基于电信号的针刺特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针灸是一种传统的治疗方法,探索针灸的功能及其机理,对临床诊断及研究有重要的指导价值。研究神经信号编码的机制,是当前神经科学领域中的重要研究内容。随着混沌理论的发展,它已经在包括生物医学工程在内的众多领域获得了广泛的应用。信号的时频多尺度分析与信息论也是信号处理中的研究热点。本文采用现代时间序列分析方法对针刺电信号进行了深入研究并得出以下结论。
     本文设计两组实验,分别为针刺足三里测取大鼠脊髓背根神经束动作电位、针刺足三里测取大鼠脊髓背角神经元动作电位。
     采用了峰峰间期的概念,对针刺电信号进行一阶回归映射动力学结构分析以及概率分布拟合统计学分析,区分了不同手法针刺电信号,初步证明了针刺电信号是混沌的;将针刺电信号看做随机点过程,研究各种手法之间在时域与频域的相关性,得到了其中两种手法相似度很高,其它手法不相关的结论。
     首次采用非线性动力学方法对四种不同手法针刺电信号进行了分析。首先得到了电信号的功率谱,证明其是混沌的。利用互信息法确定时间延迟,Cao法确定最佳嵌入维数,对针刺电信号进行相空间重构,得到手法的吸引子;在相空间重构基础上,得到了吸引子的特征量:用GP算法求关联维数,用Wolf法求最大Lyapunov指数,并求解了时间序列的Kolmogorov复杂度。采用递归图来确定针刺电信号的平稳性,采用替代数据法来判别信号的非线性确定性特性。最后基于相空间重构的加权零阶局域预测法对针刺电信号进行预测。上述分析方法证明了针刺电信号具有混沌特征。
     将小波理论与信息论方法结合,对针刺电信号进行分析。建立了基于小波分析的小波能量熵、小波时间熵、小波奇异熵和小波时频熵的概念与计算方法。应用小波熵于针刺电信号的特征提取与分类上,能有效地将不同手法区分开来。
     本论文的结论为针灸的量化及科学化奠定了一定的理论基础。
Acupuncture is a systemic science; thus to study its function and mechanism provides guiding meaning for clinical diagnosis and research. It's an important research part in neuroscience to explore the mechanisms of the neural coding. With the development of chaos theory, it has been applied in numerous areas including biomedical engineering. Meanwhile, the signal time-frequency analysis and information theory are also popular research methods.
     In this thesis, we design two kinds of experiments. One is acupuncture on Zusanli to obtain action potentials on the spinal dorsal root, the other is acupuncture on Zusanli to obtain action potentials on the spinal dorsal horn.
     We obtain the interspike-interval (ISIs) of the acupuncture signals evoked by different manipulates, and then use the first return map and probability distribution fit to analyze them. By considering the concept of the point process, correlation analysis in time domain and frequency domain is employed to analyze the spike trains.
     The nonlinear time series analysis methods are proposed to study four acupuncture electrical signals for the first time. Power spectrum analysis is applied to imply the signals are chaotic. Then phase space reconstruction is applied among which mutual information method to obtain the time delay and Cao's method to obtain the embedding dimension, and stranger attractors are reconstructed. On the basis of the reconstruction, we characterize the attractors in terms of correlation dimensions, largest Lyapunov exponents and Kolmogorov complexity measures. Two additional methods are chosen: recurrence plot to determine the stationarity of the signals and the surrogate data method to estimate the deterministic nonlinearity property of the signal. The weighted zero-order local prediction method is applied to forecast the electrical signals.
     Last but not the least, by combining the wavelet theory and information theory, fundamental definitions of wavelet entropy measure are discussed. Calculation methods including wavelet energy entropy, wavelet time entropy, wavelet singular entropy, wavelet time frequency entropy are put forward to extract the characteristics of the electrical signals, and their meanings are analyzed.
     The results of this thesis can give some theoretical supports to the quantification and scientification of the acupuncture.
引文
[1]高震,人体经穴综合系统论与神经论,针刺研究,2002,27(4):310–312
    [2]孙饰平,尹岭,朱克,针刺的中枢调节机制研究进展,针刺研究,2003,28(2):151–156
    [3]李忠仁,针灸学术发展的动力是科学实验,南京中医药大学学报,2004,20(1):1–4
    [4]史忠植,智能科学,北京:清华大学出版社,2006
    [5]顾凡及,梁培基,神经信息处理,北京:北京工业大学出版社,2007
    [6]徐健学,基于非线性动力学概念神经编码,第七届全国非线性动力学学术会议,南京,2004.10
    [7] A.L.Hodgkin and A.F.Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J.Physiol., 1952, 117:500–544.
    [8] T.R.Chay. Chaos in a three-variable model of an excitable cell. Physica D, 1985, 16:233–42.
    [9] R.Fitzhugh. Impulses and physiological states in theoretical states in theoretical models of nerve membrane. Bioghys.J., 1961, 1:445–466.
    [10] J. Nagumo, S. Arimoto and S. Yoshizawa. An active pulse transmission line simulating nerve axon. Proc. IRE, 1962, 50:2061–2070.
    [11] A.V.Holden, W.Winlow and P.G.Haydon. The induction of periodic and chaotic activity in a molluscan neurone. Biol.Cybern., 1982, 43(3):169–173.
    [12] T.R.Chay and J.Rinzel. Bursting, beating and chaos in an excitable membrane model. Biophys.J., 1985, 47:357–366.
