis. Correlation with severity of disease. Arch Surg,1992.127(10):p.1219-24.
    28. Martin, S.E., et al., C5a decreases regional coronary blood flow and myocardial function in pigs:implications for a granulocyte mechanism. Circ Res,1988.63(2):p.483-91.
    29. DiScipio, R.G., et al., C5a mediates secretion and activation of matrix metalloproteinase 9 from human eosinophils and neutrophils. Int Immunopharmacol,2006.6(7):p.1109-18.
    30. Nozaki, M., et al., Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci U S A,2006.103(7):p. 2328-33.
    31. Farkas, I., et al., Complement C5a anaphylatoxin fragment causes apoptosis in TGW neuroblastoma cells. Neuroscience,1998.86(3):p.903-11.
    32. Farkas, I., et al., A neuronal C5a receptor and an associated apoptotic signal transduction pathway. J Physiol,1998.507 (Pt 3):p.679-87.
    33. Tso, C.L., et al., Primary glioblastomas express mesenchymal stem-like properties. Mol Cancer Res,2006.4(9):p.607-19.
    34. Ji, J., et al., MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med,2009.361(15):p.1437-47.
    35. Bilimoria, M.M., et al., Underlying liver disease, not tumor factors, predicts long-term survival after resection of hepatocellular carcinoma. Arch Surg, 2001.136(5):p.528-35.
    36. Schlaf, G., et al., Upregulation of fibronectin but not of entactin, collagen IV and smooth muscle actin by anaphylatoxin C5a in rat hepatic stellate cells. Histol Histopathol,2004.19(4):p.1165-74. OS和DFS均较低表达组差,提示在分期较早肝癌患者(高AFP、单个肿瘤、高肿瘤分化、无微血管侵犯)中CD88表达对预后预测更有意义。这说明肝癌组织中CD88表达高低对患者预后密切相关。这些证据提示了肝癌组织中CD88过表达可能与肝癌的发展相关。在细胞试验中已证实了CD88表达与细胞的趋化移动,归巢,血管生成,抗凋亡等密切相关。结合本实验肝癌组织CD88表达与其临床病理特征的关系,我们推测肝癌细胞过表达CD88可能参与了肝癌的侵袭转移和新生血管生成,但还需进一步细胞及动物实验证实。
    本部分结果显示肝癌中CD88过表达与血浆高AFP水平、肿瘤直径大于5cm、有肉眼癌栓、BCLA临床分期和CLIP分期等临床病理特征相关;Cox回归多因素分析也显示CD88是对影响术后患者OS和DFS的独立预后因素。可作为肝癌手术后的预后指标,可能作为术后防止肿瘤复发的治疗靶点。
    1. Monk, P.N., et al., Function, structure and therapeutic potential of complement C5a receptors. Br J Pharmacol,2007.152(4):p.429-48.
    2. Takafuji, S., et al., Matrix metalloproteinase-9 release from human leukocytes. J Investig Allergol Clin Immunol,2003.13(1):p.50-5.
    3. IshakK G AP and S. LH., Nonepithelial tumors. In:IshakK G, editor.Histological typing of tumors of the liver. World Health Organization International Classification of tumors. Berlin: Springer,1994:p.22-27.
    4. Greene FL, et al., AJCC Cancer Staging Manual. New York: Springer,2002.
    5. Kononen, J., et al., Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med,1998.4(7):p.844-7.
    6. Gao, Q., et al., Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol,2007.25(18):p.2586-93.
    7. Schlaf, G., et al., Differential expression of the C5a receptor on the main cell types of rat liver as demonstrated with a novel monoclonal antibody and by C5a anaphylatoxin-induced Ca2+release. Lab Invest,1999.79(10):p. 1287-97.
    8. Scieferdecker, h.L., Induction of functional anaphylatixin C5a receptor on hepatocytes by in vivo treatment of rats with IL-6. The Journal of Immunology,2000.164:p.5453-5458.
    9. Schlaf, G., et al., Expression and induction of anaphylatoxin C5a receptors in the rat liver. Histol Histopathol,2003.18(1):p.299-308.
    10. Markiewski, M.M., et al., The regulation of liver cell survival by complement. J Immunol,2009.182(9):p.5412-8.
    11. Strey, C.W., et al., The proinflammatory mediators C3a and C5a are essential for liver regeneration. J Exp Med,2003.198(6):p.913-23.
