盐度变化对含氨氮废水处理的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含盐废水包括海水直接利用后排放出的废水和许多工业废水,如化工废水、农药废水。因为含有一定的无机盐,而无机盐对生物有抑制作用,可以造成质壁分离或细胞失活。国外对高盐废水生化处理的研究起步较早,但是并没有得到一致的结论,其主要分歧在于微生物对高盐度环境适应能力的强弱以及不同浓度不同种类的盐份对处理系统的影响也不一样。若采用生物法处理高含盐有机废水,首先应解决微生物能够适应高盐度环境的问题,并最终实现去除废水中有机污染物的目的。目前国内外对高盐度废水的研究主要是针对COD降解的研究,而对NH3-N的研究还处于初始阶段,并没有深入的研究,有些还存在分歧,造成这种分歧的原因是对污泥适应盐份的生物学机制缺乏了解,在实验中可能由于采用的驯化方法、盐浓度以及具体的实验条件不一致而导致的。本论文主要针对盐度变化对SBR中硝化作用的动态影响和盐度变化对SBBR和SBR中含氨氮废水处理的影响展开研究,为含盐废水中的氨氮处理提供理论依据。
     本研究针对含盐废水的硝化作用,通过在单级SBR反应器中,逐步增加盐度(以氯离子浓度计)驯化活性污泥过程、淡水活性污泥受到一定盐度冲击过程以及经过3×104 mg Cl·L~(-1)驯化后的活性污泥在盐度波动时对亚硝化和硝酸化过程的影响。研究结果表明:在逐步提高盐度驯化的过程中,NH_4~+-N的降解速率在盐度为1.5×104 mg Cl·L~(-1)-2.0×104 mg Cl·L~(-1)时先降低后升高,当盐度为2.5×104 mg Cl·L~(-1)时,反应周期末有大量的NO2--N累积,当盐度高达3.0×104 mg Cl·L~(-1)时, NH4+-N的降解速率仍然维持在一定水平,这说明硝酸化过程比亚硝化过程更容易受到高盐度的抑制。而在冲击实验中,当淡水活性污泥受到2×104 mg Cl·L~(-1)盐度冲击时,即使经过长时间的驯化后亚硝化过程仍然受到较大的抑制,且周期末有大量NO2--N累积,当受到3×104 mg Cl·L~(-1)时硝化作用几乎完全被抑制。经过3×104 mg Cl·L~(-1)驯化后的活性污泥的硝化作用对盐度波动具有较强的适应性。
     研究了逐步提高盐度(以氯离子浓度计)对内循坏SBBR和SBR中硝化和反硝化作用的影响,以及当盐度降为0 mg Cl·L~(-1)后的恢复过程。研究结果表明:在内循坏SBBR和SBR中,随着盐度的逐步提高,亚硝化过程都会受到影响,当盐度小于1.0×104mg Cl·L~(-1)时,SBBR中的氨氮降解速率小于SBR,从1.5×104mg Cl·L~(-1)开始SBBR中的氨氮降解速率大于SBR,当盐度提高为4.0×104mg Cl·L~(-1)时,两者的亚硝化过程都受到极大抑制; SBBR在盐度为1.5×104mg Cl·L~(-1)时即持续有NO2--N累积,而在SBR中,当盐度提高为2.5×104mg Cl·L~(-1)时,反应周期末才开始持续有大量的NO2--N累积;在SBBR中,当盐度低于1.5×104mg Cl·L~(-1)时,TN去除率达到60%左右,当盐度大于3.0×104mg Cl·L~(-1)时,同步硝化反硝化过程受到较大抑制。
     本论文还研究了盐度变化对活性污泥理化性质及微生物生理群和种属的影响分析了盐度变化时的活性污泥形态结构、污泥浓度以及污泥沉降指数,还分析了不同盐度时的亚硝酸菌和硝酸菌菌种变化。
Many kinds of waste water containing highly concentrated salt, such as municipal wastewater in cities utilizing sea water as one part of water supply, chemical industrial wastewater and pesticide wastewater,etc. Because it contains salt,high saline concentrations have negative effects on organic matter, nitrogen and phosphorus removal. The presence of high salt concentrations in wastewaters induces salt stress to the microbial species, results in the inhibition of many enzymes, decreases cell activity and eventually leads to plasmolysis.The time when they started to study disposing wastewater contains high salt by biochemistry is early overseas,but there is not a consolidate conclusion, the great difference is about the adaptability of microorganism in high saline concentration and the affection to wastewater facilities for different saline concentration and different type of salt. If we deal with the high saline concentration wastewater by biology,the microorganasim should live with high salt,so as to dispose organic substance. Most of the literature reports emphasize only on the effect of salinity on the decrese of COD,but it is few about the decrease for ammonia,most important,there is contradictory interpretation of results,the reason for the contradiction is lack of knowledge how the activated sludge to adapt high salt,and the different of the way for domestication,saline concentration and experiment condition might lead to the wrong conclusion in the experimentation.This paper disscused the dynamic response of nitrification to salinity changed in SBR and effects of salinity variation on the treatment wastewater containing ammonia in the SBBR and SBR. We try to find out the theory for treating ammonia in high saline wastewater.
