数字信号处理算法在相干光通信系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相干光通信是下一代光通信主干网的关键技术。相比于传统的直接探测系统,相干探测通过信号光与本振的拍频可以获得更多的信号信息。更关键的,借助于高速数字信号处理技术,相干光通信可以将信号的重建和失真补偿放在系统接收端进行。因此,相干探测使得高阶调制格式和偏振态复用的应用成为可能,从而在原有时分复用/波分复用系统的基础上,进一步的提升通信系统的总容量和传输距离。高阶调制格式的应用使得相干光通信相比于传统系统有更高的单波长通道频谱利用率。相干接收机对光纤信道没有特殊要求,因此相干光通信可以使用已经铺设好的光纤线路。借助于数字信号处理算法,相干接收机以极小的代价补偿由光纤色散、偏振模色散及载波相位噪声等引起的信号失真。本文从相干探测的原理出发,分四部分总结了相干光通信系统并着重对相干接收机的若干数字信号处理算法做出了深入的研究。
     本文在分析相干光通信系统发射机信号调制的同时提出了一种新的降低硬件复杂度的方法。该方法在不显著降低信号质量的前提下减少了所需电信号的级数。在分析基于光混频器的相干接收机部分,本文提出以等效坐标系的方法理解与分析相干接收机并且给出了基于这种方法的信号正交化恢复算法。
     本文在数字信号处理算法部分主要提出了两种不同的自适应色散补偿算法,分别基于延时采样技术和符号采样误差检测技术。相较于其他的算法,基于延时采样技术的算法能够提供较大的色散扫描步长和可比的估计精度,而基于采样误差检测的算法则以较少的符号获得可比或者更高的估计精度。本文也给出了这两种算法与本质表达算法的关系并且通过蒙特卡罗仿真进行了算法的性能研究。本文对不同的自适应色散补偿算法在奈奎斯特系统中的性能表现进行了研究,并提出了一种新的适用于该系统的算法。
     本文归纳了采样相位恢复算法并进行了相应的分类。通过理论推导与分析发现,大部分工作于两倍过采样率的算法可以统一到一种经典算法,而工作于四倍过采样率的算法可以在对信号插值之后应用到两倍过采样率的接收机中。奈奎斯特系统由于其更高的频谱利用率也被广泛关注,因此本文对奈奎斯特系统中采样相位恢复算法的性能也进行了研究。结果证明,在光通信系统综合信道参数的条件下,只有某些算法能够正常工作。
     本文归纳了常用的偏振解复用算法。在经典算法的基础上,本文又提出了两种改进算法。在无载波频偏的系统中,改进算法可以实现在偏振解复用的同时恢复载波相位。通过一个相干接入网的实验验证,该算法可以无代价的替代经典的载波相位恢复算法从而降低接收机复杂度。另外一种改进算法则可以应用到更高阶调制格式中并且有更小的稳态收敛误差。
Coherent optical communications technology is the key enabler for the next generation optical backbone networks. Through beating between the signal and local oscillator, coherent detection theoretically is able to obtain the intact information of the incoming optical signal. Moreover, coherent detection enabled by digital signal processing can perform fiber impairment compensation and channel equalization conveniently at the receivers. Thus, the applications of high-order modulation format and polarization division multiplexing (PDM) become possible to provide higher system capacity and longer transmission distance than the traditional TDM and WDM systems owing to the higher spectral efficiency. Coherent optical communications have no additional requirement on the fiber so that the fiber links implemented in the past decades will serve just fine. The signal distortion caused by fiber impairments such as chromatic dispersion, polarization mode dispersion as well as the laser phase noise can be compensated with minimal power penalty. Starts from the introduction of the principle of optical coherent detection, this thesis describes the transmitter, fiber channel, the coherent receiver and DSP of coherent optical communications system in sequence.
     In this thesis, a novel high-order modulation format generation method is proposed. The proposed method requires lower levels of electrical signal in the transmitter compared to the traditional ones and generates minimal modulation chirp. To understand the coherent receiver, a new perspective of equivalent decomposition coordinate is proposed and based on which the orthogonalization algorithm is presented.
