食管鳞状上皮癌变过程中间质CAFs相关蛋白的表达及意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:近来研究发现,上皮细胞的微环境―间质在上皮肿瘤发生发展过程中不只是被动旁观者,还扮演着主动参与的作用,甚至是肿瘤的启动者,其中间质主要效应细胞―纤维母细胞因其重要作用而备受关注。目前大量研究证实肿瘤间质中存在一类活化的纤维母细胞,被称为肿瘤相关纤维母细胞(carcinoma-associated-fibroblasts, CAFs),通过分泌转化生长因子-β1(transforming growth factor-β1, TGF-β1)和肝细胞生长因子(hepatocyte growth factor, HGF)等因子促进肿瘤的发生发展,人原始造血细胞抗原(hunman hematopoietic progenitor cell antigen, CD34)阴性、平滑肌肌动蛋白-α(Smooth muscle actin-α,αSMA)阳性是其主要辨认标志。
     食管癌是我国最常见的恶性肿瘤之一,发病人数占世界50%以上,严重影响人民的生命健康,是我国重点防治的恶性肿瘤。长期大量的研究逐步明确了食管鳞状上皮癌变过程为正常→癌前病变→早期癌→进展期癌。对食管上皮癌变过程中肿瘤间质微环境的研究,将有助于解析食管鳞状上皮的癌变机制,有力推动食管癌的防治进程,但未见连续癌变过程中有关CAFs的报道。
     本研究观察食管间质纤维母细胞从正常→癌前病变→早期癌→进展期癌的癌变过程中α-SMA、CD34、TGF-β1及HGF的表达情况,探索间质CAFs及其相关因子TGF-β1和HGF在食管癌发生发展中的作用,并寻求潜在的具有临床意义的诊疗指标,从而为食管癌的病因、诊断、治疗和预后提供科学依据。
     方法:采用免疫组织化学(immunohistochemistry, IHC)链霉素亲生物素-过氧化酶法(S-P法)检测正常组、低级别上皮内瘤变组(中度不典型增生)、高级别上皮内瘤变组(重度不典型增生和原位癌)、早期癌组(粘膜癌)及进展期癌组共5组136例病例的食管组织中αSMA、CD34、TGF-β1及HGF表达情况,并计数各组的微血管密度(microvascular density, MVD),运用SPSS13.0统计软件包进行数据分析。
     结果:
     SMA在食管癌变过程中间质纤维细胞的表达
     αSMA在正常食管组织纤维细胞无表达(0/20),仅在肌细胞和血管壁平滑肌细胞中表达阳性。从低级别上皮内瘤变到癌的各组中表达逐渐升高,至进展期癌组达最高,表达率为95.7%(22/23)。阳性细胞呈梭形,主要存在于病变或癌巢周围间质中呈丝带样。结果显示食管鳞状上皮癌变过程中间质纤维母细胞αSMA表达呈上升趋势,其表达与患者性别、年龄无关,各组病例间质纤维母细胞αSMA表达的阳性率有显著性差异(χ~2 =56.423, P=0.000)。
     2 CD34在食管癌变过程中间质纤维细胞的表达
     CD34在正常食管间质纤维细胞中阳性表达率为95.0%(19/20),从低级别上皮内瘤变到癌的各组中表达逐渐降低,在进展期癌组中CD34仅在血管内皮细胞呈阳性表达,在癌周围间质纤维细胞中不表达(0/23)。结果显示食管鳞状上皮癌变过程中间质纤维母细胞CD34表达呈下降趋势,其表达与患者性别、年龄无关,各组病例CD34表达的阳性率有显著性差异(χ~2 =51.977, P=0.000)。
     3 TGF-β1在食管癌变过程中上皮细胞和间质纤维细胞的表达
     3.1 TGF-β1在上皮细胞中的表达
     TGF-β1在正常食管上皮细胞的表达率为5%(1/20);在低级别上皮内瘤变组、高级别上皮内瘤变组、早期癌组、进展期癌组的表达率分别为57.7%(15/26)、65.9%(29/44)、43.5%(10/23)、13.0%(3/23)。结果显示食管鳞状上皮癌变过程中上皮细胞的TGF-β1表达呈先升后降的趋势,其中在高级别上皮内瘤变组的表达达到峰值,其表达与患者性别、年龄无关,各组病例TGF-β1表达阳性率有显著差异(χ~2 =31.977, P=0.000)。
     3.2 TGF-β1在间质纤维母细胞中的表达
     TGF-β1在正常食管间质中不表达(0/20),在低级别上皮内瘤变组、高级别上皮内瘤变组、早期癌组、进展期癌组的表达率分别为3.8%(1/26)、20.5%(9/44)、34.8%(8/23)、60.9%(14/23)。结果显示癌变过程中食管间质TGF-β1表达呈上升趋势,其表达与患者性别、年龄无关,各组病例TGF-β1表达的阳性率有显著性差异(χ~2 =31.425, P=0.000)。