     In the process of nitrification aiming at saline sewage, we discussed the response of ammonia-oxidize and nitrite-oxidize to increased chloride concentration gradually or increased once to a certain concentration in the salt-free wastewater in SBR. We also discussed the dynamic response of ammonia-oxidize and nitrite-oxidize to changed the chloride concentration after the microorganisms were trained by 3×104 mg Cl·L~(-1).It was found that the speed of ammonia-oxidize had a trend of down-and-up between 1.5×104 mg Cl·L~(-1)and 2.0×104 mg Cl·L~(-1)in the process of increasing chloride stepwise. When the chloride concentration was 2.5×104 mg Cl·L~(-1), there were a lot of nitrite at the end of cycle, when the chloride concentration was 3.0×104 mg Cl·L~(-1),the speed of ammonia-oxidize can keep a good level. So nitrite-oxidize are easier inhibited by a high chloride concentration than ammonia-oxidize. When impulsed 2×104 mg Cl·L~(-1)in the fresh activated sludge ,the process of ammonia-oxidize was inhibited strongly and there existed nitrite at the end of cycle. When impulsed 3×104 mg Cl·L~(-1)in the fresh activated sludge, nitrification was inhibited completely. After the culture was trained with 3×104 mg Cl·L~(-1) increasing chloride concentration gradually, though the chloride concentration fluctuated(less than 3×104 mg Cl·L~(-1)), the process of ammonia-oxidize and nitrite-oxidize have strong adaptability.
     According to nitrogen-containing wastewater, in this study effects of salinity variation on nitrification and denitrification in internal circulation Sequencing Batch Biofilm Reactor (SBBR) and Sequencing Batch Reacto (SBR), and the process of recovery as decreased salinity. The results showed that nitrosation process was effected in internal circulation SBBR and SBR as the increase of salinity, and as the salinity less than 1.0×104 mg Cl·L~(-1), the speed of ammonia-oxidize would be quicker in the SBR than in the SBBR, but the state would be opposite as the salinity beyond 1.5×104 mg Cl·L~(-1). As the salinity increased to 4.0×104 mg Cl·L~(-1),the process of ammonia-oxidize was restrained strongly both in SBBR and SBR.The nitrite accumulation was attained continually as the salinity at 1.5×104mg Cl·L~(-1) and 2.5×104 mg Cl·L~(-1) in the SBBR and SBR respectively. In the SBBR, the removal rate of TN was about 60% as the salinity was less than 1.5×104 mg Cl·L~(-1), and the SND was restrained strongly as the salinity beyond 3.0×104 mg Cl·L~(-1).
     This paper also discussed long term effects of salt on population structure and floc characteristics in enriched bacterial cultures of nitrifiers,and we analysis the activated sludge configuration struction、sludge concentration、SVI、the composition of ammonia-oxidizer and nitrite-oxdizer changed when salt changed.
