海洋微生物次级代谢产物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以稻瘟霉分生孢子和菌丝体形态变化为活性指标,从由全球各海域采集到的400多个海洋微生物菌株(细菌、真菌和放线菌)中初步筛选出98株活性菌株。采用溶剂法和各种色谱法(硅胶柱色谱、葡聚糖凝胶柱色谱、制备薄层色谱以及HPLC等)对其中6株具有较好活性和稳定性的菌株的发酵液和/或菌丝体进行了分离。从采自黄岛的海葵上分离得到的绿1b-1号(多色曲霉Aspergillus versicolor)菌株发酵液和菌丝体中共分离得到15个化合物,并通过理化性质和波谱数据分析确定了其中12个化合物的化学结构,它们分别是:柄曲菌素(a-Ⅰ)、6-甲氧基柄曲菌素(a-Ⅱ)、奥佛尼红素(a-Ⅲ)、1,6-二甲氧基杂色曲菌素B(a-Ⅳ)、对苄氧基苯酚(a-Ⅴ)、酪氨酸(a-Ⅵ)、麦角甾-5,7,22-三烯-3β-醇(a-Ⅶ)、5α,8α-表二氧麦角甾-6,22-二烯-3β-醇(a-Ⅷ)、丁二酸(a-Ⅸ)、尿素(a-Ⅹ)、尿嘧啶(a-Ⅺ)、甘露醇(a-Ⅻ)。从采自黄岛的扇贝上分离得到的SH-3号菌(海单孢菌属Marinomonas sp.)的发酵液中共分离得到9个化合物,利用理化性质和波谱数据分析确定了其中7个化合物的化学结构,它们分别是:吡咯并哌嗪-2,5-二酮(b-Ⅰ)、3-甲基-哌嗪-2,5-二酮(b-Ⅱ)、3-甲基-吡咯并哌嗪-2,5-二酮(b-Ⅲ)、苯乙酸(b-Ⅳ)、对羟基苯乙胺(b-Ⅴ)、尿素(b-Ⅵ)、3-异丙基-吡咯并哌嗪-2,5-二酮(b-Ⅶ);从采自珠江口海泥中分离得到的Z16—1号菌株(芽孢杆菌Bacillus sp.)的发酵液中共分离得到12个化合物,利用理化性质和波谱数据分析鉴定了其中10个化合物的化学结构,它们分别是:吡咯并哌嗪-2,5-二酮(c-Ⅰ)、3-甲基-哌嗪-2,5-二酮(c-Ⅱ)、3-羟甲基-8-羟基吡咯并哌嗪-2,5-二酮(c-Ⅲ)、胸腺嘧啶(c-Ⅳ)、3-异丁基-6-另丁基-哌嗪-2,5-二酮(c-Ⅴ)、3-异丁基-吡咯并哌嗪-2,5-二酮(c-Ⅵ)、色氨酸(c-Ⅶ)、maricyclocin(c-Ⅷ)、β-谷甾醇(c-Ⅸ)、3β-羟基-胆甾-5-烯(c-Ⅹ);从采自烟台海星上分离得到的Z11-1号菌株(交链孢属Alternalia sp.)的发酵液中共分离得到11个化合物,利用理化性质和波谱数据分析鉴定了其中7个化合物的结构,它们分别是:(2S,3S,4R,16E)-1,4-环氧-2-[(2R)-2-羟基-十六酰胺]-16-二十六烯-1,3,4-三醇(d-Ⅰ)、(2S,3S,4R,16E)-1,4-环氧-2-[(2R)-2-羟基-十八酰胺]-16-二十六烯-1,3,4-三醇(d-Ⅱ)、(2S,3S,4R,16E)-1,4-环氧-2-[(2R)-2-羟基-十四酰胺]-16-二十六烯-1,3,4-三醇(d-Ⅲ)、丁四醇(d-Ⅳ)、曲酸(d-Ⅴ)、缬氨酸(d-Ⅵ)和3—甲基哌嗪-2,5—二酮(d-Ⅶ);从采自南海海绵上分离得到的O2AZ-Z2号菌株(青霉属Pennicillium sp.)的发酵液中共分离得到8个化合物,利
Over 400 marine microorganism strains were collected and isolated from sea area all over the world. With morphological change of Pyricularia oryzae as active index, 98 active strains of them were screened preliminarily, 6 strains of which were found to have better activities. We studied on the chemical constituents of the fermentation and/or mycelia of these six strains by all kinds of chromatographical techniques (such as silica gel chromatography. sephadex LH-20, PTLC and HPLC etc.) with bioactivity-guided fractionation. 1(?) Compounds were isolated from strain 1b-1 (Aspergillus versicolor) and determined by means of physicochemical evidences and spectral methods. These 14 compounds were identified as sterigmatocystin (a-I), 6-methoxysterigmatocystin (a-II). averufin (a-III) 1,6-dimethoxylversicolorin B (a-IV), p-benzyloxy-phenol (a-V), tyrosine (a-VI), ergosta-5, 7, 22-triene-3β -ol (a-VII), 5α, 8α-epidioxy ergosta-6, 22-diene-3β-ol (a-VIII), amber acid (a-IX), carbamide (a-X), uracil (a-XI), mannitol (a-XII). 