    [13]石学敏,“醒脑开窍”针刺法治疗脑卒中,中国临床康复,2003,7(7):1057–1058
    [14]杨志新,石学敏,醒脑开窍针刺法治疗中风疗效与安全性的系统评价,中国针灸,2007,27(8):601–608
    [15]韩济生,影响针刺镇痛效果的若干因素,针刺研究,1994,19(3):1–4
    [16]曾燕,梁勋厂,电针穴位对痛觉相关诱发脑电位的影响,针刺研究,2003,28(3):182–188
    [17]李晓泓,郭顺根,电针对抑郁大鼠中枢及外周单胺类神经递质的影响,中医药学刊,2004,22(1):185–188
    [18]尹岭,金香兰等,针刺足三里穴PET和fMRI脑功能成像的初步探讨,中国康复理论与实践,2002,8(9):523–524
    [19]金香兰,针刺足三里穴FDG-PET和fMRI脑功能成像研究,[博士学位论文],北京:军医进修学院,2005
    [20]赵敏生,余安胜,李西林,辣根过氧化物追踪“足三里”穴的脊髓投射研究,中国针灸,1999,19(9):511–513
    [21]孙世晓,王新梅,张江红,艾灸猫足三里穴增强胃运动中枢作用机理研究,针灸临床杂志,2001,17(4):53–54
    [22]王述菊,孙国杰等,孤束核在针刺“足三里”调节胃运动中的作用机制,中国中医药信息杂志,2007,14(9):28–30
    [23]叶小丰,李建国等,电针“足三里”穴对大鼠迷走神经放电的影响,针刺研究,2006,31(5):290–293
    [24]张建梁,晋志高等,脊髓背角神经元对胃扩张及电针“足三里”穴的反应,针刺研究,2001,26(4):268–273
    [25]任维,古华光等,神经放电的动力学规律和神经信息编码的关系,第七届全国非线性动力学学术会议,南京,2004.10
    [26] R.C.deCharms and A.Zador. Neural representation and the cortical code. Annu.Rev.Neurosci., 2000, 23:613–47.
    [27]段玉斌,神经起步点放电峰峰间期的非线性动力学,[博士学位论文],西安,第四军医大学,2002
    [28] GrossCG. Coding for Visual categories in the human brain. Nature neuroscience, 2000, 3(9):855–856.
    [29] J.J.HoPfield. Pattern recognition computation using action potential timing for stimulus representation. Nature, 1995, 376:33–36.
    [30] Doetsch, G.S. Patterns in the brain: neuronal population coding in the somatosensory system. Physiol. Behav., 2000, 69:187–281.
    [31] R.Christopher deCharms. Information coding in the cortex by independent or coordinated populations. Proc.Natl.Acad.Sci.USA., 1998, 95(26):15166–68.
    [32] A.B.Sehwartz. Direct cortical representation of drawing. Science, 1994, 265:540–542.
    [33] A.B.Sehwartz. Distributed motor proeessing in cerebral cortex. Curr.OPin.Neurobiol., 1994, 4:840–846.
    [34] C.E.Carr. Processing of temporal information in the brain. Annu.Rev.Neurosci., 1993, 16:223–43.
    [35] J.J.Hopfield. Transforming neural computations and representing time. Proc.Natl.Acad.Sci.USA., 1996, 93:15440–44.
    [36] E.Anissar, E.Vaadia, M.Ahissar, H.Bergman, A.Arieli and M.Abeles. Dependence of cortical plasticity on correlated activity of single neurons and on behavior context. Science, 1992, 257:1412–1414.
    [37] Romain Brette, et al. Simulation of networks of spiking neurons: A review of tools and strategies. J.Comput.Neurosci., 2007, 23:349–398.
    [38] E.D.Adrian, Y.Zotterman. The Impulse produced by sensory nerve-endings. Part 2.The responses of a single end-organ. J.Physiol(Lond), 1926, 61:151–171.
    [39] E.R.Kandel,J.H.Schwartz and T.M.Jessell. Principles of neural science.4th edition.chapter 21.McGraw-Hill Companies Inc, 2000.
    [40] V.B.Mountcastle,W.H.Talbot and H.H.Kornhuber. The neural transformation of mechanical stimuli delivered to the monkey's hand.In:AVS de Reuck,J Knight(eds). Ciba Foundation Symposium:Touch,Heat and Pain, London:Churchill. 1966, pp.325–351.
    [41] A.Crowe,P.B.C.Matthews. The effects of stimulation of static and dynamic fusimotor fibers on the responses to stretching of the primary endings of muscle spindles. J.Physiol., 1964, 174:109–131.
    [42] Wiesel TN. The postnatal development of the visual cortex and the influence of environment. Nature, 1982, 299:583–591.
    [43] C.J.Sherry and W.R.Klemm. Divergence from statistical independence in specified clusters of adjacent neuronal spike train intervals before and after ethanol state changes. International Journal of Neuroscience, 1982, 17:119–128.
    [44] J.E.Dayhoff and G.L.Gerstein. Favored patterns in spike trains. I. Detection. J.Neurophysiol., 1983, 49:1334–1348.
    [45] JC Middlebrooks, AE Clock, L Xu, and DM Green. A panoramic code for sound location by cortical neurons. Science, 1994, 264:842–844.