     This thesis presents two novel adaptive chromatic dispersion estimation and compensation algorithms based on delay-tap sampling (DTS) technique and timing error detection (TED), respectively. In comparison with others, the DTS based algorithm provides larger scanning steps and comparable estimation accuracy while the TED based algorithm requires less symbols to complete the estimation and also provides better estimations. The relationship between the two proposed algorithm and the "nature express" algorithm is given. In addition, a new algorithm applicable to the Nyquist system is proposed and investigated via simulations.
     This thesis reviews the symbol timing phase recovery algorithms used in optical coherent receivers. The fundamental correspondence between the Gardner's and Godard's TED, and between Lee's and Godard's TED is established. In addition, the performance of TPR algorithms in the Nyquist system is investigated via simulations.
     This thesis reviews the polarization demultiplexing algorithms and proposed two algorithms that have the ability of joint equalization. Although they will suffer from the laser frequency offset in the system, the self-homodyne passive optical network experiment demonstrates that the modified CMA can perform the joint polarization demultiplexing and carrier phase recovery with negligible OSNR penalty.
引文
[1]Telegeography (http://www.telegeography.com/)
    [2]Bigo S. Coherent optical long-haul system design[C]//Optical Fiber Communication C onference. Optical Society of America,2012.
    [3]Yamamoto Y, Kimura T. Coherent optical fiber transmission systems[J]. IEEE Journal of Quantum Electronics,1981,17(6):919-935.
    [4]Saito S, Yamamoto Y, Kimura T. Optical heterodyne detection of directly frequency modulated semiconductor laser signals[J]. Electronics Letters,1980,16(22):826-827.
    [5]Desurvire E, Simpson J R, Becker P C. High-gain erbium-doped traveling-wave fiber amplifier[J]. Optics Letters,1987,12(11):888-890.
    [6]ITU-T Recommendation G.694.1 (http://www.itu.int/rec/T-REC/en)
    [7]Shapiro J. Quantum noise and excess noise in optical homodyne and heterodyne rece ivers[J]. IEEE Journal of Quantum Electronics,1985,21(3):237-250.
    [8]Kazovsky L. Balanced phase-locked loops for optical homodyne receivers:Performan ce analysis, design considerations, and laser linewidth requirements [J]. Journal of Lig htwave Technology,1986,4(2):182-195.
    [9]Kahn J M.1 Gbit/s PSK homodyne transmission system using phase-locked semicon ductor lasers[J]. IEEE Photonics Technology Letters,1989,1(10):340-342.
    [10]Kahn J M, Porter A M, Padan U. Heterodyne detection of 310-Mb/s quadriphase-sh ift keying using fourth-power optical phase-locked loop[J]. IEEE Photonics Techno! ogy Letters,1992,4(12):1397-1400.
    [11]Pfau T, Hoffmann S. Peveling R, et al.1.6 Gbit/s real-time synchronous QPSK tra nsmission with standard DFB lasers[C]//Optical Communications,2006. ECOC 2006 European Conference on. IEEE,2006:1-2.
    [12]Leven A, Kaneda N, Klein A, et al. Real-time implementation of 4.4 Gbit= s QPS K intradyne receiver using field programmable gate array[J]. Electronics Letters,20 06,42(24):1421-1422.
    [13]Leven A, Kaneda N, Chen Y K. A Real-Tme CMA-Based 10 Gb/s Polarization De multiplexing Coherent Receiver Implemented in an FPGA[C]//Optical Fiber Commu nication Conference. Optical Society of America,2008.
    [14]Sun H, Wu K T, Roberts K. Real-time measurements of a 40 Gb/s coherent syste m[J]. Optics express,2008,16(2):873-879.
    [15]Nelson L E, Woodward S L, Foo S, et al. Performance of a 46-Gbps dual-polarizat ion QPSK transceiver with real-time coherent equalization over high PMD fiber[J]. Journal of Lightwave Technology,2009,27(3):158-167.
    [16]Xia T J, Wellbrock G, Basch B, et al. End-to-end native IP data 100G single carri er real time DSP coherent detection transport over 1520-km field deployed fiber[C] //National Fiber Optic Engineers Conference. Optical Society of America,2010.
    [17]Fludger C R, Duthel T, Van den Borne D, et al.10 x 111 Gbit/s,50 GHz spaced, POLMUX-RZ-DQPSK transmission over 2375 km employing coherent equalisation [C]//Optical Fiber Communication Conference. Optical Society of America,2007.