     4 HGF在食管癌变过程中间质纤维母细胞的表达
     HGF在正常食管间质中不表达(0/20),在低级别上皮内瘤变组、高级别上皮内瘤变组、早期癌组、进展期癌组的表达率分别为3.8%(1/26)、28.5%(13/44)、39.1%(9/23)、56.5%(13/23)。结果显示癌变过程中食管间质HGF表达呈上升趋势,其表达与患者性别、年龄无关,各组病例HGF表达的阳性率有显著性差异(χ2 =26.817, P=0.000)。
     5αSMA、CD34和TGF-β1在食管癌变过程间质纤维细胞表达的相关性分析
     αSMA和CD34在食管各级别病变间质纤维母细胞的阳性表达之间具有负相关性,相关系数R=-0.762,P=0.000。αSMA和TGF-β1在食管各级别病变间质纤维母细胞的阳性表达之间具有正相关性,相关系数R=0.419, P=0.000。
     6食管癌变过程各阶段的微血管密度(microvascular density, MVD)
     正常食管MVD值为12.33±1.68,低级别上皮内瘤变、高级别上皮内瘤变、早期癌、进展期癌的MVD值分别为15.72±1.97、20.91±2.20、26.42±1.96、30.01±2.35。结果显示癌变过程MVD值逐渐升高,5组的MVD值有显著性差异(P=0.000),且5组任意两者之间两两比较均有显著性差异(P=0.000)。MVD值大小与患者性别、年龄无关,但αSMA阳性组的MVD值明显高于阴性组,间质TGF-β1阳性组的MVD值也明显高于阴性组。
     结论:
     1在食管鳞状上皮从正常→癌前病变→癌的演变过程中,间质纤维母细胞向CAFs转化增加,提示间质CAFs可能参与上皮细胞恶性转化、促进癌进展。
     2推测CAFs通过分泌TGF-β1和HGF参与了食管鳞状细胞癌的发生、发展等一系列过程。
     3 CAFs可能在癌前病变阶段就促进微血管形成,并由此而促进食管的癌变和进展。
     4间质CAFs及其分泌因子TGF-β1和HGF可能是预测食管癌前病变转归的重要指标。
Objective: Recent studies have found that stromal microenvironment has increasing role in the initiation and progression of cancer, not bystander but a key player, or even a potential initiator. As the main effector, a type of activated fibroblasts have been been found in tumorous stromal, and so called Carcinoma-associated-fibroblasts(CAFs) with theαSMA(+) and CD34(-) characteristic can promote the initiation and progression of cancer through the secretions such as TGF-β1, HGF.
     Esophageal squmous carcinoma(ESC) is one of the most common malignancies in China, more than 50% ESC patients in the world are Chinese, So ESC is a focused malignant tumor to be prevented and treated in our country. Many studies have shown ESC undergoes a multistage process from normal, precancerosis, early cancer to cancer. The research of stromal microenvironment in the process will be able to promote the development of study and treatment on ESC.