9 Compounds were isolated from strain SH-3 (Marinomonas sp.), and 7 of which were elucicated by use of physicochemical evidences and spectral methods. These 7 compounds were identified as pyrrolopiperazine-2, 5-dione (b-I), 3-methyl piperazine-2, 5-dione (b-II), 3-methyl-pyrro(?)piperazine-2, 5-dione (b-III), phenylacetic acid (b-IV), tyramine (b-V). carbamide (b-VI), 3-isopropyl-pyrrolopiperazine-2, 5-dione (b-VII). 12 Compounds were isolated from s(?)rain Z16-1 (Bacillus sp.), and 10 of which were elucidated by using physicochemical evidences and spectral methods. These 10 compounds were identified as pyrrolopiperazine-2, 5-dione (c-I), 3-methylpiperazine-2, 5-dione (c-II). 3-hydroxymethyl-8—hydroxyl pyrrolopiperazine -2,5-dione (c-III), thymine (c-IV), 3 -isobutyl — 6—se(?)butyl-piperazine-2, 5-dione (c-V), 3-isobutyl-pyrrolopiperazine-2, 5-dione (c-VI), tryptophan (c-VII), maricyclocin (c-VIII) ,β-sitosterol (c-IX), 3β-hydroxxy-cholesta -5- ene (c-X). 1(?) Compounds were isolated from strain Z11-1(Alternaria sp.), and 7 of which were elucidate(?) by use of physicochemical evidences and spectral methods. These 7 compounds v. re identified as (2S, 3S, 4R, 16E)-1,4-epoxy-2-[(2R)-2-hydroxy hexadecanoyla(?)no]-16- hexacosene-1, 3, 4-triol (d-I), (2S, 3S, 4R.
引文
[1] Harold C. N. The crisis in antibiotic resistance, Science, 1992, 257(8): 1064~1072.
    [2] Hisayoshi K., Michio N., Takeshi Y., A screening method for antimitotic and antifungal substances using conidia of Pyricularia oryzae and application to tropical marine fungal. J Antibiot, 1996, 49(9): 873~879.
    [3] Morinari M. Cell Cycle checkpoints and their inactivation in human cancer. Cell Prolif, 2000, 33: 261~274.
    [4] Amanda G. P., David P. T., Leland H. H. When checkpoints fail. Cell, 1997, 88: 315~321.
    [5] Ewen M., The cell cycle and the retinoblastoma protein family. Cancer Metastasis Reviews, 1994, 13: 45.
    [6] Weinberg R. A. The retinoblastoma protein and cell cycle control. Cell, 1995, 81: 323.
    [7] Kawabe T., Suganuma M., Ando T., et al. Cdc25C interacts with PCNA at G2/M transition, Oncogene, 2002, 21: 1717~1726.
    [8] Draetta G., Eckstein J. Cdc25C protein phosphatases in cell proliferation. Biochim. Biophys. Acta, 1997, 1332: M53~M63.
    [9] Kamb A., Gruis N. A. Weaver F. J., et al, A cell cycle regulator potentially involved in genesis of many tumor types. Science, 1994, 264: 436~438.
    [10] 刘景生.细胞信息与调控.北京:北京医科大学中国协和医科大学联合出版社,1998,331.
    [11] Klaus G. R., Pieter S. S., Robert V., et al. Carbon-13 Nuclear Magnetic Resonance Assignments and Biosynthesis of Aflatoxin B_1 and sterigmatocystin[J]. J Chem Soc Perkin Trans I, 1976, 11: 1182~1189.
    [12]] 胡海峰,朱宝泉,龚炳永.微生物来源的胆固醇生物合成酶抑制剂Ⅸ.抗生素SIPI-8917-Ⅳ的研究[J].中国抗生素杂志,1999,24(2):7~10.