    [46] M.Abeles, H.Bergman, E.Margalit and E.Vaadia. Spatiotemporal Firing Patterns in the Frontal Cortex of Behaving Monkeys. J.Neurophysiol., 1993, 70(4):1629–1638.
    [47] B.J.Richmond, L.M.Optican, T.J.Gawne. Neurons use multiple messages encoded in temporally modulated spike trains to represent pictures. in Seeing Contour and Colour J.J. Kulikowski & C.M. Dickinson, eds., Oxford, Pergamon Press, 1989, pp.701–710.
    [48] B.J.Richmond, L.M.Optican and H.Spitzer. Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex: I. stimulus-response relations. J. Neurophysiol., 1990, 64:351–369.
    [49] B.J.Richmond, L.M.Optican. The structure and interpretation of neuronal codes in the visual system. In Neural Networks for Human and Machine Perception H. Wechsler (ed.), Academic Press, 1992, pp.105–131.
    [50] D.S.Reich, F.Mechler, K.P.Purpura, J.D.Victor. Interspike intervals, receptive fields, and information encoding in primary visual cortex. J Neurosci, 2000, 20(5):1964–74.
    [51] RD.S.Reich, F.Mechler, J.D.Victor. Temporal coding of contrast in primary visual cortex: when, what, and why. J Neurophysiol, 2001, 85(3):1039–1050.
    [52] Furukawa, et al. Cortical Representation of Auditory Space: Information-Bearing Features of Spike Patterns. J.Neurophysiol., 2002, 87:1749–1762.
    [53] Jaime de la Rocha, Brent Doiron, Eric Shea-Brown, Kreimir Josi & Alex Reyes. Correlation between neural spike trains increases with firing rate. Nature, 2007, 448:802–806.
    [54] D.A.Butts, Chong Weng, et al. Temporal precision in the neural code and the timescales of natural vision. Nature, 2007, 449:92–95.
    [55] E. W. Lorenz. Deterministic non-periodic flow. J. Atomos Sci., 1963, 20:130–141.
    [56] D. Ruelle and F. Takens. On the nature of turbulence. Commun.Math.Phys., 1971, 24(4):167–192.
    [57] T. Y. Li and J. A. Yorke. Period three implies chaos. Am.Math.Mothly., 1975, 82:985–992.
    [58] James Theiler, Stephen Eubank, AndréLongtin, et al. Testing for nonlinearity in time series: the method of surrogate data. Physica D, 1992, 58(1–4):77–94.
    [59] J.Timmer. Power of surrogate data testing with respect to nonstationarity. Physical Review E, 1998, 58(4):5153–5156.
    [60] T.Schreiber, A.Schmitz. Surrogate time series. Physica D, 2000, 142(3–4):346–382
    [61] P.Grassberger, I.Procaccia. Characterization of Strange Attractors. Phys.Rev.Lett., 1983, 50(5):346–349
    [62] N.H.Packard, J.P.Crutchfield, J.D.Farmer, and R.S.Shaw. Geometry from a Time Series. Phys.Re.Lett., 1980, 45(9):712–716.
    [63] F.Takens. Detecting strange attractor in turbulence. Lecture Notes in Math, 1981, 898:366–381
    [64] T.Sauer, J.Yorke, M.Casdagli. Embedology, J.Status.Phys, 1991, 65:579–616.
    [65] M.T.Rosenstein, J.J.Collins, C.J.De Luca. Reconstruction expansion as a geometry-based framework for choosing proper delay times. Physica D, 1994, 73:82–98.
    [66] M.Kennel, R.Brown, H.Abarbanel. Determining embedding dimension for phase space reconstruction using a geometrical reconstruction. Phys Rev A, 1992, 45:3403–11.
    [67] Cellucci CJ, Albano AM, Rapp PE. Comparative study of embedding methods. Phys Rev E, 2003, 67:066210.
    [68] Eckmann JP, Ruelle D. Ergodic theory of chaos and strange attractors. Rev Mod Phys,1985, 57:617–56.
    [69] Koebbe M, Mayer-Kress G. Use of recurrence plots in the analysis of timeseries data. In: Casdagli M, Eubank S, editors. Nonlinear modelling and forecasting, SFI studies in the sciences of complexity, proceedings, vol.XII. Reading, MA: Addison-Wesley, 1992. p. 361–78.
    [70] Babloyantz A. Evidence for slow brain waves: a dynamical approach. Electroenceph Clin Neurophysiol, 1991, 78:402–5.
    [71] Rieke Ch, Sternickel K, Andrzejak RG, Elger ChE, David P, Lehnertz K. Measuring nonstationarity by analysing the loss of recurrence in dynamical systems. Phys Rev Lett, 2002, 88:244102.
    [72] Rieke C, Andrzejak RG, Mormann F, Lehnertz K. Improved statistical test for nonstationarity using recurrence time statistics. Phys Rev E, 2004, 69:046111.
    [73] Marwan N, Kurths J. Nonlinear analysis of bivariate data with cross recurrence plots. Phys Lett A, 2002, 302:299–307.
    [74] Grassberger P, Procaccia I. Measuring the strangeness of strange attractors. Physica D, 1983, 9:189–208.
    [75] Grassberger P, Procaccia I. Estimation of the Kolmogorov entropy from a chaotic signal. Phys Rev A, 1983, 28:2591–3.
    [76] Judd K. An improved estimator of dimension and some comments on providing confidence intervals. Physica D, 1992, 56:216–28.