     The experiment was made to observe the expressions ofαSMA, CD34, TGF-β1 and HGF in initiation and progression of esophageal cancer. To explore the role of stromal CAFs and related protein in tumorous initiation and progression. To seek the potential significant clinical indicators on diagnosis and treatment, so as to provide a scientific basis for the diagnosis, treatment and prognosis of esophageal cancer.
     Methods: The S-P methods of immunohistochemistry was employed to measure the expression ofαSMA, CD34, TGF-β1 and HGF in 136 specimens of esophageal tissue, in which have 20 specimens of normal esophageal tissue, 26 specimens of low level intraepithelial neoplasia, 44 specimens of high level intraepithelial neoplasia, 23 specimens of early cancer, 23 specimens of advanced cancer. And every group’s microvascular density(MVD) was counted. SPSS 13.0 was applied to analyze the results of experiment.
     Results:
     1 Expression ofαSMA in stromal fibroblasts of various esophageal lesions
     The normal esophageal stromal fibroblasts didn’t expressαSMA (0/20), but the smooth muscle tissue and small vascular smooth muscle cells expressedαSMA. At low level intraepithelial neoplasia the positive expression rate ofαSMA began to increase gradually, the expression rate of adanced cancer group was 95.7%(22/23). The spindle positive cells were looked like silk ribbons surrounding the lesion tissue or tumorous nests. Results showed a ascendant trend inαSMA expression of stromal fibroblasts in the process of esophageal epithelial canceration. The expression was not obviously correlated with patient's gender,age. Significant difference has been found in all groups about the positive expression ofαSMA(χ~2=56.423, P=0.000).
     2 Expression of CD34 in stromal fibroblasts of various esophageal lesions
     The CD34 positive expression rate in normal esophageal stromal fibroblasts was 95.0%(19/20). At low level intraepithelial neoplasia the positive expression rate of CD34 began to decrease gradually,in adanced cancer group stromal fibroblasts didn’t express CD34, Only endothelial cells expressed CD34. Results showed a descendant trend in CD34 expression of stromal fibroblasts in the process of canceration. The expression was not obviously correlated with patient's gender,age. Significant difference has been found in all groups about the positive expression of CD34(χ~2=51.977, P=0.000).
     3 Expression of TGF-β1 in epithelium and stromal fibroblasts of various esophageal lesions
     3.1 Expression of TGF-β1 in epithelium of various esophageal lesions The TGF-β1 positive expression rate in normal esophageal epithelium was 5.0%(1/20), the low level intraepithelial neoplasia group was 57.7%(15/26), the high level intraepithelial neoplasia group was 65.9%(29/44), the early cancer group was 43.5%(10/23) and the adanced cancer group was 13.0%(3/23). Results showed a fist ascendant and then descendant trend in TGF-β1 expression of epithelium in the process of canceration. The expression was not obviously correlated with patient's gender, age. Significant difference has been found in all groups about the positive expression of TGF-β1(χ~2=31.977, P=0.000).
     3.2 Expression of TGF-β1 in stromal fibroblasts of various esophageal lesions
     The normal esophageal stromal fibroblasts didn’t express TGF-β1(0/20). At low level intraepithelial neoplasia the positive expression rate of TGF-β1 began to increase gradually, the expression rate of adanced cancer group was 60.9%(14/23). Results showed a ascendant trend in TGF-β1 expression of stromal fibroblasts in the process of canceration. The expression was not obviously correlated with patient's gender,age. Significant difference has been found in all groups about the positive expression of TGF-β1(χ~2=31.425, P=0.000).
     4 Expression of HGF in stromal fibroblasts of various esophageal lesions
     The normal esophageal stromal fibroblasts didn’t express HGF (0/20). At low level intraepithelial neoplasia the positive expression rate of HGF began to increase gradually, the expression rate of adanced cancer group was 56.5%(13/23). Results showed a ascendant trend in HGF expression of stromal fibroblasts in the process of canceration. The expression was not obviously correlated with patient's gender,age. Significant difference has been found in all groups about the positive expression of HGF(χ~2=26.817,p=0.000).