引文
[1]尤作亮.海水直接利用及其环境问题分析.给水排水,1998,24 (3):64
    [2]刘洪滨.我国海水淡化和海水直接利用事业前景的分析.海洋技术,1995,14(4):76
    [3]谭征.走向海洋新世纪.北京:北京工业大学出版社,1993,93-95
    [4]占新民,王建龙.中和沉淀树脂吸附法处理对氨基偶氮苯盐酸盐废水的实验研究.环境工程,1998,16(3):7
    [5]郭永海.河北平原地下水环境演化规律及其与人类活动相互关系的研究.中国地质大学博士论文,1993:12
    [6] Kargil F,Dinceri AR.saline wastewater treatment by halophile-supplemented activated sludge culture in an aerated rotating biodisc contactor. Enzyme and Microbial Technology,1998,22:427-433
    [7] Haniki K.Nitification at Low Level of DissolvedOxygen with and without Organic Loading in a Suspended Growth Reactor.Wat Res,1990,24(3):297-302 [8 ] Yang L,Alleman J E.Investigation of Batchwise NitriteBuild - up by an Enriched Nitirfication Culture.Wat Sci Tech,1992,26(5/6):997- 1005
    [9] Sen Priyali,Dentel Steven K.Simultaneous Nitrification -denitrification in a Fluidized Bed Reactor.Wat SciTech,1998,38(1):247- 254
    [10] Rogalla F.Upscaling a Compact Nitrogen Removal Process. Wat Sci Tech,1992,26:1067-1076
    [11] Watanabe W.Simultaneous Nitrification and Denitrification in Micro - aerobic Biofilms.Wat Sci Tech,1992,26:511-522
    [12] Wartchow D.Nitrification and Denitrification in Combined Activated Systems. Wat Sci Tech,1990,22(7/9):199 - 206
    [13] Daigger G T,Littleton H X.Orbal氧化沟同时硝化/反硝化及生物除磷的机理研究.中国给水排水, 1999,15 (3): 1-7
    [14] Stüven R.The Impact of Organic Mater on Nitricoxide Formation by Nitrosomonas Eurpaea. Arch Microbiol,1992,158:439-443
    [15] Muller E B.Simultaneous NH3 Oxidation and NProduction at Reduced O2 Tensions by Sewage SludgeSubcultured with Chemolithotrophic Medium. Biodegradation, 1995,6:339-349
    [16] Broda E.Two Kinds of Lithotrophs Missing in Nature.Z Allg Mikrobiol, 1997,58:1746 - 1763
    [17] Mulder A.Anaerobic Ammonium Oxidation Discovered in a Denitrifying Fluidized Bed Reactor.FEMS Microbiol Ecol,1995,16:177-184
    [18] Graaf A A.Anaerobic Oxidation of Ammonium is a Bioloically Mediated Process. Appl Environ Microbiol,1995,61(4):1246 - 1251
    [19] Schmidt Ingo, Bock Eberhard.Anaerobic Ammonia Oxidation with Nitrogen Dioxide by Nitrosomonas Eutropha. Arch Microbiol,1997,167:106 - 111
    [20] Strous Marc.Key Physiology of Anaerobic Ammonium Oxidation. Appl Environ Microbiol,1999,65(7):3248 - 3250
    [21] Graaf A A.Metabolic Pathway of Anaerobic Ammonium Oxidation on the Basis of 15N Studies in a Fluidized Bed Reactor.Microbiology,1997,143:2415 -2421
    [22]郑平.厌氧氨氧化菌基质转化特性的研究.浙江农业大学学报,1997,23(4):409 - 413
    [23]傅献彩.物理化学(下册).北京:人民教育出版社,1980,1~60
    [24]陈立波.高浓度含盐废水COD的测定.中国给水排水,1996,24(6):32-33
    [25]王蓉沙.电絮凝法处理油田污水.环境科学研究,1999,12(4):30~32
    [26]王宏,郑一新,钱彪,宁平.电解凝絮法处理高盐度有机废水的实验研究环境科学研究,2001,14(2):51-531
    [27]王慧,王建龙,占新民.电化学法处理含盐染料废水中国环境科学, 1999, 19(5): 441-444
    [28] Lin S H,Shyu C T,Sun M C.Saline wastewater treatment by electrochemical method.Wat Res,1998,32:1059 -1066
    [29] Dalmacija B,Karlovic E,Tamas,Miskovic Purification of high - salinity wastewater by activated sludge process.Wat Res,1996,30: 295– 298
    [30]杨庆,王三反,王越.三维电极加入氯化钠电解含酚废水的研究.兰州铁道学院学报,2003,22(1):133-l36
    [31]梁晨辉,易威,李斌.SBBR法处理高盐度有机废水的应用研究.污染防治技术,1998,11(4):226-228