    12. Perianayagam, M.C., et al., C5a delays apoptosis of human neutrophils by a phosphatidylinositol 3-kinase-signaling pathway. Kidney Int,2002.61(2):p. 456-63.
    13. Perianayagam, M.C., et al., C5a delays apoptosis of human neutrophils via an extracellular signal-regulated kinase and Bad-mediated signalling pathway. Eur J Clin Invest,2004.34(1):p.50-6.
    14. Ramaswamy, S., et al., Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci U S A,2001.98(26):p.15149-54.
    15. Tso, C.L., et al., Primary glioblastomas express mesenchymal stem-like properties. Mol Cancer Res,2006.4(9):p.607-19.
    16. Ji, J., et al., MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med,2009.361(15):p.1437-47.
    17. Markiewski, M.M. and J.D. Lambris, Unwelcome complement. Cancer Res, 2009.69(16):p.6367-70.
    1. Monk, P.N., et al., Function, structure and therapeutic potential of complement C5a receptors. Br J Pharmacol,2007.152(4):p.429-48.
    2. DiScipio, R.G., et al., C5a mediates secretion and activation of matrix metalloproteinase 9 from human eosinophils and neutrophils. Int Immunopharmacol,2006.6(7):p.1109-18.
    3. Nozaki, M., et al., Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci U S A,2006.103(7):p. 2328-33.
    4. Li, Y., et al., Stepwise metastatic human hepatocellular carcinoma cell model system with multiple metastatic potentials established through consecutive in vivo selection and studies on metastatic characteristics. J Cancer Res Clin Oncol,2004.130(8):p.460-8.
    5. Cui, J.F., et al., Identification of metastasis candidate proteins among HCC cell lines by comparative proteome and biological function analysis of S100A4 in metastasis in vitro. Proteomics,2006.6(22):p.5953-61.
    6. Drouin, S.M., et al., Expression of the complement anaphylatoxin C3a and C5a receptors on bronchial epithelial and smooth muscle cells in models of sepsis and asthma. J Immunol,2001.166(3):p.2025-32.
    7. Zahedi, R., et al., The C5a receptor is expressed by human renal proximal tubular epithelial cells. Clin Exp Immunol,2000.121(2):p.226-33.
    8. Haviland, D.L., et al., Cellular expression of the C5a anaphylatoxin receptor (C5aR):demonstration of C5aR on nonmyeloid cells of the liver and lung. J Immunol,1995.154(4):p.1861-9.
    9. Schlaf, G., et al., Expression and induction of anaphylatoxin C5a receptors in the rat liver. Histol Histopathol,2003.18(1):p.299-308.
    10. Okinaga, S., et al., C5L2, a nonsignaling C5A binding protein. Biochemistry, 2003.42(31):p.9406-15.
    11. Scola, A.M., et al., The human complement fragment receptor, C5L2, is a recycling decoy receptor. Mol Immunol,2009.46(6):p.1149-62.
    12. Henson, P., A complement to host defence. Nature,1996.383(6595):p.25-6.
    13. Vollmers, H.P. and S. Brandlein, Natural IgM antibodies:the orphaned molecules in immune surveillance. Adv Drug Deliv Rev,2006.58(5-6):p. 755-65.
    14. Cavaillon, J.M., C. Fitting, and N. Haeffner-Cavaillon, Recombinant C5a enhances interleukin 1 and tumor necrosis factor release by lipopolysaccharide-stimulated monocytes and macrophages. Eur J Immunol, 1990.20(2):p.253-7.
    15. Scholz, W., et al., C5a-mediated release of interleukin 6 by human monocytes. Clin Immunol Immunopathol,1990.57(2):p.297-307.
    16. Ayesh, S.K., et al., Inactivation of interleukin-8 by the C5a-inactivating protease from serosal fluid. Blood,1993.81(6):p.1424-7.
    17. Jagels, M.A., et al., C5a- and tumor necrosis factor-alpha-induced leukocytosis occurs independently of beta 2 integrins and L-selectin: differential effects on neutrophil adhesion molecule expression in vivo. Blood, 1995.85(10):p.2900-9.