    [77] Skinner JE, Molnar M, Tomberg C. The point correlation dimension: performance with nonstationary surrogate data and noise. Integr.Physiol.Behav.Sci., 1994, 29:217–34.
    [78] Grassberger P. An optimized box-assisted algorithm for fractal dimensions. Phys.Lett.A, 1990, 148:63–8.
    [79] Theiler J. Efficient algorithm for estimating the correlation dimension from a set of discrete points. Phys.Rev.A, 1987, 36:4456–62.
    [80] Theiler J, Lookman T. Statistical error in a chord estimator of the correlation dimension: the‘rule of five’. Int.J.Bifurcation.Chaos., 1993, 3:765–71.
    [81] WidmanG, LehnertzK, Jansen P,MeyerM,BurrW, Elger CE. Afast general purpose algorithm for the computation of auto- and cross-correlation integrals from single channel data. Physica.D, 1998, 121:65–74.
    [82] Brocker J, Parlitz U, Ogorzalek M. Nonlinear noise reduction. Proc IEEE, 2002; 90:898–918.
    [83] Havstad JW, Ehlers C. Attractor dimension of nonstationary dynamical systems from small data sets. Phys.Rev.A., 1989, 39:845–53.
    [84] Nolte G, Ziehe A, Muller KR. Noise robust estimates of correlation dimension and K2 entropy. Phys Rev E Stat Nonlin Soft Matter Phys, 2001, 64(1 Pt 2):016112.
    [85] Saermark K, Ashkenazy Y, Levitan J, Lewkowicz M. The necessity for a time local dimension in systems with time varying attractors. Physica A, 1997, 236:363–75.
    [86] Schouten J, Takens F, van den Bleek C. Estimation of the dimension of a noisy attractor. Phys Rev E, 1994, 50:1851–61.
    [87] Schouten J, Takens F, van den Bleek Cvanden. Maximum-likelihood estimation of the entropy of an attractor. Phys Rev E, 1994, 49:126–9.
    [88] Wolf A, Swift JB, Swinney HL, Vastano JA. Determining Lyapunov exponents from a time series. Physica D, 1985, 16:285–317.
    [89] Kantz H. A robust method to estimate the maximal Lyapunov exponent of a time series. Phys Lett A, 1994, 185:77–87.
    [90] Rosenstein MT, Collins JJ, De Luca CJ. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D, 1993, 65:117–34.
    [91] McCaffrey DF, Ellner S, Gallant AR, Nychka DW. Estimating the Lyapunov exponent of a chaotic system with nonparametric regression.J Am Stat Assoc, 1992, 87:682–95.
    [92] Kowalik ZJ, Elbert Th. A practical method for the measurements of the chaoticity of electric and magnetic brain activity. Int J Bifurcation Chaos, 1995, 5:475–90.
    [93] Brown R, Bryant P, Abarbanel HDI. Computing the Lyapunov spectrum of a dynamical system from an observed time series. Phys Rev A, 1991, 43:2787–806.
    [94] Sano M, Sawada Y. Measurement of the Lyapunov spectrum from a chaotic time series. Phys Rev Lett, 1985, 55:1082–5.
    [95] Fell J, Beckmann PE. Resonance-like phenomena in Lyapunov calculations from data reconstructed by the time-delay method. Phys Lett A, 1994, 190:172–6
    [96] Tanaka T, Aihara K, Taki M. Analysis of positive Lyapunov exponents from random time series. Physica D, 1998, 111:42–50.
    [97] Parlitz U. Identification of true and spurious Lyapunov exponents from time series. Int J Bifurcation Chaos, 1992, 2:155–65.
    [98] Grassberger P, Procaccia I. Estimation of the Kolmogorov entropy from a chaotic signal. Phys Rev A, 1983, 28:2591–3.
    [99] Grassberger P, Procaccia I. Dimensions and entropies of strange attractors from a fluctuating dynamics approach. Physica D, 1984, 13:34–54.
    [100] Pezard L, Lachaux J-Ph, Nandrino J-L, Adam C, Garnero L, Renault B, Varela F, Martinerie J. Local and global entropy quantification in neural systems. J Tech Phys, 1997, 38:319–22.
    [101] Wales DJ. Calculating the rate of loss of information from chaotic time series by forecasting. Nature, 1991, 350:485–8.
    [102] Pincus SM, Gladstine IM, Ehrenkranz RA. A regularity statistic for medical data analysis. J Clin Monit, 1991, 7:335–45.
    [103] Palus M. Coarse-grained entropy rates for characterization of complex time series. Physica D, 1996, 93:64–77.
    [104] Palus M. On entropy rates of dynamical systems and Gaussian processes. Phys Lett A, 1997, 227:301–8.
    [105] Torres ME, Anino MM, Gamero LG, Gemignani MA. Automatic detection of slight changes in nonlinear dynamical systems using multiresolution entropy tools. Int J Bifurcation Chaos, 2001, 11:967–81.
    [106] Dunki RM. The estimation of the Kolmogorov entropy from a time series and its limitations when performed on EEG. Bull Math Biol, 1991, 53:665–78.
    [107] Wang Ning, Liu Bingzheng. Nonlinear dynamical analysis of EGG. Acta Biophysica sinica, 1996, 4:675–680.