     5 Expression correlation betweenαSMA and CD34, TGF-β1 in stromal fibroblasts of various esophageal lesions
     The expression ofαSMA in stromal fibroblasts of various esophageal lesions was inversely correlated with CD34(R=-0.762, P=0.000). The expression ofαSMA in stromal fibroblasts of various esophageal lesions was correlated with TGF-β1(R=0.419, P=0.000).
     6 The MVD of the various esophageal lesions
     The MVD value of normal esophagus was 12.33±1.68, The MVD of low level intraepithelial neoplasia was 15.72±1.97, The MVD of high level intraepithelial neoplasia was 20.91±2.20, The MVD of early cancer was 26.42±1.96, The MVD of adanced cancer was 30.01±2.35. The MVD was not obviously correlated with patient's gender, age. Significant difference has been found in all groups about The MVD value(P=0.000), and also in any two of all groups(P=0.000).
     Conclusions:
     1 With the process of esophageal squamous epithelial canceration, there were more stromal fibroblasts transforming into CAFs. Suggests that CAFs can induce esophageal squamous epithelial transforming and further developing.
     2 CAFs can contribute to the initiation and progression of ESC through factors such as TGF-β1, HGF.
     3 CAFs may promote microvascular formation in precancerous stage, and thus promote the initiation and progression of esophageal cancer.
     4 Indicates CAFs and the related factors such as TGF-β1, HGF in esophageal precancerosis probably are good prognosis indicators.
引文
1 Ostman A, Augsten M. Cancer-associated fibroblasts and tumor growth bystanders turning into key players. Current Opinion in Genetics & Development, 2009, 19: 67-73
    2 Mueller MM, Fusenig NE. Friends or foes-bipolar effects of the tumour stroma in cancer. Nat Rev Cancer, 2004, 4: 839-849
    3 Barsky SH, Green WR, Grotendorst GR, et a1. Desmoplastic breast carcinoma as a source of human myofibroblasts. Am J Pathol, 1984, 115: 329-333
    4 Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature, 2004, 432(7015): 332-337
    5王立峰,王瑞芬,郝兆星等.胃癌中肿瘤相关纤维母细胞蛋白表达改变及意义.世界华人消化杂志, 2007, 15(20): 2263-2267
    6 Barth PJ, Ebrahimsade S, Ramaswamy A, et a1. CD34+ fibrecytes in invasive duetal carcinoma, duetal carcinoma in situ, and benign breast lesions. Virchows Arch, 2002, 440(3): 298-303
    7孙桃姣,朱友家,陈建刚等.转化生长因子β1和转化生长因子βⅡ受体蛋白在口腔鳞状细胞癌中的表达.武汉大学学报(医学版), 2004, 25(5): 540-542
    8 Maeda K, Chung YS, Ogawa Y, et a1. Prognostic valueof vascular endothelial growth factor expression in gastric carcinoma. Cancer, 1996, 77 (5): 858-863
    9崔晓梅,章魁华.癌前病变结缔组织对正常粘膜上皮的作用.中华口腔医学杂志, 1997, 27(5): 266-269
    10 Worthley DL, Giraud AS, Wang TC. Stromal Fibroblasts in Digestive Cancer. Cancer Microenvironment, 2010, 3: 117-125
    11 Ryan GB. et al. Myofibroblasts in human granulation tissue. Hum. Pathol, 1974, 5: 55-67
    12 Powell DW, Mifflin RC, Valentich JD et al, Myofibroblasts. I . Paracrine cells important in health and disease. Am J Physiol. 1999, 277: 1-9
    13 Gabbiani G. The myofibroblast in wound healing and fibrocontractive diseases. J Pathol, 2003, 200: 500-503
    14 Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer 2006, 6: 392-401