    [13] Charles P. G., Klaus G. R., Pieter S. S., et al. Carbon-13 Nuclear Magnetic Resonance Assignments of some Fungal C_(20) Anthraquinones; their Biosynthesis in Relation to that of Aflatoxin B[J]. J Chem Soc perkin trans I, 1977, (5): 2181~2187.
    [14] McGuire S. M., Brobst S. W., Graybill T. L., et al. J Am Chem Soc, 1989, 111: 8303~8309.
    [15] Sadtler Research Laboratories. Sadtler Standard NMR Spectra[M]. USA: Sadtler Research Laboratories, 1976. 6552.
    [16] Sadtler Research Laboratories. Sadtler Standard Carbor-13 NMR Spectra[M]. USA: Sadtler Research Laboratories. 1976. 98.
    [17] 于德泉,杨峻山.分析化学手册;第7分册[M].北京:化学工业出版社.1996,125.
    [18] Noboru S., Hideyuki T., Kazuo V., et al. Sterol analysis of DMI-resistant and sensitive strains of Venturia inaequalis[J]. Phytochemistry, 1996, 41(5): 1301~1308.
    [19] Marina D., Lorenzo M., Antonio M., et al. 5β, 8β-epidioxy ergosta-6, 22-diene-3β-ol. Gazzetta Chimica Italiana, 1990, 120 (6): 391~392.
    [20] Sadtler Research Laboratories. Sadtler Standard NMR Spectra[M]. USA: Sadtler Research Laboratories Inc, 1973, 16982m..
    [21] Sadtler Research Laboratories. Sadtler Standard Carbon-13C-NMR Spectra[M]. USA: Sadtler Research Laboratories Inc, 1979, 6801c.
    [22] 张海龙,陈凯,裴月湖,等。诃子化学成分的研究.沈阳药科大学学报,2001,18(6):417~418.
    [23] 秦文娟,孔庆芬,范志同,等.掌叶半夏化学成分的研究(Ⅲ).中草药,1984,15(11):10~12.
    [24] Nakatsuka S., Miyazaki H., Goto T. Synthetic studies on natural products containing oxidized diketopiperazine. Ⅰ. Total synthesis of neoechinulin A, an indole alkaloid containing oxidized diketopoperazine[J]. Tetrahedron Lett, 1980, 21 (29): 2817~2820.
    [25] 龚运淮.天然有机化合物的~(13)C~1H核磁共振化学位移[M].昆明:云南科学和科技出版社.1986,449.
    [26] Sadtler Research Laboratories. Sadtler Standard Carbor-13 NMR Spectra[M]. USA: Sadtler Research Laboratories. 1969. 117m.
    [27] Lajide L., Escoubas P., Mizutani J. Termite antifeedant activity in Xylopia Aethiopica.. Phytochemsitry, 1995, 40(4): 1105~1112.
    [28] Jayatilake G. S., Thomton M. P., Leonerd A. C., et al. Metabolites from an Antarctic sponge-associated bacterium pseudomonas. J Nat Prod, 1996, 59: 293~296.
    [29] Yagi A., Nagao M., Okamura N. Effect of cyclo(trans-4-L-hydroxylprolyl-L-Serine) from hydrolyzate of human placenta on baby hamster kidney (BHK)-21/C-13 cells, Natural Medicines, 1998, 52(2): 156~159.
    [30] Goldstein J. H., Tarpey A. R. Carbon-13 NMR spectra of uracil, thymine and the 5-halouracils. J Amer Chem Soc, 1971, 93(15): 3573~3574.
    [31] 于德泉,杨峻山.分析化学手册.第7分册.北京:化学工业出版社,1996.909.
    [32] 于德泉,杨峻山.分析化学手册.第7分册.北京:化学工业出版社,1996.893.