    [108] Xie yong, Xu Jian-Xue, Yang Hong-Jun and Hu San-Jue. Phase-space reconstruction of EcoG time sequences and extraction of nonlinear characteristic quantities. Acta Physica Sinica, 2002, 2:205–214.
    [109]王勇,吴旭文,混沌信号降噪算法,测试技术学报,2006,20(2):179–183
    [110] Cuomo K M, Oppenheim A V. Chaotic Signals and Systems for Communications. Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, 1993:137–140.
    [111] Moon F. Chaotic Vibration. New York:Cornell University, 1987.
    [112] Yuan Jian, Xiao Xianci. Extracting the Largest Lyapunov Exponents from the chaotic Signals Overwhelmed in the Noise. Acta Electrnica Sinica, 1997, 25(10):102–106.
    [113] Cawley R, Hsu G H. local geometric projection method for noise reduction in chaotic maps and flows. Physical Review A, 1992, 46:3057–3082.
    [114] Wang Yiqing, Huang Weiyi, Duan Jianghai, et al. Research on Availability of Neymark Decomposition Applied to Separated Chaos Signal from Noise. Journal of Data Acquisition&Processing, 2003, 18(4):393–397.
    [115] J.D.Farmer and J.J.Sidorowich. Predicting chaotic time series. Phys.Rev.Lett., 1987, 59(8):845–848.
    [116] P.S.Linsay. An efficient method of forecasting chaotic time series using linear interpolation. Phys.Lett.A., 1991, 153(6,7):353–356.
    [117] H.D.Navone and H.A.Ceccatto. Forecasting chaos from small data sets: a comparison of different nonlinear algorithms. J.Phys.A:Math.Gen., 1995, 28(12):3381–3388.
    [118] Zhong Liu, Xiaolin Ren and Zhiwen Zhu. Equivalence between different local prediction methods of chaotic time series. Phys.Lett.A., 1997, 227:37–40.
    [119] Liangyue Cao, Yiguang Hong, Haiping Fang and Guowei He. Predicting chaotic time series with wavelet networks. Physica D, 1995, 85:225–238.
    [120] Platt J. A resource allocating network for function interpolation. neural computation, 1991, 3:213–225.
    [121] Lu Yingwei, N.Sundarajan, P.Saratchandran. A sequential learning scheme for function approciamation using minimal radial basis function neural networks. neural computation, 1997, 9:461–478.
    [122] George G.Szpiro. Forecasting chaotic time series with genetic algorithms. Phy.Rev.E., 1997, 55(3):2557–2567.
    [123]张家树,肖先赐,混沌时间序列的Volterra自适应预测,物理学报,2000,49(3):403–408
    [124]张家树,肖先赐,混沌时间序列的自适应高阶非线性滤波预测,物理学报,2000,49(7):1221–1227
    [125] V.Kavitha and D.Naryana Dutt. Use of chaotic modeling for transmission of EEG data. Proc.ICICS, 1997, 3:1262–1265.
    [126] T. L. Liao. Observer-based approach for controlling chaotic systems. Phys.Rev.E, 1998, 57(2):1604–1610.
    [127] T. L. Liao, N. S. Huang. Control and synchronization of discrete-time chaotic systems via variable structure control technique. Phys. Lett. A, 1997, 234(4):262–268.
    [128] C. C. Fuh, P. C. Tung. Controlling chaos using differential geometric method. Phys. Rev. Lett, 1995, 75(16): 2952–2955.
    [129] Y. M. Liaw, P. C. Tung. Application of differential geometric method to control a noisy chaotic system via dither smoothing. Phys.Lett.A, 1998, 239(1):51–58.
    [130] T. H. Yeap, N. U. Ahmed. Feedback control of chaotic system. Dynamics and Control, 1994, 4(1): 97–114.
    [131] Babloyantz A, Destexhe A. Is the normal heart a periodic oscillator? Biol Cybern, 1988, 58:203–211.
    [132] Goldberger AL. Nonlinear dynamics, fractals and chaos: Applications to cardiac electrophysiology. Ann Biomed Eng, 1990, 18(2):195–203.
    [133] Goldberger A L, Rigney D R, Mietus J, et al. Nonlinear dynamics in sudden cardiac death syndrome: Heartrate oscillations and bifurcations.Experientia. Annals of Biomedical Engineering, 1988, 44(11-12):983–987.
    [134] Pool R. Is it healthy to be chaotic? Science, 1989, 243:604-607.
    [135] Ravelli F, Antolini R. Complex dynamics underlying the human electrocardiogram. Biol Cybern, 1992, 67:57–65.
    [136] Govindan R B, Narayanan K, Gopinathan M S. On the evidence of deterministic chaos in ECG: Surrogate and predict-ability analysis. Chaos, 1998, 8:495–502.
    [137] Fojt O, Holcik J. Applying nonlinear dynamics to ECG signal processing. IEEE Eng Med Biol, 1998, 17(2):96–101.
    [138] Narayanan K, Govindan R B, Gopinathan M S. Unstable periodic orbits in human cardiac rhythms. Phys Rev E, 1998, 57:4594–4603.
    [139] Fell J, Mann K, Roschke J, et al. Nonlinear analysis of continuous ECG during sleep I. Reconstruction. Biol Cybern, 2000, 82:477–483.
    [140] Small M, Yu D, Harrison R G, et al. Deterministic nonlinearity in ventricular fibrillation. Chaos Soliton & Fractals, 2000, 10:268–277.