    [32]安立超.嗜盐菌的特性与高盐废水生物处理的进展.环境污染与防治,2002,24(5):293-296
    [33]刘铁汉,周培瑾.嗜盐微生物.微生物学通报,1996,26(3):232
    [34] Wooland CR,Irvine RL Treatment of hypersaline wastewater in the sequencing batch reactor.Wat.Rea,1995,29(4):1159-1168
    [35] Peyton B M.Kinetics of phenol biodegradation in high solution Water Research,2002,36(19):4811-4820
    [36] Kargi F.Empirical models for biological treatment of saline wastwater in rotating biodisc contactor.Process Biochemistry,2002,38(3):399-403
    [37]田新玉.极端嗜盐菌和耐盐菌的区分.微生物学报,1999,30(4):314-317
    [38] Sluis C Van Det.Enhancing and accelerating flavour formation by salt-tolerant yeast in Japanese soy-sauce processess.Trends in Food. Science&Technology, 2001,12(9):322-327
    [39] Nina Gunde-Cimerman.Hypersaline wasters in salterns-natural ecological niches for halophilic black yeasts.Microbiology Ecology,2000,32(3):235-240
    [40] Matsutanti K.Adaptation enchanism of yeast to extreme environments: construction of salt-tolerance mutants of the yeasts Saceharomyces Cerevisine.Ferment Bioeng,1992,73(1):228-229
    [41] Magda Silva-Gracea,Candia L.Physiological studies on long-term adaptation to salt stress in the extremely halotalerant yeast Candida verlstilis CBS4019.FEMS Yeast Reserch,2003,3(3):247-260
    [42] Magda Silva-Gracea,LuisaN,Candiada L.Outlines for the definition of halotolerance/halophily in yeasts:Candida versatilis(halophila)CBS4019 as the archetype.FEMS Yeast Research,2003,3(4):347-362
    [43] Galina K.Exponential growth hpase cells of the osmotolerant yeast Ddbaryomyces hansenii are extremely resistant to dehydration stress.Process Biochemistry,2001,36(12):1163-1166
    [44] Olga K,Serge P,Hana S.The Zygosacharomyces rouxii strain CBSA732 contains only one copy of the HOGI and the SOD2 genes. Jounal of Biotechnology, 2001,88(2):151-158
    [45] Fumihiko S.A dual role for intracellular trehalose in the resistance of yeast cells to water stress.Cryobiology,1999,39(1):80-87
    [46]范光先.高浓度盐对耐高渗酵母产多元醇的影响.工业微生物,2001,31(1):1-3
    [47] Dan N P.Comparative evaluation of yeast and bacterial treatment of high salinity wastwater based on biokinetic coefficients.Bioresource Technology,2003,87(1): 51-57
    [48] Shin G T,Hany Y D.Production of carotenoids by Rhodotorularubra from sauerkraut brine. Lebensm Wiss Technol,1996,29:570-572
    [49] Choi M H.Growth of Pichia guilliemondii A9, an osmotolerant yeast,in waste brine generated from kimchi production. Bioresouce Technology,1999,70(3): 231-236
    [50] Oswal N.Palm oil mill effluent treatment by a trophical marine yeast.Bioresource Technology,2002,85(1):35-37
    [51] Gauth ier,M.J.F latau G. N and Breittmayer U A.P rotective. Effect of Glycine Betaine on Survival of Escherich ia Co li Cells in M arine Environment.WatSciTech,1991,24(2):129-132
    [52]斯皮思.工业废水的厌氧生物处理技术.北京:中国建筑工业出版社出版,2001,149-156
    [53]王志霞,王志岩.高盐度废水生物处理现状与前景展望.工业水处理,2002,22(11):1-4
    [54]何健.高盐度难降解工业废水生化处理的研究.中国沼气,2000,18(2):12- 16
    [55]刘洁玲.A-B段法处理高含盐量皂化废水.工业用水与废水, 1999, 30 (1): 19-23
    [56]安丽.二段接触氧化法处理含盐有机废水.上海环境科学,1990,19(11):6-8.