    [18]Charlet G, Renaudier J, Mardoyan H. et al. Transmission of 16.4-bit/s capacity over 2550 km using PDM QPSK modulation format and coherent receiver[J]. Journal of Lightwave Technology,2009,27(3):153-157.
    [19]Zhou X, Yu J, Qian D, et al.8x114 Gb/s,25-GHz-spaced, PolMux-RZ-8PSK trans mission over 640 km of SSMF employing digital coherent detection and EDFA-onl y amplification[C]//Optical Fiber Communication Conference. Optical Society of Am erica,2008.
    [20]Gnauck A H, Winzer P J, Doerr C R, et al.10 x 112-Gb/s PDM 16-QAM transmi ssion over 630 km of fiber with 6.2-b/s/Hz spectral efficiency[C]//Optical Fiber Co mmunication Conference. Optical Society of America,2009.
    [21]Sano A, Masuda H, Kobayashi T, et al.69.1-Tb/s (432 x 171-Gb/s) C-and extende d L-band transmission over 240 km using PDM-16-QAM modulation and digital co herent detection[C]//Optical Fiber Communication Conference. Optical Society of A merica,2010.
    [22]Zhou X, Yu J, Huang M F, et al.64-Tb/s (640x 107-Gb/s) PDM-36QAM transmiss ion over 320km using both pre-and post-transmission digital equalization[C]//Optical Fiber Communication (OFC), collocated National Fiber Optic Engineers Conferenc e,2010 Conference on (OFC/NFOEC). IEEE,2010:1-3.
    [23]Qian D, Huang M F, lp E, et al.101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFD M transmission over 3X 55-km SSMF using pilot-based phase noise mitigation[C]// Optical Fiber Communication Conference. Optical Society of America,2011.
    [24]Liu X, Chandrasekhar S, Lotz T, et al. Generation and FEC-decoding of a 231.5-G b/s PDM-OFDM signal with 256-iterative-polar-modulation achieving 11.15-b/s/Hz i ntrachannel spectral efficiency and 800-km reach[C]//National Fiber Optic Engineers Conference. Optical Society of America,2012.
    [25]Sleiffer V, Jung Y, Veljanovski V, et al.73.7 Tb/s (96 x 3 x 256-Gb/s) mode-divisi on-multiplexed DP-16QAM transmission with inline MM-EDFA[J]. Optics express, 2012,20(26):B428-B438.
    [26]Ryf R, Randel S, Fontaine N K, et al.32-bit/s/Hz Spectral Efficiency WDM Trans mission over 177-km Few-Mode Fiber[C]//Optical Fiber Communication Conference. Optical Society of America,2013.
    [27]Takara H, Sano A, Kobayashi T, et al.1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) cr osstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency[C]//Euro pean Conference and Exhibition on Optical Communication. Optical Society of Am erica,2012.
    [28]Winzer P J, Essiambre R J. Advanced optical modulation formats[J]. Proceedings of the IEEE,2006,94(5):952-985.
    [29]Gnauck A H, Winzer P J. Optical phase-shift-keyed transmission[J]. Journal of Ligh twave Technology,2005,23(1):115-130.
    [30]Pidgeon R E. Adaptive predistortion control for optical external modulation:U.S. P atent 5,850,305[P].1998-12-15.
    [31]Yan S, Wang D, Gao Y, et al. Generation of square or hexagonal 16-QAM signals using a single dual drive IQ modulator driven by binary signals[C]//Optical Fiber Communication Conference. Optical Society of America,2012.
    [32]Agrawal G P. Fiber-optic communication systems[M]. Wiley,2010.
    [33]Wai P K A, Menyak C R. Polarization mode dispersion, decorrelation. and diffusio n in optical fibers with randomly varying birefringence[J]. Journal of Lightwave Te chnology,1996,14(2):148-157.
    [34]Ramaswamy A, Johansson L A, Klamkin J, et al. Coherent receiver based on a br oadband optical phase-lock loop[C]//Optical Fiber Communication Conference. Optic al Society of America,2007.
    [35]Zhang S, Kam P Y, Yu C, et al. Decision-aided carrier phase estimation for cohere nt optical communications[J]. Journal of Lightwave Technology,2010,28(11):1597-1607.