    [141] Small M, Yu D, Clayton R, et al. Temporal evolution of nonlinear dynamics in ventricular arrhythmia. Int J Bifurcat Chaos, 2001, 11:2531–2548.
    [142] Allegrini P, Balocchi R. Long- and short-time analysis of heartbeat sequences: Correlation with mortality risk in congestive heart failure patients. Phys Rev E, 2003, 67: 062901.
    [143]廖旺才,杨福生,心率变异性非线性信息处理的现状与展望,国外医学:生物医学工程分册,1995,18(6):311–316
    [144]沈凤麟,徐维超,基于分形维数的心率变异分析,中国科学技术大学学报,1997,27(2):144–151
    [145]张辉,杨明静,非线性动力学在心脏活动研究中的应用,生物物理学报,1997,13(2):340–346
    [146]王兴元,心脏系统的混沌运动特征随物种进化关系的探讨,科学通报,2002,47(17):1290–1295
    [147] Garfinkel A, Spano M L, Ditto W L, et al. Controlling cardiac chaos. Science, 1992, 257: 1230–1235
    [148] Small M, Yu D, Simonotto J, et al. Uncovering non-linear structure in human ECG recordings. Chaos Soliton Fract, 2002, 13:1755–1762.
    [149]裴文江,何振亚,杨绿溪等,发现心脏节律中存在确定性混沌,科学通报,2001,46(8):695–700
    [150]裴文江,何振亚,杨绿溪等,心脏节律蕴涵的确定性动力学机制重构,中国生物医学工程学报,2005,24(2):157–162
    [151] Wang Z Z, Ning X B, Zhang Y, et al. Nonlinear dynamical characteristics analysis of synchronous 12-lead ECG signals. IEEE Eng Med Biol, 2000, 19:110–115
    [152]王振洲,宁新宝,张宇等,同步十二导联心电图信号的关联维分布,科学通报,2000,45(8):873–877
    [153]王振洲,李政,魏义祥等,同步12导联ECG信号的Lyapunov指数谱,科学通报,2002,47(19):1469–1472.
    [154] Goldberger A L, Peng C K, Lipsitz L A. What is physiologic complexity and how does it change with aging and disease? Neurobiol Aging, 2002, 23:23–26.
    [155] Chen Z, Ivanov Plamen Ch, Hu K, et al. Effect of nonstationarities on detrended fluctuation analysis. Phys Rev E, 2002, 65:041107.
    [156] Bian C H, Ning X B. Determining the minimum embedding dimension of nonlinear time series based on prediction method. Chin Phys, 2004, 13(5):633–636.
    [157]卞春华,宁新宝,短时心率变异信号非线性程度的研究,科学通报,2004,49 (2):130–134
    [158] Bian C H, Ning X B. Evaluating age-related loss of nonlinearity degree in short-term heartbeat series by optimum modeling dimension. Physica A, 2004, 337(1-2):149–156.
    [159] Roman Karasik, Nir Sapir, Yosef Ashkenazy. Correlation differences in heartbeat fluctuations during rest and exercise. Phys Rev E, 2002, 66:062902.
    [160] Maxtinis M, Knezevic A, Krstacic G., et al. Changes in the Hurst exponent of heartbeat intervals during physical activity. Phys Rev E, 2003, 70:012903.
    [161] N.Pradhan, The Nature of Dominant Lyapunov Exponent and Attractor Dimension Curve of EEG in Sleep, Comput Biol Med, 1996, 26:419–428.
    [162] Weiss T, Kumpf K, Ehrhardt J, et al. A bioadaptive approach for experimental pain research in humans using laser-evoked brain potentials. Neurosci Lett, 1997, 227:95–8.
    [163] Ferri R, Chiaramonti R,Elia M, et al. Nonlinear EEG analysis during sleep in premature and full-term newbonrs. Ciln Neurophysiol, 2003, 114:1176–1180.
    [164] Le Van Quyen. Characterizing neurodynamic changes before seizures. Journal of Clinical Neurophysiology, 2001, 18:191–208.
    [165] Jeong-Ho Chae, Jaeseung Jeong, et al. Nonlinear Analysis of EEG in Schizophrenia and Bipolar Disorder. 41th Meeting of Korean Neuropsychiatric Association, Seoul, 1998.
    [166] Jelles B, Jonkman EJ, et al. Decease of nonlinearity in the EEG of Alzheimer patients compared to controls. 14th International congress of EEG and clinical neurophysiology, Florence, August 24-30, 1997.
    [167] Freeman WJ. Mesoscopic neurodynamics:From neuron to brain. J Physiol, 2000, 94:303–322.
    [168] Kozma R, Freeman WJ, Erdi P. The KIV model-nonlinear spatio-temporal dynamics of the primordial vertebrate forebrain. Neurocomputing, 2003, 52-54:819–826.
    [169] Matsumoto K, Tsuda I. Noise-induced order. Journal of Statistical Physics, 1983, 31(1):87–106.
    [170] Benzi R, Sutera A, Vulpiani A. The mechanism of stochatis resonance. J Phys A, 1981, 14:453–457.
    [171] Billah X.Y.R, Shinozuka M. Stabilization of a nonlinear system by multiplicative noise. Physical Review A, 1991, 44(8):4779–4781.
    [172] Collins JJ, Chow Carson C, Capela Ann C, et al. A periodic stochastic resonance. Physical Review E, 1996, 54(5):5575–5584.