    18. Foreman, K.E., et al., C5a-induced expression of P-selectin in endothelial cells. J Clin Invest,1994.94(3):p.1147-55.
    19. Sheth, B., et al., The regulation of actin polymerization in differentiating U937 cells correlates with increased membrane levels of the pertussis-toxin-sensitive G-protein Gi2. Biochem J,1991.275 (Pt 3):p.809-11.
    20. Skokowa, J., et al., Macrophages induce the inflammatory response in the pulmonary Arthus reaction through G alpha i2 activation that controls C5aR and Fc receptor cooperation. J Immunol,2005.174(5):p.3041-50.
    21. Buhl, A.M., et al., Mapping of the C5a receptor signal transduction network in human neutrophils. Proc Natl Acad Sci U S A,1994.91(19):p.9190-4.
    22. Hwang, J.I., et al., Analysis of C5a-mediated chemotaxis by lentiviral delivery of small interfering RNA. Proc Natl Acad Sci U S A,2004.101(2):p.488-93.
    23. Rousseau, S., et al., CXCL12 and C5a trigger cell migration via a PAK1/2-p38alpha MAPK-MAPKAP-K2-HSP27 pathway. Cell Signal,2006. 18(11):p.1897-905.
    24. Nash, S.P. and R.M. Heuertz, Blockade of p38 map kinase inhibits complement-induced acute lung injury in a murine model. Int Immunopharmacol,2005.5(13-14):p.1870-80.
    25. Lo, R.K., H. Cheung, and Y.H. Wong, Constitutively active Galpha16 stimulates STAT3 via a c-Src/JAK- and ERK-dependent mechanism. J Biol Chem,2003.278(52):p.52154-65.
    26. Kuroki, M. and J.T. O'Flaherty, Extracellular signal-regulated protein kinase (ERK)-dependent and ERK-independent pathways target STAT3 on serine-727 in human neutrophils stimulated by chemotactic factors and cytokines. Biochem J,1999.341 (Pt 3):p.691-6.
    27. Perianayagam, M.C., et al., CREB transcription factor modulates Bcl2 transcription in response to C5a in HL-60-derived neutrophils. Eur J Clin Invest,2006.36(5):p.353-61.
    28. Perianayagam, M.C., et al., C5a delays apoptosis of human neutrophils by a phosphatidylinositol 3-kinase-signaling pathway. Kidney Int,2002.61(2):p. 456-63.
    29. Perianayagam, M.C., et al., C5a delays apoptosis of human neutrophils via an extracellular signal-regulated kinase and Bad-mediated signalling pathway. Eur J Clin Invest,2004.34(1):p.50-6.
    30. Huang, R., et al., Neutrophils stimulated with a variety of chemoattractants exhibit rapid activation of p21-activated kinases (Paks):separate signals are required for activation and inactivation of paks. Mol Cell Biol,1998.18(12):p. 7130-8.
    31. Tardif, M., et al., Direct binding of a fragment of the Wiskott-Aldrich syndrome protein to the C-terminal end of the anaphylatoxin C5a receptor. Biochem J,2003.372(Pt 2):p.453-63.
    32. Ochs, H.D. and L.D. Notarangelo, Structure and function of the Wiskott-Aldrich syndrome protein. Curr Opin Hematol,2005.12(4):p. 284-91.
    33. Braun, L., T. Christophe, and F. Boulay, Phosphorylation of key serine residues is required for internalization of the complement 5a (C5a) anaphylatoxin receptor via a beta-arrestin, dynamin, and clathrin-dependent pathway. J Biol Chem,2003.278(6):p.4277-85.
    34. Gurevich, E.V. and V.V. Gurevich, Arrestins:ubiquitous regulators of cellular signaling pathways. Genome Biol,2006.7(9):p.236.
    35. Langkabel, P., J. Zwirner, and M. Oppermann, Ligand-induced phosphorylation of anaphylatoxin receptors C3aR and C5aR is mediated by "G protein-coupled receptor kinases. Eur J Immunol,1999.29(9):p.3035-46.
    36. Suvorova, E.S., et al., Role of the carboxyl terminal di-leucine in phosphorylation and internalization of C5a receptor. Biochim Biophys Acta, 2008.1783(6):p.1261-70.