    [33] Sugiyama S., Honda M., H igucki R., et al. Stereochemistry of the four diastereomers of ceramide and ceramide lactoside. Liebigs Ann Chem, 1991, (4): 349~356.
    [34] Higuchi R., Inagaki M., Togawa K., et al. Isolation and structure of Cerebrosides from the sea cucumber Pentacta australis. Liebigs Ann. Chem. 1994, 7: 653~. 658
    [35] Fusetani N., Yasumuro K., Matsunaga S., et al. Haliclamines A and B, cytotoxic macrocyclic alkaloids from a sponge of the genus Haliclona. Tetrahedron Lett., 1989, 30: 6891~6894.
    [36] Mikhail V. V., Andrey B. I., Alexandr A. P., et al. Trans-olefinic very-long-chain fatty acid in lipids of fresh-water sponges of lake baikal. Tetrahedron Lett., 1990, 31: 4367~4370.
    [37] Murakami T., Taguchi K. Stereocontrolled synthesis of novel phytosphingosine-type glucosaminocerebrosides. Tetrahedron, 1999, 55(4): 989~1004.
    [38] Sadter Research Laboratories. Sadtler Standard NMR Spectra. USA: Sadtler Research Laboratories, 1982. 34256.
    [39] Natori M., Morita M., Akimoto K., et al. Agelasphins, novel antitumor and immunostimulatory cerebrosides from the marine sponge Agelas mauritinus. Tetrahedron, 1994, 50(9): 2771~2784.
    [40] Kawai G., Ikeda Y. Chemistry and functional moiety of fruiting-inducing cerebroside in Schizophyllum commune, Biochim Biophys Acta, 1983, 754: 243~248.
    [41] Natori T., Morita M., Akimoto K., et al. Agelasphins, novel antitumor and immunostimulatory cerebrosides from the marine sponge agelas mauritianus. Tetrahedron, 1994, 50(9): 2771~2784.
    [42] 左连富主编.流式细胞术与生物医学.沈刚:辽宁科学技术出版社,1996,1~27.
    [43] Darzynkiewicz Z., Bruno S., Del B. G., et al. Features of apoptotic cells measured by flow cytometry. Cytometer, 1992, 13(8): 795~808.
    [44] Chatterjee M., Townsend C. A. Evidence for the probable final steps in Aflatoxin biosynthesis. J. Org. Chem., 1994, 59(16): 4424~4429.
    [45] Swan T. M., Watson K. Stress tolerance in yeast sterol auxotrogh: role of ergosterol, heat shock proteins and trehalose. FEMS Microbiology Letters, 1998, 169: 191~197.
    [46] Bell R., Vibrindole A. A metabolite of the marne bacterium Vibrio parahaemolyticus, isolated from the toxic mucus of the boxfish Osteracion cubicus. J. Nat. Prod. 1994, 57(11): 1589~1590.
    [47] Kricheldorf H. R. Spectroscopic characterization of cyclodipeptides (2, 5-dioxopiperazines), Organic Magnetic Resonance, 1980, 13(1): 52~58.
    [48] 谭宁华,周俊,赵守训.植物环肽研究进展,药学学报,1997,32 (5):388~399。
    [49] Ovchinnikov Y. A, Ivanov V. T. In: the Proteins, 3 rd ed. H Neurath, R L Hill, eds. New York: Aacd Press, 1982.310-642.
    