    [36]http://www.opt oplex.com/QPSK_ Mixer.htm
    [37]Davis A, Pettitt M, King J, et al. Phase diversity techniques for coherent optical re ceivers[J]. Journal of Lightwave Technology,1987,5(4):561-572.
    [38]Kazovsky L G. Phase-and polarization-diversity coherent optical techniques[J]. Journ al of Lightwave Technology,1989,7(2):279-292.
    [39]Painchaud D, Wachter L J. Automatic gain control for input to analog to digital co nverter:U.S. Patent 6,292,120[P].2001-9-18.
    [40]Savory S J. Digital coherent optical receivers:algorithms and subsystems[J]. Selecte d Topics in Quantum Electronics, IEEE Journal of,2010,16(5):1164-1179.
    [41]Cho K Y, Tanaka K, Sano T, et al. Long-reach coherent WDM PON employing se If-polarization-stabilization technique[J]. Journal of Lightwave Technology,2011,29( 4):456-462.
    [42]Fatadin I, Savory S J, Ives D. Compensation of quadrature imbalance in an optical QPSK coherent receiver[J]. IEEE Photonics Technology Letters,2008,20(20):173 3-1735.
    [43]Tanimura T, Oda S, Tanaka T, et al. A simple digital skew compensator for cohere nt receiver[C]//Optical Communication,2009. ECOC'09.35th European Conference on. IEEE,2009:1-2.
    [44]Chang S H, Chung H S, Kim K. Compensation of front-end IQ-mismatch in coher ent optical receiver[J]. Optical Fiber Technology,2011,17(2):124-127.
    [45]Savory S J. Digital filters for coherent optical receivers[J]. Optics express,2008,16 (2):804-817.
    [46]Faruk M S, Mori Y, Zhang C, et al. Multi-impairment monitoring from adaptive fi nite-impulse-response filters in a digital coherent receiver[J]. Optics express,2010, 18(26):26929-26936.
    [47]Kudo R, Kobayashi T, Ishihara K, et al. Coherent optical single carrier transmissio n using overlap frequency domain equalization for long-haul optical systems[J]. Jou rnal of Lightwave Technology,2009,27(16):3721-3728.
    [48]Khafaji M, Gustat H, Ellinger F, et al. General time-domain representation of chro matic dispersion in single-mode fibers[J]. IEEE Photonics Technology Letters,2010, 22(5):314-316.
    [49]Xu T, Jacobsen G, Popov S, et al. Chromatic dispersion compensation in coherent t ransmission system using digital filters[J]. Optics express,2010,18(15):16243-1625 7.
    [50]Do C, Tran A V, Hewitt D F. Chromatic dispersion estimation based on compleme ntary golay sequences for 80 Gb/s QPSK single-carrier system with frequency dom ain equalization[C]//Australasian Telecommunication Networks and Applications Conf erence (ATNAC),2011. IEEE,2011:1-4.
    [51]Kuschnerov M, Hauske F N, Piyawanno K, et al. Adaptive chromatic dispersion eq ualization for non-dispersion managed coherent systems[C]//Optical Fiber Communic ation Conference. Optical Society of America,2009.
    [52]Wang D, Lu C, Lau A P T, et al. Adaptive chromatic dispersion compensation for coherent communication systems using delay-tap sampling technique[J]. IEEE Phot onics Technology Letters,2011,23(14):1016-1018.
    [53]Dods S D, Anderson T B. Optical performance monitoring technique using delay ta p asynchronous waveform sampling[C]//Optical Fiber Communication Conference. O ptical Society of America,2006.
    [54]Choi H Y, Takushima Y, Chung Y C. Optical performance monitoring technique usi ng asynchronous amplitude and phase histograms[J]. Optics express 17,2009:2395 3-23958.
    [55]Choi H Y, Takushima Y, Chung Y C. OSNR monitoring technique for PDM-QPSK signals based on asynchronous delay-tap sampling technique[C]//National Fiber Opt ic Engineers Conference. Optical Society of America,2010.
    [56]Lee S J. A new non-data-aided feedforward symbol timing estimator using two sam pies per symbol[J]. Communications Letters, IEEE,2002,6(5):205-207.
    [57]Ribeiro V, Ranzini S, Oliveira J. et al. Accurate Blind Chromatic Dispersion Estim ation in Long-haul 112Gbit/s PM-QPSK WDM Coherent Systems[C]//Signal Process ing in Photonic Communications. Optical Society of America.2012.