    15 Francoa OE, Shawb AK, Stranda DW, et al. Cancer associated fibroblasts in cancer pathogenesis. Seminars in Cell & Developmental Biology, 2010(21): 33-39
    16 Krause DS, Faekler MJ, Civin CI, et a1. CD34: Structure, Biology, and Clinical Utility. Blood, 1996, 87(1): 1-13
    17 Tommaso DL, Pasquinelli G, Damiani S. Smooth muscle cell differentiation in mammary stromo-epithelial lesions with evidence of a dual origin: stromal myofibroblasts and myoepithelial cells. Histopathology, 2003: 42: 448-456
    18施琳,孙善珍,王振光.口腔侵袭性鳞癌间质中CD34和α平滑肌肌动蛋白的表达.中华口腔医学杂志, 2006, 41(2): 106-107
    19 Nakayama H, Enzan H, Miyazaki E, et a1. Diferential expression of CD34 in normal colorectal tissue, peritumoral inflammatory tissue, and tumour stroma. J Clin Pathol, 2000, 53(8): 626-629
    20 Barth PJ, Ramaswamy A, Moll R. CD34(+)fibrocytes in normal cervical stroma,cervical intraepithelial neoplasiaⅢ, and invasive squamous cell carcinoma of the cervix uteri. Virchows Arch, 2002, 441: 564-568
    21 Olumi AF. et al. Carcinoma-associated fibroblasts direct tumour progression of initiated human prostatic epithelium. Cancer Res, 1999 (59), 5002-5011
    22 Hayward SW. et al. Malignant transformation in a nontumorigenic human prostatic epithelial cell line. Cancer Res, 2001(61): 8135-8142
    23 Orimo A, Gupta PB, Sgsoi DC, et a1. Stromal fibroblasts present in invasive human breast carcinoma promote tumor growth and angingenesis through elevated SDF-1/CXCL12 secretion. Cell, 2005, 121: 335-348
    24 Abe R, Donnelly SC, Peng T, et a1. Peripheral blood fibrocytes:diferentiation pathway and migration to wound sites.J Immunol,2001,166(12): 7556-7562
    25 Tuxhorn JA, McAlhany SJ, Yang F, et a1. Inhibition of transforming growth factor-beta activity decreases angiogenesis in a human prostate cancer-reactive stroma xenograft model. Cancer Res, 2002, 62(21): 6021-6025
    26 Brenmoehl J, Miller SN, Hofmann C, et al. Transforming growth factor-β1 induces intestinal myofibroblast diffrentiation and modulates their migration. World J Gastroenterol, 2009, 15(12): 1431-1442
    27 Xing F, Saidou J, Watabe K. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci, 2010(15): 166-179
    28 Shimoda M, Mellody KT, Orimo A.Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Seminars in Cell & Developmental Biology, 2010(21): 19-25
    29 Bierie B, Moses HL. TGF-βand cancer. Cytokine & Growth Factor Reviews, 2006, (17): 29-40
    30邓登豪,罗金燕,朱海杭.食管鳞癌和异型增生中TGF-β1表达的意义,新消化病杂志, 1997, 5(7): 475-476
    31刘昕燕,高岩.口腔鳞癌及癌前病变中TGF-β的表达.现代口腔医学杂志, 2001, 15(2): 92-93
    32高凤兰.转化生长因子β1在和CIN和宫颈癌的表达及其临床意义.延安大学学报, 2005, 3(2): 4-5
    33 Noma K, Smalley K, Lioni M, et al. The Essential Role of Fibroblasts in Esophageal Squamous Cell Carcinoma-Induced Angiogenesis. Gastroenterology, 2008, 134(7): 1981-1993
    34 Cipriani NA, Abidoye OO, Vokes E, et al.MET as a target for treatment of chest tumors. Lung Cancer, 2009, 63(2): 169-179
    35 Knowles LM, Stabile LP, Egloff AM, et a1. HGF and c-Met Participate in Paracrine Tumorigenic Pathways in Head and Neck Squamous Cell Cancer. Clin Cancer Res, 2009, 15(11): 3740-3750