    [173] Collins JJ, Chow Carson C, Imhoff Tomas T. A periodic stochastic resonance in excitable systems. Physical Review E, 1995, 52(4):R3321–R3324.
    [174] Chialvo Dante R, Longtin Andre, Gerking Jonnes Muller. Stochastic resonance in models of neural ensembles. Physical Review E, 1997, 55(2):1798–1808.
    [175] Longtin Andre. Autonomous stochastic resonance in bursting neurons. Phys.Rev.E., 1997, 55(1):868–876
    [176] Massanes S Ripoll, Vicente C J Perez. Nonadiabatic resonance in a noisy Fitzhugh-Nagumo neuron model. Physical Review E, 1999, 59(4):4490–4497.
    [177] Gong Yunfan, Xu Jianxue, Hu Sanjue. Stochastic resonance: When does it not occur in neural models. Physics Letters A, 1998, 243:351–359.
    [178]吴祥宝,徐京华,复杂性和脑功能,生物物理学报,1991,7:103–106
    [179]顾凡及,邱志诚,动态神经网络中的同步震荡,生物物理学报,1996,12(2):281–288
    [180]顾凡及,宋如垓,王炯炯等,不同状态下脑电图复杂性探索,生物物理学报,1994,10:439–445
    [181] Bressler SL. Understanding cognition through large-scale cortical networks. Curr Directions Psychol Sci, 2002, 11:58–61.
    [182] Le van Quyen M. Disentangling the dynamic core: a research program for a neurodynamics at the large scale. Biol Res, 2003, 36:67–88.
    [183] Schnitzler A, Gross J. Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci, 2005, 6:285–96.
    [184] Varela F, Lachaux J-P, et al. The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci, 2001, 2:229–39.
    [185] Benar C-G, Aghakhani Y, Wang Y, Izenberg A, Al-Asmi A, Dubeau F, Gotman J. Quality of EEG in simultaneous EEG-fMRI for epilepsy. Clin Neurophysiol, 2003, 114:569–80.
    [186] Durka PJ. From wavelets to adaptive approximations: time-frequency parametrization of EEG. Biomed Eng Online, 2003, 2(1):1.
    [187] Hayashi H,Ishzuka S,Ohta M,Hirakawa K. Chaotic behavior in the onchidium giant neuron. Phys.Lett.A, 1982, 88(8-9):435–438.
    [188] Hayashi H,Ishzuka S,Hirakawa K. Transition to chaos via intermittency in the onchidium pacemaker neuron. Phys.Lett.A, 1983, 98(8-9):474–476.
    [189] Aihara K, Matsumoto G,Ikegaya Y. Periodic and Non-periodic response of a periodically forced Hodgkin-Huxley oscillator. J.Theor.Biol, 1984, 109:249–269.
    [190] Aihara K, Matsumoto G, Ichikawa M. An alternating periodic-chaotic sequence observed in neural oscillators. Phys.Lett.A, 1985, 111(5):435–438.
    [191] Chay TR. Electrical bursting and intracellular Ca++ oscillations in excitable cell model. Biol.Cybern, 1990, 63:15–23.
    [192] Chay TR. Bursting,spiking,chaos,fractals,and universality in biological rhythms. Int.J.Bifurc.Chaos, 1995, 5(3):595–635.
    [193] Fan YS, Chay TR. Generation of periodic and chaotic bursting in an excitable cell model. Biol.Cybern., 1994, 71:417–431.
    [194] Holden AV, Fan YS. From simple to simple bursting oscillatory behavior via chaos in the Rose-Hindmarsh model for neuronal activity, Chaos,Solitons&Fractals, 1992, 2:221–236.
    [195] Holden AV, Fan YS. From simple to complex oscillatory behaviour via intermittent chaos in the Rose-Hindmarsh model for neuronal activity. Chaos,Solitons&Fractals, 1992, 2:349–369.
    [196] Holden AV, Fan YS. Crisis-induced chaos in the Rose-Hindmarsh model for neuronal activity. Chaos,Solitons&Fractals, 1992, 2:583–595.
    [197] Fan YS, Chay TR. Crisis transitions in excitable cell models. Chaos,Solitons&Fractals, 1993, 3:603–615.
    [198] Fan YS, Holden AV. Bifurcation,bursting,chaos and crisis in the Rose-Hindmarsh model for neuronal activity, Chaos,Solitons&Fractals, 1993, 3:439–449.
    [199] Rinzel J, Lee YS. Dissection of a model for neuronal parabolic bursting. J Math Biol, 1987, 25:653–675.
    [200] Izhikevich EM. Neural excitability,spiking,and bursting. Int J Bifur Chaos, 2000, 10:1171–1266.
    [201] Braun HA, Wissing H, Schafer K, et al. Oscillation and noise determine signal transduction in shark multimodal sensory cells. Nature, 1994, 367:270–273.
    [202] Braun HA, Dewald M, Voigt K, Huber M, Neiman A, Pei X, Moss F. Finding unstable periodic orbits in electroreceptors,cold receptors and hypothalamic neurons. Neurocomputing, 1999, 26-27:79–86.
    [203] Braun HA, Huber MT, Anthes N, Voigt K, Neiman A, Pei X, Moss F. Interactions between slow and fast conductions in the Huber/Braun model of cold-receptor discharges. Neurocomputing, 2000, 32:51–59.