    37. Ribas, C., et al., The G protein-coupled receptor kinase (GRK) interactome: role of GRKs in GPCR regulation and signaling. Biochim Biophys Acta,2007. 1768(4):p.913-22.
    38. Jiang, H., et al., Pertussis toxin-sensitive activation of phospholipase C by the C5a and fMet-Leu-Phe receptors. J Biol Chem,1996.271(23):p.13430-4.
    39. Pan, Z.K., Anaphylatoxins C5a and C3a induce nuclear factor kappaB activation in human peripheral blood monocytes. Biochim Biophys Acta,1998. 1443(1-2):p.90-8.
    40. Hsu, M.H., et al., NF-kappaB activation is required for C5a-induced interleukin-8 gene expression in mononuclear cells. Blood,1999.93(10):p. 3241-9.
    41. Karin, M., Nuclear factor-kappaB in cancer development and progression. Nature,2006.441(7092):p.431-6. 瘤发生发展中起着复杂作用,进一步相关的临床和实验室研究可能对治疗肿瘤提供新思路和治疗的契机。
    1. Balkwill, F. and A. Mantovani, Inflammation and cancer: back to Virchow? Lancet,2001.357(9255):p.539-45.
    2. Koike, K., Molecular basis of hepatitis C virus-associated hepatocarcinogenesis:lessons from animal model studies. Clin Gastroenterol Hepatol,2005.3(10 Suppl 2):p. S132-5.
    3. Coussens, L.M. and Z. Werb, Inflammation and cancer. Nature,2002. 420(6917):p.860-7.
    4. Garcia-Rodriguez, L.A. and C. Huerta-Alvarez, Reduced risk of colorectal cancer among long-term users of aspirin and nonaspirin nonsteroidal antiinflammatory drugs. Epidemiology,2001.12(1):p.88-93.
    5. Kushi, L.H., et al., American Cancer Society Guidelines on Nutrition and Physical Activity for cancer prevention:reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J Clin,2006.56(5):p. 254-81; quiz 313-4.
    6. Karin, M. and F.R. Greten, NF-kappaB:linking inflammation and immunity to cancer development and progression. Nat Rev Immunol,2005.5(10):p. 749-59.
    7. Baniyash, M., Chronic inflammation, immunosuppression and cancer: new
    insights and outlook. Semin Cancer Biol,2006.16(1):p.80-8.
    8. Burnet, M., Immunological Factors in the Process of Carcinogenesis. Br Med Bull,1964.20:p.154-8.
    9. Hagemann, T., F. Balkwill, and T. Lawrence, Inflammation and cancer: a double-edged sword. Cancer Cell,2007.12(4):p.300-1.
    10. Aggarwal, B.B., et al., Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: modern target but ancient solution. Ann N Y Acad Sci,2006.1091: p.151-69.
    11. Robinson, S.C. and L.M. Coussens, Soluble mediators of inflammation during tumor development. Adv Cancer Res,2005.93:p.159-87.
    12. Karin, M., T. Lawrence, and V. Nizet, Innate immunity gone awry:linking microbial infections to chronic inflammation and cancer. Cell,2006.124(4):p. 823-35.
    13. Naugler, W.E. and M. Karin, NF-kappaB and cancer-identifying targets and mechanisms. Curr Opin Genet Dev,2008.18(1):p.19-26.
    14. Coussens, L.M., et al., MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell,2000.103(3):p.481-90.
    15. Rollins, B.J., Inflammatory chemokines in cancer growth and progression. Eur J Cancer,2006.42(6):p.760-7.
    16. Shojaei, F., et al., Role of myeloid cells in tumor angiogenesis and growth. Trends Cell Biol,2008.18(8):p.372-8.
    17. Benelli, R., A. Albini, and D. Noonan, Neutrophils and angiogenesis:potential initiators of the angiogenic cascade. Chem Immunol Allergy,2003.83:p. 167-81.
    18. Benelli, R., et al., Angiostatin inhibits extracellular HIV-Tat-induced inflammatory angiogenesis. Int J Oncol,2003.22(1):p.87-91.
    19. Dzierzak, E. and N.A. Speck, Of lineage and legacy:the development of mammalian hematopoietic stem cells. Nat Immunol,2008.9(2):p.129-36.
    20. Noonan, D.M., et al., Inflammation, inflammatory cells and angiogenesis: decisions and indecisions. Cancer Metastasis Rev,2008.27(1):p.31-40.