    36 Takada N, Yano Y, Tsutomu, et al. Matsuda, Expression of immunoreactive human hepatocyte growth factor in humanesophageal squamous cell carcinomas. Cancer Letters, 1995, 97(2): 145-148
    37 Ren Y, Cao B, Law S, et al. Hepatocyte growth factor promotes cancer cell migration and angiogenic factors expression: a prognostic marker of human esophageal squamous cell carcinomas. Clin Cancer Res, 2005, 11(17): 6190-6197
    38周海英,吴爱萍,刘岩. 76例食管胃交界腺癌肿瘤相关成纤维细胞免疫组化观察.重庆医学, 2010, 39(3): 257-258
    39 Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med, 197l, 285(21): 1182-1186
    40李杰茹,齐凤英,李丽. MMP-2在食管癌中的表达及其与血管生成的相关性.中华肿瘤杂志, 2005, 27(2): 96-98
    1 Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature, 2004, 432(7015): 332-337
    2 Ostman A, Augsten M. Cancer-associated fibroblasts and tumor growth– bystanders turning into key players. Current Opinion in Genetics & Development, 2009, 19: 67-73
    3 Francoa OE, Shawb AK, Stranda DW, et al. Cancer associated fibroblasts in cancer pathogenesis. Seminars in Cell & Developmental Biology, 2010(21): 33-39
    4 Barsky SH, Green WR, Grotendorst GR, et a1. Desmoplastic breast carcinoma as a source of human myofibroblasts. Am J Pathol, 1984, 115: 329-333
    5 Mueller MM, Fusenig NE. Friends or foes-bipolar effects of the tumour stroma in cancer. Nat Rev Cancer, 2004, 4: 839-849
    6 Worthley DL, Giraud AS, Wang TC. Stromal Fibroblasts in Digestive Cancer. Cancer Microenvironment, 2010, 3: 117-125
    7 Ryan GB. et al. Myofibroblasts in an avascular fibrous tissue. Lab Invest, 1973, 29: 197-206
    8 Ryan, GB. et al. Myofibroblasts in human granulation tissue. Hum Pathol, 1974, 5: 55-67
    9 Powell DW, Mifflin RC, Valentich JD et al, Myofibroblasts.I. Paracrine cells important in health and disease. Am J Physiol, 1999, 277: 1-9
    10 Gabbiani G. The myofibroblast in wound healing and fibrocontractive diseases. J Pathol, 2003, 200: 500-503
    11 Di Tommaso L, Pasquinelli G, Damiani S. Smooth muscle cell differentiation in mammary stromo-epithelial lesions with evidence of a dual origin:stromal myofibroblasts and myoepithelial cells. Histopathology, 2003, 42: 448-456
    12 Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer, 2006, 6: 392-401
    13 Xing F, Saidou J, Watabe K.Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci, 2010(15): 166-179
    14 Krause DS, Faekler MJ, Civin CI, et a1. CD34: Structure, Biology, and Clinical Utility. Blood, 1996, 87(1): 1-13
    15施琳,孙善珍,王振光.口腔侵袭性鳞癌间质中CD34和α平滑肌肌动蛋白的表达.中华口腔医学杂志, 2006, 41(2): 106-107
    16王立峰,王瑞芬,郝兆星等.胃癌中肿瘤相关纤维母细胞蛋白表达改变及意义.世界华人消化杂志, 2007, 15(20): 2263-2267
    17 Nakayama H, Enzan H, Miyazaki E, et a1. Diferential expression of CD34 in normal colorectal tissue, peritumoral inflammatory tissue, and tumour stroma. J Clin Pathol, 2000, 53(8): 626-629
    18 Barth PJ, Ebrahimsade S, Ramaswamy A, et a1. CD34+fibrecytes in invasive duetal carcinoma, duetal carcinoma in situ, and benign breast lesions. Virchows Arch, 2002, 440(3): 298-303
    19 Barth PJ, Ramaswamy A, Moll R. CD34(+)fibrocytes in normal cervical stroma,cervical intraepithelial neoplasiaⅢ, and invasive squamous cell carcinoma of the cervix uteri. Virchows Arch, 2002, 441: 564-568