    [57]尤作亮.海水直接利用与含海水城市污水处理.水工业和可持续发展,1997,(2): 226 -231
    [58]杨健.驯化活性污泥处理高含盐量有机废水.上海环境科学,1998,17(9):8-10
    [59]何健.高盐度难降解工业废水生化处理的研究.中国沼气,2000,18(2):12-16
    [60] Hamoda M F,Attar I M S. Effects of high sodium chloride concentration on activated sludge treatment.Wat Sci Tech, 1995,31(9):61-72
    [61] Dalmacija B.Purification of highsalinity wastewater by activated sludge process. Wat Res,1996,30(2):295 -298
    [62] Yucel Tokuz R.The effect of inorganic salts on the activated sludge process performance. Wat Res,1989,23:99 -104
    [63]杨健.高含盐量石油发酵废水处理研究.给水排水,1999, 25(3):35-38
    [64] Woolard C R.Biological treatment of hypersaline wastewater by a biofilm of halophilic bacteria.Wat Res,1994,28(3):230 -234
    [65] Charles Glass.Denitrification of high nitrate, high salinity wastewater.Wat Res,1999,33(1):223-229
    [66] Yang L.Biodegradation of dispersed diesel fuel under high salinity conditions. Wat Res,2000,34(13):3303-3314
    [67] Yang L,Lai C T.Biological treatment of mineral oil in a salty environment.Wat Sci Tech,2000,42(5):369-375
    [68]Mills E V.Effect of saline sewage can on the performance of percolating filters.Water and Wastewater Treatment,1992,(9):170-172
    [69] Gumersindo Ferjoo,Manust Soto.Sodium inhibition in the anaerobic digestion process: antagonism and adaptation phenomena. Enzyme and Microbial Tech- nology,1995,17:180-188
    [70] Shimshon Belkin,Asher Brenner.Biological treatment of a high salinity chemical industrial wastewater.Wat Sci Tech, 1993,27(7):105-112
    [71] Arjen Rinzema.Sodium inhibition of acetoclastic methanogens in granular sludge from a UASB reactor.Enzyme and Microb.Technol,1988,10(1):24-32
    [72] Mendez R.Pilot plant studies on the anaerobic treatment wastewaters from a fishcanning factory. Wat Sci Tech,1992,25(1):37-44
    [73] Ramon Mendez.Eatment of wastewaters in the mesophilic and thermophilic anaerobic filters.Wat Envir Res,1995,67(1):33-45
    [74] Balslev lesen P.Pilot scale experiments on anaerobic treatment of wastewater from a fish processing plant.Wat Sci Tech,1990,22(1):463-474
    [75] Thonghai Panswad. Impact of high chloride wastewater on an anaerobic/anoxic/aerobic process with and without inoculation of chloride acclimated seeds. Wat Res,1999,33(5):1165-1172
    [76] Casabianca M L,Laugier T.Eichhomia crassipes production on petroliferous wastewaters:efectsof salinity.Biomume Technology,1995(54):39-43
    [77]周群英.环境工程微生物学(第二版).北京:高等教育出版社,2004:2-10
    [78] Panswad T and Anan C. Salt tolerance of carbon and nitrogen bacteria in an anaerobic/anoxic/aerobic process.In:Proceedings of the Third Australian Conference on Biological Nutrient Removal from Wastewater,1997,Australia Water and Wastewater Association,Victoria
    [79] Panswad T,Anan C.Impact of high chloride wastewater on anaerobic/anoxic/ aerobic process with and without inoculation of chloride acclimated bacteria. Water Res,1999,33(5):1165-1172
    [80] Catalan MAB,Wang PC,Matsumura M.Nitrification performance of marine nitrifiers immobilized in polyester and macro-porous cellulose carriers. Fermentation Bioeng 1997,84(6):563-571