    21. Kaplan, R.N., S. Rafii, and D. Lyden, Preparing the "soil":the premetastatic niche. Cancer Res,2006.66(23):p.11089-93.
    22. Gilmore, T.D., Multiple mutations contribute to the oncogenicity of the retroviral oncoprotein v-Rel. Oncogene,1999.18(49):p.6925-37.
    23. Mosialos, G., The role of Rel/NF-kappa B proteins in viral oncogenesis and the regulation of viral transcription. Semin Cancer Biol,1997.8(2):p.121-9.
    24. Neri, A., et al., Molecular analysis of cutaneous B- and T-cell lymphomas. Blood,1995.86(8):p.3160-72.
    25. Zarnegar, B.J., et al., Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol,2008.9(12):p. 1371-8.
    26. Karin, M. and A. Lin, NF-kappaB at the crossroads of life and death. Nat Immunol,2002.3(3):p.221-7.
    27. Brand, K., et al., Role of nuclear factor-kappa B in atherogenesis. Exp Physiol, 1997.82(2):p.297-304.
    28. Huang, S., et al., Blockade of nuclear factor-kappaB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin 8. Cancer Res, 2000.60(19):p.5334-9.
    29. Bond, M., et al., Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines:an absolute requirement for transcription factor NF-kappa B. FEBS Lett,1998.435(1):p.29-34.
    30. Baeuerle, P.A. and V.R. Baichwal, NF-kappa B as a frequent target for immunosuppressive and anti-inflammatory molecules. Adv Immunol,1997. 65:p.111-37.
    31. Tak, P.P. and G.S. Firestein, NF-kappaB:a key role in inflammatory diseases. J Clin Invest,2001.107(1):p.7-11.
    32. Thiery, J.P., et al., Epithelial-mesenchymal transitions in development and disease. Cell,2009.139(5):p.871-90.
    33. Basseres, D.S. and A.S. Baldwin, Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene, 2006.25(51):p.6817-30.
    34. Chua, H.L., et al., NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells:potential involvement of ZEB-1 and ZEB-2. Oncogene,2007.26(5):p.711-24.
    35. Yu, H., M. Kortylewski, and D. Pardoll, Crosstalk between cancer and immune cells:role of STAT3 in the tumour microenvironment. Nat Rev Immunol,2007.7(1):p.41-51.
    36. Kortylewski, M. and H. Yu, Role of Stat3 in suppressing anti-tumor immunity. Curr Opin Immunol,2008.20(2):p.228-33.
    37. Yu, H., D. Pardoll, and R. Jove, STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer,2009.9(11):p.798-809.
    38. Niu, G., et al., Overexpression of a dominant-negative signal transducer and activator of transcription 3 variant in tumor cells leads to production of soluble factors that induce apoptosis and cell cycle arrest. Cancer Res,2001.61(8):p. 3276-80.
    39. Tokita, T., et al., Methylation status of the SOCS3 gene in human malignant melanomas. Int J Oncol,2007.30(3):p.689-94.
    40. Jenkins, B.J., et al., Hyperactivation of Stat3 in gp130 mutant mice promotes gastric hyperproliferation and desensitizes TGF-beta signaling. Nat Med,2005. 11(8):p.845-52.
    41. Ogata, H., et al., Deletion of the SOCS3 gene in liver parenchymal cells promotes hepatitis-induced hepatocarcinogenesis. Gastroenterology,2006. 131(1):p.179-93.
    42. Lin, W.W. and M. Karin, A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest,2007.117(5):p.1175-83.
    43. Gabrilovich, D., Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol,2004.4(12):p.941-52.
    44. Zou, W., Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer,2005.5(4):p.263-74.
    45. Wang, T., et al., Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med,2004.10(1):p.48-54.
    46. Markiewski, M.M. and J.D. Lambris, The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am J Pathol,2007.171(3): p.715-27.
    47. Carroll, M.C., The complement system in regulation of adaptive immunity. Nat Immunol,2004.5(10):p.981-6.
    48. Sahu, A., et al., Structure, functions, and evolution of the third complement component and viral molecular mimicry. Immunol Res,1998.17(1-2):p. 109-21.