    20 Abe R, Donnelly SC, Peng T, et a1. Peripheral blood fibrocytes:diferentiation pathway and migration to wound sites. J Immunol,2001, 166(12): 7556-7562
    21 Tuxhorn JA, McAlhany SJ, Yang F, et a1. Inhibition of transforming growth factor-beta activity decreases angiogenesis in a human prostate cancer-reactive stroma xenograft model. Cancer Res, 2002, 62(21): 6021-6025
    22 Brenmoehl J, Miller SN, Hofmann C, et al. Transforming growth factor-β1 induces intestinal myofibroblast diffrentiation and modulates their migration. World J Gastroenterol, 2009, 15(12): 1431-1442
    23 De Vever O, Marcel M. Role of tissue stroma in cancer cell invasion. J Pathol, 2003, 200(4): 429-477
    24 Xouri G, Christian S. Origin and function of tumor stroma fibroblasts. Seminars in Cell & Developmental Biology, 2010(21): 40-46
    25 Micke P, Kappert K, Ohshima M, et a1.In situ identification of genes regulated specifically in fibroblasts of human basal cell carcinoma. J Invest Dermatol, 2007, 127: 1516-1523
    26 Billingham RE, ORR JW, Woodhouse DL. Transplantation of skin components during chemical carcinogenesis with 20-methylcholanthrene. Br J Cancer, 1951, 5(4): 417-432
    27崔晓梅,章魁华.癌前病变结缔组织对正常粘膜上皮的作用.中华口腔医学杂志, 1997, 27(5): 266-269
    28 Bhowmick NA, Chytil A, Plieth D, et a1. TGF-beta signaling in fibreblasts modulates the oncogenic potential of adjacent epithelia. Science, 2004, 303(5659): 848-851
    29 Folkman J, Kalluri R. Cancer without disease. Nature, 2004; 427(6977): 787
    30 Bhowmick NA, Moses HL. Tumour stroma interactions. Curr Opin Genet Dev, 2005, 15(1): 97
    31 Wirtzfeld DA, Petreli NJ, Rodriguez-Bigas MA. Hamartomatous polyposis syndromes:molecular genetics,neoplastic risk, and surveillance recommendations. Ann Surg Oneol, 2001, 8(4): 319-327
    32 Kuperwasser C, Chavarria T, Wu M, et a1. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad, Sci USA, 2004, 101(14): 4966-4971
    33 Olumi AF,Gressfeld GD,Hayward SW,et a1.Carcinoma-assiociated- fibreblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res, 1999, 59(19): 5002-5011
    34 Orimo A, Gupta PB, Sgsoi DC, et a1. Stromal fibroblasts present in invasive human breast carcinoma promote tumor growth and angingenesis through elevated SDF-1/CXCL12 secretion. Cell, 2005, 121: 335-348
    35 Shimoda M, Mellody KT, Orimo A. Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Seminars in Cell & Developmental Biology, 2010(21): 19-25
    36 Ohuehida K, Mizumoto K, Murakami M, et a1. Radiation to stromalfibroblasts increases invasiveness of pancreatic cancer cells through tumour-stromal interactions. Cancer Res, 2004, 64(9): 3215-3222
    37 Casey TM, Eneman J, Crocker A, et a1. Cancer associated fibroblasts stimulated by transforming growth factor-beta 1(TGF-beta 1) increase invasion rate of tumor cells: a population study. Breast Cancer Res Treat, 2008, 110(1): 39-49
    38 Bierie B, Moses HL. TGF-βand cancer. Cytokine & Growth Factor Reviews, 2006, (17): 29-40
    39 Kaminska B, Wesolowska A, Danilkiewicz M. TGF beta signalling and its role in tumour pathogenesis. Acta biochim pol, 2005, 52(2): 329-37