    
    [50]Ireland C. M., Molinski T. F., Roll D. M., et al. In: Bioorganic Chemistry, Vol 3. P J Scheuer, ed. Beilin: Springer- Verlag, 1989, 1-46.
    
    [51]Reid R. T., Butler A. Investigation of the mechanism of iron acquisition by the marine bacterium, Alterromonas luteoviolacea: characterization of siderophore production, Limnol & Oceanogr, 1991, 36: 1783-1792.
    
    [52]Afonso A., Hon F., Brambilla R. Structure elucidation of Sch 20562, a glucodidic cyclic dehydropeptide lactone-the major component of W-10 antifungal antibiotic. J Antibiot., 1999, 52(4): 383-397.
    
    [53]Nev H. C. The crisis in antibiotic resistance. Science, 1992,257:1064-1072.
    
    [54]Edmond M. B., Ober J. F., weinbaum D. L., et al. Vancomcin-resistant Enterococcus faecium bacteremia: risk factors for infection. Clin. Infect. Dis., 1995, 20(5): 1126-1133.
    
    [55]Gerard J. M., Haden P., Kelly M. T., et al. a cyclic decapeptide antibiotic produced in culture by a tropical marine bacterium. Tetrahedron Lett, 1996, 37(40): 7201-7204.
    
    [56]Gerard J. M., Haden P., Kelly M. T., et al. Loloatins A-D, Cyclic Decapeptide Antibiotics Produced in Culture by a Tropical Marine Bacterium. J Nat Prod, 1999, 62(1): 80-85.
    
    [57]Harrigan G. G., Harrigan B. L., Davidson B. S. Kailuins A-D, new cyclic acyldepdipeptides from cultures of a marine -derived bacterium. Tetrahedron, 1997, 53(5): 1577-1582.
    
    [58]Wang G. Y. S., Kuramoto M., Yamada K., et al. Homocereulide, an extremely potent cytotoxic depsipeptide from the marine bacterium bacillus cereus. Chem Lett, 1995,791-792.
    
    [59]Wolliam H. G., Zhi D. J., Santosh K. A., et al. Total structure of homothamnin A, a toxic cyclic undecapeptide from the tropical marine cynlbacterium hormothamnion enteromorphoides. Tetrahedron, 1992,48:2313-2324.
    
    [60]Pettit G. R., Xu J. P., Williams M. D., et al. Antineoplastic agents 370. Isolation and structure of dolastatin 18. Bioorg Med Chem Lett, 1997, 7:827-832.
    
    [61] Pettit G. R., Kamano Y, Fujii Y., et al. Marine animal biosynthetic constituents for cancer chemotherapy, J Nat Prod, 1981,44:482-485.
    
    [62]Harrigan G. G., Luesch H., Yoshida W. Y. Symplostatin 2: A dolastatin 13 analogue from the marine cynobacterium Symploca hydnoides. J Nat Prod, 1999, 62: 655-658.
    