    49. Guo, R.F. and P.A. Ward, Role of C5a in inflammatory responses. Annu Rev Immunol,2005.23:p.821-52.
    50. Gorter, A. and S. Meri, Immune evasion of tumor cells using membrane-bound complement regulatory proteins. Immunol Today,1999. 20(12):p.576-82.
    51. Niculescu, F., et al., Persistent complement activation on tumor cells in breast cancer. Am J Pathol,1992.140(5):p.1039-43.
    52. Donin, N., et al., Complement resistance of human carcinoma cells depends on membrane regulatory proteins, protein kinases and sialic acid. Clin Exp Immunol,2003.131(2):p.254-63.
    53. Macor, P. and F. Tedesco, Complement as effector system in cancer immunotherapy. Immunol Lett,2007.111(1):p.6-13.
    54. Gelderman, K.A., et al., Complement function in mAb-mediated cancer immunotherapy. Trends Immunol,2004.25(3):p.158-64.
    55. Mizuno, M., et al., [Increased expression of decay-accelerating factor in patients with colonic neoplasms and the analysis of their feces]. Nihon Rinsho Meneki Gakkai Kaishi,1995.18(6):p.647-50.
    56. Kiso, T., et al., Enhanced expression of decay-accelerating factor and CD59/homologous restriction factor 20 in intestinal metaplasia, gastric adenomas and intestinal-type gastric carcinomas but not in diffuse-type carcinomas. Histopathology,2002.40(4):p.339-47.
    57. Durrant, L.G., et al., Enhanced expression of the complement regulatory protein CD55 predicts a poor prognosis in colorectal cancer patients. Cancer Immunol Immunother,2003.52(10):p.638-42.
    58. Varsano, S., et al., Human lung cancer cell lines express cell membrane complement inhibitory proteins and are extremely resistant to complement-mediated lysis; a comparison with normal human respiratory epithelium in vitro, and an insight into mechanism(s) of resistance. Clin Exp Immunol,1998.113(2):p.173-82.
    59. Gorter, A., et al., Expression of CD46, CD55, and CD59 on renal tumor cell lines and their role in preventing complement-mediated tumor cell lysis. Lab Invest,1996.74(6):p.1039-49.
    60. Murray, K.P., et al., Expression of complement regulatory proteins-CD 35, CD 46, CD 55, and CD 59-in benign and malignant endometrial tissue. Gynecol Oncol,2000.76(2):p.176-82.
    61. Chen, S., et al., CD59 expressed on a tumor cell surface modulates decay-accelerating factor expression and enhances tumor growth in a rat model of human neuroblastoma. Cancer Res,2000.60(11):p.3013-8.
    62. Morgan, J., I. Spendlove, and L.G. Durrant, The role of CD55 in protecting the tumour environment from complement attack. Tissue Antigens,2002. 60(3):p.213-23.
    63. Spiller, O.B., et al., Cytokine-mediated up-regulation of CD55 and CD59 protects human hepatoma cells from complement attack. Clin Exp Immunol, 2000.121(2):p.234-41.
    64. Madjd, Z., et al., Do poor-prognosis breast tumours express membrane cofactor proteins (CD46)? Cancer Immunol Immunother,2005.54(2):p. 149-56.
    65. Fishelson, Z., et al., Obstacles to cancer immunotherapy: expression of membrane complement regulatory proteins (mCRPs) in tumors. Mol Immunol, 2003.40(2-4):p.109-23.
    66. Hakulinen, J. and S. Meri, Complement-mediated killing of microtumors in vitro. Am J Pathol,1998.153(3):p.845-55.
    67. Markiewski, M.M., et al., Modulation of the antitumor immune response by complement. Nat Immunol,2008.9(11):p.1225-35.
    68. Sica, A.B., V., Altered macrophage differentiation and immune dysfunction in tumor development.. J. Clin. Invest.,2007.117,:p.1155-1166.
    69. Marx, J., Cancer immunology. Cancer's bulwark against immune attack: MDS cells. Science,2008.319(5860):p.154-6.
    70. Bhardwaj, N., Harnessing the immune system to treat cancer. J Clin Invest, 2007.117(5):p.1130-6.
    71. Markiewski, M.M. and J.D. Lambris, Unwelcome complement. Cancer Res, 2009.69(16):p.6367-70.