    [204] Huber MT, Krieg JC, Dewald M, Voigt K, Braun HA. Stochastic encoding in sensory neurons:impulse patterns of mammalian cold receptors. Chaos,solitons and Fractals, 2000, 11:1895–1903.
    [205]崔锦泰,小波分析导论,西安交通大学出版社,1995.
    [206] P. Goupillaud, A. Grossmann, J. Morlet. Cycle-octave and related transforms in seismic signal analysis. Geoexploration, 1984, 23:85–102.
    [207] Meyer DL. Evolutionary implications of predation on recent comatulid crinoids from the Great Barrier Reef. Paleobiology, 1985, 11:154–164.
    [208] Mallat S. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Pattern Anal.and.Machine.Intell., 1989, 11(7):674–693.
    [209] I.Daubechies. Orthogonal Bases of compactly Supported Wavelets, Comm.Pur.Appl.Math., 1988, 41:909–996.
    [210] C. K. Chui and J. Z. Wang. On Compactly Supported Spline Wavelets and A Duality Principle. Technical Report CAT-213, Texas A&M University, Center for Approximation Theory, Dept. of Math., Texas A&M, College Station, TX-77843, May 1990.
    [211] Vaz CA, et al. Adaptive Fourier Series modeling of time-varying evoked potentials. IEEE Trans on BME, 1989, 36:448–455.
    [212] Thakor NV, et al. Multiresolution wavelet analysis of evoked potentials. IEEE Trans on BME, 1993, 40(11):1085–1093.
    [213] Bertrand O, et al. Time-frequency digital filtering based on an invertible wavelet transform: an applicaton to evoked potentials. IEEE Trans on BME, 1994, 41(1):77–88.
    [214] Raz J, Dickerson L, Turetsky B. A Wavelet Packet Model of Evoked Potentials. Brain and Language, 1999, 66(1):61–88.
    [215] Oliver, et al. Detection of late potentials by means of wavelet transform. in proc. IEEE 11th ann.conf.Eng.Med.Biol.Society, 1989, 28–29.
    [216] Zhong J, et al. A wavelet transform based multichannel detection of ventricular late potentials. in proc.IEEE/13th.Ann.Conf.Eng.Med.Biol. Society, 1991, 643–644.
    [217] Morlet D, et al. Wavelet analysis of high-resolution signal averaged ECGs in postinfarction Patients. J.Electrocardiogy, 1993, 36(4):311–319.
    [218] CW Li, et al. Detection of ECG characteristic point using wavelet transforms. IEEE Trans on BME, 1995, 42(1):21–28
    [219]杨丰等,一种新的心电图滤波方法,中国医疗器械杂志,1993,7(6):311–314
    [220] Bradie B.Wavelet packet-based compression of signal lead ECG. IEEE Trans BME, 1994, 43(1):49–60.
    [221] Olson T, DeStefano I. Wavelet localization of radon transform. IEEE Trans Signal Processing, 1994, 42:2055–2067.
    [222] Rezek IA, Roberts SJ. Stochastic Complexity Measures for Physiological Signal Analysis. IEEE Trans Biomed Eng, 1998, 45(9):1186–1191.
    [223] Blanco S, Figliosa A, Quian Q R, et al. Time-frequency analysis of electroencephalogram series(III):information transfer function and wavelets packets. Physical Review E, 1998, 57(1):932–940.
    [224] Rosson O A, Blanco S, Yordanova J, et al. Wavelet entropy: a new tool for analysis of short duration brain electrical signals. J Neurosci Meth, 2001, 105(1):65–75.
    [225] Quiroga RQ, Rosso OA, Basar E, et al. Wavelet entropy in event-related potentials: a new method shows ordering of EEG oscillations. Biological Cybernetics, 2001, 84(4):291–299.
    [226]封洲燕,应用小波熵分析大鼠脑电信号的动态特性,生物物理学报,2002,18(3):325–330
    [227]于德介等,基于EMD的奇异值熵在转子系统故障诊断中的应用,振动与冲击,2006,25(2):24–26
    [228]史习智,信号处理与软计算,北京,高等教育出版社,2003,pp180
    [229] A.Lempel and J.Ziv. On the complexity of finite sequences. IEEE Trans.Inform.Theory, 1976, 22(1):75–81.
    [230]韩路跃,杜行检,基于MATLAB的时间序列建模与预测,计算机仿真,2005,22(4):105–107
    [231]田铮,吴芳琴,王红军,非线性时间序列建模的混合GARCH方法,系统仿真学报,2005,17(8):1867–1871
    [232]杨福生,小波变换的工程分析与应用,北京:科学出版社,1999:33-35
    [233] Gray R. Entropy and Information Theory. New York: Springer, 1990.
    [234] Guiasu S. Information Theory with Applications. New York: Mc-Graw-Hill, 1997.
    [235] HE Zheng-you, Chen Xiaoqing, Luo Guoming. Wavelet Entropy Measure Definition and Its Application for Transmission Line Fault Detection andIdentification I, Power System Technology.International Conference on PowerCon, Oct 2006:1–5.
    [236] Ciaccio E, Dunn S, Akay M. Biosignal pattern recognition and interpretation systems. IEEE Eng in Med and Bio Mag, 1993, (6):106
    [237]杨文献,姜芷胜,机械信号奇异熵研究,机械工程学报,2000,36(12):9–13