    [58]Hauske F N, Zhang Z, Li C. et al. Precise, robust and least complexity CD estima tion[C]//National Fiber Optic Engineers Conference. Optical Society of America,20 11.
    [59]Andres Soriano R, Hauske F N, Guerrero Gonzalez N, et al. Chromatic dispersion estimation in digital coherent receivers[J]. Journal of Lightwave Technology,2011, 29(11):1627-1637.
    [60]Wymeersch H, Johannisson P. Maximum-likelihood-based blind dispersion estimation for coherent optical communication[J]. Journal of Lightwave Technology,2012,30( 18):2976-2982.
    [61]Stojanovic N, Xie C, Zhao Y, et al. Accelerating chromatic dispersion estimation in coherent optical receivers[C]//Telecommunications Forum (TELFOR),2012 20th. IE EE,2012:899-902.
    [62]Malouin C, Thomas P, Zhang B, et al. Natural expression of the best-match search Godard clock-tone algorithm for blind chromatic dispersion estimation in digital co herent receivers[C]//Signal Processing in Photonic Communications. Optical Society of America,2012.
    [63]Marcuse D, Manyuk C R, Wai P K A. Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringe nce[J]. Journal of Lightwave Technology,1997,15(9):1735-1746.
    [64]Stojanovic N, Gonzalez N G, Xie C, et al. Timing recovery in nyquist coherent opt ical systems[C]//Telecommunications Forum (TELFOR).2012 20th. IEEE,2012:89 5-898.
    [65]Hauske F N, Xie C, Zhang Z P, et al. Frequency domain chromatic dispersion esti mation[C]//Optical Fiber Communication Conference. Optical Society of America,2 010.
    [66]Sui Q, Lau A P T, Lu C. Fast and Robust Blind Chromatic Dispersion Estimation Using Auto-Correlation of Signal Power Waveform for Digital Coherent Systems[J]. Journal of Lightwave Technology,2013,31(2):306-312.
    [67]Bregni S, D'Agrosa M, Valtriani L. Jitter testing technique and results at VC-4 des ynchronizer output of SDH equipment[C]//Instrumentation and Measurement Technol ogy Conference,1994. IMTC/94. Conference Proceedings.10th Anniversary. Advan ced Technologies in I & M.,1994 IEEE. IEEE,1994:1407-1410.
    [68]Crochiere R E. A general program to perform sampling rate conversion of data by rational ratios[J]. Programs for digital signal processing,1979.
    [69]Gardner F M. Phaselock techniques[M]. Wiley-Interscience,2005.
    [70]Godard D. Passband timing recovery in an all-digital modem receiver[J]. IEEE Tran sactions on Communications,1978,26(5):517-523.
    [71]Gardner F. A BPSK/QPSK timing-error detector for sampled receivers[J]. IEEE Tra nsactions on Communications,1986,34(5):423-429.
    [72]Oerder M, Meyr H. Digital filter and square timing recovery[J]. IEEE Transactions on Communications,1988,36(5):605-612.
    [73]Mazo J E. Optimum timing phase for an infinite equalizer[J]. Bell Syst. Tech. J,19 75,54(1):189-201.
    [74]Weinberg A, Liu B. Discrete time analyses of nonuniform sampling first-and second-order digital phase lock loops[J]. IEEE Transactions on Communications,1914,22 (2):123-137.
    [75]Sun H, Wu K T. A novel dispersion and PMD tolerant clock phase detector for co herent transmission systems[C]//Optical Fiber Communication Conference and Expos ition (OFC/NFOEC),2011 and the National Fiber Optic Engineers Conference. IEE E,2011:1-3.
    [76]Wang Y, Serpedin E, Ciblat P. An alternative blind feedforward symbol timing esti mator using two samples per symbol[J]. IEEE Transactions on Communications,20 03,51(9):1451-1455.
    [77]Dawei W, Lau A P T, Lu C, et al. Optimization of a Feedforward Symbol Timing Estimator Using Two Samples per Symbol for Optical Coherent QPSK Systems[C] //Asia Communications and Photonics Conference. Optical Society of America,201 2.
    [78]Panayirci E, Bar-Ness E K. A new approach for evaluating the performance of a s ymbol timing recovery system employing a general type of nonlinearity[J]. IEEE Tr-ansactions on Communications,1996,44(1):29-33.