    [63]Hendrik L., Wesley Y. Y. Lyngbyastatin 2 and norlyngbyastatin 2, analogues of dolastatin G and nordolastatin G from the marine cyanobacterium Lyngbya majuscula. J Nat Prod, 1999, 62: 1702~1706.
    [64] Hendrik L., Ronald P., Wesley Y. Y., et al. Pitipeptolides A and B, new cyclodepsipeptides from the marine cyanobacterium Lyngbya majuscula. J Nat Prod, 2001, 64: 304~307
    [65] Hendrik L., Wesley Y. Y. Isolation, structure determination, and biological activity of lyngbyabellin A from the marine cyanobacterium Lyngbya majuscula. J Nat Prod, 2000, 63: 611~615.
    [66] Hendrik L., Wesley Y. Y. Isolation and structure of the cytotoxic lyngbyabellin B and absolute configuration of lyngbyapeptin A from the marine cyanobacterium Lyngbya majuscula. J Nat Prod, 2000, 63: 1437~1439.
    [67] Sitachitta N., Williamson R. T., Gerwick W. H. Yanucamides A and B, two new depsipeptides from an assemblage of the marine cyanobacteria Lyngbya majuscula and schizothrix species. J Nat Prod, 2000, 63: 197~200.
    [68] Horgen F. D., Yoshida W. Y., Scheuer P. J. Malevamides A-C, new depsipeptides from the marine cyanobacterium Symploca laete-viridis. J Nat Prod, 2000, 63: 461~467.
    [69] Wan F., Erickson K. L. Georgamide, a new cyclic depsipeptide with an alkynoic acid residue from an Australian cyanobacterium. J Nat Prod, 2001, 64: 143~146.
    [70] Williams P. G., Yoshida W. Y., Moore R. E., et al. Isolation and structure determination of obyanamide, a novel cytotoxic cyclic depsipeptide from the marine cyanobacterium Lyngbya confervoides. J Nat Prod, 2002, 65: 29~31.
    [71] Luesch H., Yoshida W. Y., Moore R. E., et al. Total structure determination of apratoxin A, a potent novel cytotoxin from marine cyanobacterium Lyngbya majuscula. J Am Chem Soc, 2001, 123: 5418~5423.
    [72] Trichman J. A., Tapiolas D. M., Jensen P. R., et al. Salinamides A and B: anti-inflammatory depsipeptides from a marine streptomycete. J Am Chem Soc, 1994, 116: 757~758.
    [73] Moore B. S., Trischman J. A., Seng D., et al. Salinamides, anti-inflammatory depsipeptides from a marine streptomycete. J Org Chem, 1999, 64: 1145~1150.
    [74] Romero F., Espliego F., Baz J. P., et al. Thiocoroline, a new depsipeptide with antimor activity produced by a marine micromonspora. Ⅰ. Taxonomy, fermentation, isolation and biological activities. J Antibiot, 1997, 50(9): 734~737.
    [75] Baz J. P., Canedo L. M., Fernandez-Puentes J. L. Thiocoroline, a new depsipeptide with antitumor activity produced by a marine micromonspora. Ⅱ. Physico-chemical properties and structure determination. J Antibiot, 1997, 50(9): 738~741.
    [76] Trischman J. A., Jensen P. R., Fenical W. Haiobacillin: A new cyclic acylpeptide of the iturin class produced by a marine bacillus. Tetrahedron Lett, 1994, 35(31): 5571~5574.
    [77] Renner M. K., Shen Y. C., Cheng X. C., et al. Cyclomarines A-C, new anti-inflammatory cyclic peptides produced by a marine bacterium. J Am Chem Soc, 1999, 121: 11273~11276.
    [78] Jenkins K. M., Renner M. K., Jensen P. R., et al. Exumolides A and B: Antimicroalgal cyclic depsipeptides produced by a marine fungus of the genus Scytalidium. Tetrahedron Lett, 1998, 39: 2463~2466.
    [79] Belofsky G. B., Jensen P. R. Sansalvamide: a new cytotoxic cyclic depsipeptide produced by a marine fungus of the genus Fusarium. Tetrahedron Lett, 1999, 40: 2913~2916.