    40 Leivonen SK, Kahari VM. Transforming growth factor-beta signaling in cancer invasion and metastasis. Int J Cancer, 2007, 121(10): 2l19-2124
    41 Bierie B, Moses HL. Tumour microenvironment: TGF-B:the molecular Jekyll and Hyde of cancer. Nat Rev Cancer, 2006, 6(7): 506-520
    42 Massague J. TGFβin Cancer. Cell, 2008, 134: 215-230
    43 Cipriani NA, Abidoye OO, Vokes E, et al. MET as a target for treatment of chest tumors. Lung Cancer, 2009, 63(2): 169-179
    44 Knowles LM, Stabile LP, Egloff AM, et a1. HGF and c-Met Participate in Paracrine Tumorigenic Pathways in Head and Neck Squamous Cell Cancer. Clin Cancer Res, 2009, 15(11): 3740-3750
    45 Takada N, Yano Y, Tsutomu, et al. Matsuda, Expression of immunoreactive human hepatocyte growth factor in human esophageal squamous cell carcinomas. Cancer Letters, 1995, 97(2): 145-148
    46 Ren Y, Cao B, Law S, et al. Hepatocyte growth factor promotes cancer cell migration and angiogenic factors expression: a prognostic marker of human esophageal squamous cell carcinomas. Clin Cancer Res, 2005, 11(17): 6190-6197
    47 Orimo A, Weinberg RA. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle, 2006, 5(15): 1597-1601
    48 Ohira S, Itatsu K, Sasaki M, et a1. Local balance of transforming growth factor-beta1 secreted from cholangiocarcinoma cells andstromal-derived factor-1 secreted from stromal fibroblasts is a factor involved in invasion of cholangiocarcinoma. Pathol Int, 2006, 56(7): 381-389
    49 Daly AJ, McIlreavey L, Irwin CR. Regulation of HGF and SDF-1 expression by oral fibroblasts-implications for invasion of oral cancer. Oral Oncol, 2008, 44(7): 646-651
    50 Frich L, Bjornland K, Pettersen S, et a1. Increased activity of matrix metalloproteinase 2 and 9 after hepatic radiofrequency ablation. J Surg Res, 2006, 135(2): 297-304
    51 Lukaszewicz M, Mroczko B, Szmitkowski M. The role of metalloproteinases and their inhibitors in pancreatic cancer. Postepy Hig Med Dosw (Online), 2008, 62: 141-147
    52 Adley BP, Gleason KJ, Yang XJ, et al. Expression of membrane type 1 matrix metalloproteinase (MMP-14) in epithelial ovarian cancer: high level expression in clear cell carcinoma.Gynecol Oncol, 2009, 112(2): 319-324
    53 Sillanpaa S,Anttila M,Voutilainen K,et a1.Prognostic significance Of matrix metalloproteinase-9(MMP-9) in epithelial ovarian cancer. Gynecol Oncol, 2007, 104(2): 296-303
    54 Finak G, Bertos N, Pepin F, et al.Stromal gene expression predicts clinical outcome in breast cancer. Nat Med, 2008, 14: 518-527
    55 Tsujino T, Seshimo I, Yamamoto H, et al. Stromal myofibroblasts predict disease recurrence for colorectal cancer. Clin Cancer Res, 2007, 13: 2082-2090
    56 Henry LR, Lee HO, Lee JS, et al. Clinical implications of fibroblast activation protein in patients with colon cancer. Clin Cancer Res, 2007, 13: 1736-1741
    57 Herszenyi L, Hritz I, Pregun I, et a1. Alterations of glutathione S-transferase and matrix metalloproteinase-9 expressions are early events in esophageal carcinogenesis. World J Gastroenterol, 2007, 13(5): 676-682