    [81] Schenk H,Hegemann W.Nitrification inhibition by high salt concentrations in the aerobic biological treatment of tannery wastewater.Wasser/Abwasser,1995,136 (9):465-470
    [82] Hunik J H,Meijer H J G,Tramper J.Kinetics of Nitrosomonas europaea at extreme substrate,product and salt concentrations. Appl Microbiol Biotechnol 1992,37:802-807
    [83] Campos J L,Mosquera-Corral A.Nitrification in saline wastewater with high ammonia concentration in an activated sludge unit. Water Rea,2002,36: 2555-2560
    [84] Morsyleide F.Rosa,Angela A.L.Furtado et al Biofilm development and ammonia removal in the nitrification of a saline wastewater. Bioresource Technology,1998,65:135-138
    [85]国家环境保护局.水和废水监测分析方法.第3版.北京:中国环境科学出版社,1989
    [86]文湘华译.环境生物技术原理与应用.北京:清华大学出版社,2004:406
    [87] Moussa M S, Sumanasekera D U. Long term effects of salt on activity, population structure and floc characteristica in enriched bacterial cultures of nitrifiers.Wat Rea,2006,40:1377-1388
    [88] Guang-Hao Chen,Man-Tak Wong,Satoshi Okabe. Dynamic response of nitrifying activated sludge batch culture to increased chloride concentration. Water Rea,2003,37:3125-3135
    [89] Rosa M F,Furtado A A L,Albuquerque R T, Leite.Biological treatmentof a saline wastewater containing nitrogenous compounds.Proceedings of the 9th IGT Symposium onGas,Oil and Environmental Biotechnology and Site Remediation Technologies, Institute of Gas Technology, Colorado/USA.1996, l-7
    [90] Panswad and Chadarut Anan.Impact of high chloride wastewater on an anaerobic/anoxic/aerobic process with and without inoculation of chloride acclimated seeds.Water Rea,1999,33:1165-1172
    [91] Campos J L,osquera-Corral A.Nitrification in saline wastewater with high ammonia Concentration in an activated sludge unit. Water Rea,2002,36:2550- 2560
    [92] Charles Glass,Joann Slverstein.Denitrification of high-nitrate,high-salinity wastewater.Water Rea,1999,33:223-229
    [93] Moussa M S,Sumanasekera D U. Long term effects of salt on activity,population structure and floc characteristica in enriched bacterial cultures of nitrifiers. Water Rea,2006,40:1377-1388
    [94]Morsyleide F.Rosa, Angela A L, Furtado et al.Biofilm development and ammonia removal in the nitrification of a saline wastewater.Bioresource Tec,1998,65:135-138
    [95]胡家骏,周群英.环境工程微生物学.北京:高等教育出版社,1989:1140-142
    [96]张雨山,王静,蒋立东.海水盐度对二沉池污泥沉降性能的影响.中国给水排水,1999,15(9):18-19
    [97]冯叶成,占新民,文湘华.活性污泥处理系统耐含盐废水冲击负荷性能.环境科学,2000,21(1):106-108
    [98] Wagner M,Amann RI,Kampfer P,Assmus B,et al.Identification and in situ detection of gram-negative filamenous bacteria in activated sludge.Syst Appl Microbiol,1994,17:405–417
    [99] Wagner M,Rath G D,Amann R I,Koops H P,Schleifer K H.In situ identification of ammonia-oxidizing bacteria.Syst Appl Microbiol 1995,18:251–264
    [100] Amann R I,Krumholz L,Stahl D A.Fluorescent-oligonucleotide probing of whole cells for determinative,phylogenetic,and environmental studies in microbiology.Bacteriol,1990,172:762–770
    [101] Mobarry B K,Wagner M,Urbain V,Rittmann B E,Stahl D A.Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria.Appl Environ Microbiol,1996,62:2156–2162