    [80] Cueto M., Jensen P. R., Fenical W. N-methylsansalvamide, a cytotoxic cyclic depsipeptide from a marine fungus of the genus Fusarium. Phytochemistry, 2000, 55: 223~226.
    [81] Abbant D., Leighton M., Maise W., et al. Cell wall active compounds produced by a the marine fungus Hypoxylon oceanicum LL-15G256; Ⅰ. Taxonomy and fementation. J Antibiot, 1998, 51(3): 296~302.
    [82] Schlingmann G., Milne L., Williams D. R., et al. Cell wall active compounds produced by a the marine fungus Hypoxylon oceanicum LL-15G256; Ⅱ. Isolation and structure determination. J Antibiot, 1998, 51(3): 303~316.
    [83] Abbant D., Leighton M. Cell wall active compounds produced by a the marine fungus Hypoxylon oceanicum LL-15G256; Ⅲ. Biological properties of 15G256γ. J Antibiot, 1998, 51 (3): 317~322.
    [84] Lin Y. C., Wang J., Wu X. Y, et al. A Novel Compound Enniatin G from the Mangrove Fungus Halosarpheia sp. From the South China Sea. Journal of Aust Chem, 2002, 55(3): 225~227.
    [85] Moore R. E., Bornemann V., Niemczura W. P., et al. Puwainaphycin C, a Cardioactive cyclic peptide from the blue-green alga Anabaena BQ-16-1. Use of two-dimensional ~(13)C-~(13)C and ~(13)C-~(15)N correlation spectroscopy in sequencing the amino acid units. J Am Chem Soc, 1989, 111: 6128~6132.
    [86] 藤荣伟,丁中涛,何以能,等.二蕊荷莲豆环肽B的NMR应用研究.波谱学杂志,2003,20(1):43~50.
    [87] Helms G. L., Moore R. E., Niemczura W. P., et al. Scytonemin A, a novel calcium antagonist from a Blue-Green Alga. J Org Chem, 1988, 53: 1298~1307.
    [88] Renner M. K., Shen Y. C., Cheng X. C., et al. Cyclomarins A-C, new anti-inflammatory cyclic peptides produced by a marine bacterium (Streptomyces sp. ). J. Am. Chem. Soc. 1999, 121: 11273-11276.
    [89] Toome V., Wegrzynski B., Reymond G. Chiroptical properties of fluorescamine condensation compounds with alpha-amino acid in situ. Biochem. Biophys. Res. Commun. 1976, 69(1): 206~211.
    [90] Toome V., Wegrzynski B. Chiroptical properties of fluorescamine condensation compounds with amino acid ester in situ. Pyrrolinone chirality rule. Biochem. Biophys. Res. Commun. 1978, 85(4): 1496~1502.
    [91] Szokan G., Bezo G., Hudecz F. Application of Marfey's reagent in mcemization studies of amino acids and peptides. J Chromatography, 1998, 444: 115-122.
    [92] Qursshi A., Colin P. L., Faulkner D. J. Microsclerodermins F-I, antitumor and antifungal cyclic peptides from the lithistid sponge Microscleroderma sp. Tetrahedron, 2000, 56(23): 3679~3685.
    [93] Tan L. T., Williamson R. T., Gerwick W. H. Cis, cis and trans, trans-ceratos spongamide, new bioactive cyclic heptapeptides from the Indonesian red alga ceratoidclyon spongiosium and symbiotic sponge Sigmadocia symbiotica. J Org Chem., 2000, 65(2): 419~425.
    [94] Tanaka K., Shigemori K., Shionoya M., Cyclic metallopeptides, cyclo[Gly-LCys(terpyPt~Ⅱ)_n] Cl_n Chem Commun, 1999, 24: 2475~2476.
    [95] Shen L., Chang H. W., Ong C. W., et al. Synthesis, DNA binding, and sequence specificity alleylatino by some novel cyclic peptide-chlorambucil conjudgates. Anti-Cancer Drug Design, 1995, 10(5): 373~388.
    [96] Freidinger R. M., Veber D. F. Peptides and their retro enantiomers are topologically nonidentical. J Am Chem Soc, 1979, 101(20): 6129~6130.