    [79]Morelli M, D'Andrea A N. Mengali U. Feedforward ML-based timing estimation wi th PSK signals[J]. Communications Letters, IEEE,1997,1(3):80-82.
    [80]Kikuchi K. Clock recovering characteristics of adaptive finite-impulse-response filter s in digital coherent optical receivers[J]. Optics express,2011,19(6):5611-5619.
    [81]Han Y, Li G. Coherent optical communication using polarization multiple-input-multi ple-output[J]. Optics express,2005,13(19):7527-7534.
    [82]Kikuchi K. Polarization-demultiplexing algorithm in the digital coherent receiver[C]// IEEE/LEOS Summer Topical Meetings,2008 Digest of the. IEEE,2008:101-102.
    [83]Chu D. Polyphase codes with good periodic correlation properties (corresp.)[J]. IEE E Transactions on Information Theory,1972,18(4):531-532.
    [84]Kuschnerov M, Chouayakh M, Piyawanno K, et al. Data-aided versus blind single-c arrier coherent receivers[J]. IEEE Photonics Journal,2010,2(3):387-403.
    [85]Godard D. Self-recovering equalization and carrier tracking in two-dimensional data communication systems[J]. IEEE Transactions on Communications,1980,28(11):1 867-1875.
    [86]Ip E, Kahn J M. Feedforward carrier recovery for coherent optical communications[ J]. Journal of Lightwave Technology,2007,25(9):2675-2692.
    [87]Ip E, Kahn J M. Carrier synchronization for 3-and 4-bit-per-symbol optical transmis sion[J]. Journal of Lightwave Technology,2005,23(12):4110-4124.
    [88]Viterbi A. Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission[J]. IEEE Transactions on Information Theory,1983,29(4): 543-551.
    [89]Gao Y, Lau A P T, Yan S, et al. Low-complexity and phase noise tolerant carrier phase estimation for dual-polarization 16-QAM systems[J]. Optics express19 (22),2 011:21717-21729.
    [90]Kam P. Maximum likelihood carrier phase recovery for linear suppressed-carrier dig ital data modulations[J]. IEEE Transactions on Communications,1986,34(6):522-5 27.
    [91]Zhou X. An Improved Feed-Forward Carrier Recovery Algorithm for Coherent Rece ivers With m-QAM Modulation Format[J]. IEEE Photonics Technology Letters,201 0,22(14):1051-1053.
    [92]Louchet H, Kuzmin K, Richter A. Improved DSP algorithms for coherent 16-QAM transmission[C]//Optical Communication,2008. ECOC 2008.34th European Confer ence on. IEEE,2008:1-2.
    [93]Yang J, Werner J J. Dumont G A. The multimodulus blind equalization and its gen eralized algorithms[J]. IEEE Journal on Selected Areas in Communications,2002,2 0(5):997-1015.
    [94]Zhou X, Yu J, Magill P. Cascaded Two-Modulus Algorithm for Blind Polarization De-Multiplexing of 114-Gb/s PDM-8QAM Optical Signals[C]//Optical Fiber Commu nication Conference. Optical Society of America,2009.
    [95]Oh K N, Chin Y O. Modified constant modulus algorithm:blind equalization and c arrier phase recovery algorithm[C]//Communications,1995. ICC'95 Seattle,'Gateway t o Globalization',1995 IEEE International Conference on. IEEE,1995,1:498-502.
    [96]Leven A, Kaneda N, Koc U V, et al. Frequency estimation in intradyne reception[J 1. IEEE Photonics Technology Letters,2007,19(6):366-368.
    [97]Jung S P, Takushima Y, Cho K Y, et al. Demonstration of RSOA-based WDM PO N employing self-homodyne receiver with high reflection tolerance[C]//Optical Fiber Communication Conference. Optical Society of America,2009.
    [98]Park S J, Choi Y B, Jung S P, et al. Hybrid WDM/TDMA-PON using self-homod yne and differential coding[J]. IEEE Photonics Technology Letters,2009,21(7):465-467.
    [99]Zhou X, Yu J. Multi-level, multi-dimensional coding for high-speed and high-spectr al-efficiency optical transmission[J]. Journal of Lightwave Technology,2009,27(16): 3641-3653.