纳米材料促进质粒介导的细菌耐药基因接合转移及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细菌耐药性的扩散是一个严重威胁全球公共卫生安全的重要问题,尤其是2010年,在南亚和我国发现新的“超级细菌”后,人们更加关注细菌耐药性问题。细菌获得抗生素抗性基因,一方面是由于抗生素过度使用和滥用产生的抗生素选择压力造成细菌产生抗生素抗性突变;另一方面是细菌通过水平转移的方式获得抗生素抗性基因。后者是细菌获得耐药性的主要方式。细菌抗生素抗性基因往往编码在可移动质粒上,通过质粒接合转移在细菌间进行传播。质粒介导的细菌耐药基因接合转移对细菌耐药性快速扩散起到了至关重要作用。许多环境因素都能够影响质粒的接合转移过程。
     纳米材料由于具有新颖的物理、化学和生物学特性,已经被应用于多个领域,尤其是作为高效吸附剂和氧化剂,正用于水处理行业。然而,纳米材料在环境中的残留对环境、生物以及人体的负面影响正在引起人们重视。纳米材料也正在成为一种新的环境污染物。大量研究表明,纳米材料可产生大量活性氧,破坏细菌细胞膜,影响蛋白质和基因,载带DNA或RNA分子进入动物和植物细胞。现在,水环境中存在着大量耐药菌和纳米材料,纳米材料是否促进耐药基因在细菌间传播还不清楚。
     本研究基于以上事实提出,水中纳米材料可作用于细菌细胞膜和/或调控基因表达,促进细菌耐药基因接合转移的假说,并建立质粒介导的接合转移模型,研究水中常见纳米材料对细菌耐药基因接合转移的影响及规律,分析纳米材料作用过程中各种因素的影响规律,利用正交实验的方法分析其中的主要因素,从生物化学、细胞生物学和分子生物学多个角度探讨了纳米材料促进细菌耐药基因接合转移机制。主要研究结果如下:
     利用RP4质粒建立了四个接合转移模型,包括耐药基因在大肠杆菌种属内、大肠杆菌到沙门氏菌、大肠杆菌到粪肠球菌、粪肠球菌到粪肠球菌的转移;利用RK2质粒建立了耐药基因在大肠杆菌内的转移模型;利用pCF10建立了耐药基因在粪肠球菌内的转移模型。建立的6个耐药基因接合转移模型,既包括了耐药基因在种属内的接合转移,又包括了耐药基因的跨种属转移。研究结果表明,建立的6个耐药基因接合转移模型比较稳定,可以用来评价纳米材料对耐药基因接合转移的影响。
     纳米TiO2、纳米SiO2、纳米Fe2O3和纳米Al2O3都能促进RP4质粒从大肠杆菌到沙门菌的转移。纳米材料浓度为5mmol/L时,与空白对照和大颗粒材料相比,可使RP4接合转移分别提高89倍、10倍、20倍和142倍,纳米Al2O3的促进作用最强。不同接合转移体系中,纳米材料都有促进作用。5mmol/L纳米Al2O3可使RP4从大肠杆菌到大肠杆菌、革兰阴性菌到革兰阳性菌、粪肠球菌到粪肠球菌的接合频率转移分别增加200倍、50倍和100倍。纳米Al_2O_3对RK2和pCF10接合转移的促进作用可分别达到170倍和120倍。这些数据说明,纳米材料对接合质粒介导的耐药基因转移的促进作用可能是一个普遍现象。而且相同成分的大颗粒材料对耐药基因的接合转移无明显的促进作用,也说明对接合转移的促进作用来自纳米材料的纳米结构。
     以纳米Al_2O_3作为代表材料研究了接合转移中的影响因素。结果表明,随着浓度升高,纳米Al_2O_3对RP4接合转移促进作用增强。纳米Al_2O_3浓度为5mmol/L时达到最高,可以提高RP4接合转移100倍以上。纳米Al_2O_3浓度高于5mmol/L时,促进作用减弱,但是与空白对照组和大颗粒组比较,仍能显著促进RP4接合转移。纳米Al_2O_3的作用效果随浓度变化有峰值出现,原因可能是纳米材料,尤其是高浓度纳米材料能使细胞产生严重的氧化应激反应,造成细菌大量死亡。利用数学模型排除细菌死亡影响,5mmol/L纳米Al_2O_3能提高接合转移常数5个数量级。纳米Al_2O_3作用下,随着接合菌密度升高和接合时间延长,接合子数量逐渐增加,与空白对照和大颗粒组比较,增加显著。纳米Al_2O_3作用后,接合温度低于20℃时,随温度升高生成的接合子数量增加;温度高于20℃时,接合子生成数量增加不明显。接合体系的pH值对接合子生成无明显影响。在富营养条件下(LB培养基),接合子生成的数量更多。利用正交实验分析各因素的作用情况发现,各因素对接合子生成影响的重要次序为:初始菌密度>纳米Al_2O_3浓度>接合时间>接合温度>初始菌密度与纳米浓度的交互作用。纳米Al_2O_3浓度已成为仅次于初始菌密度的影响因素。在最适宜的条件下能够提高RP4在PBS中跨种属转移效率200倍,提高RP4在LB中同种属内的转移效率250倍。
     纳米Al_2O_3促进RP4接合转移机制研究发现:纳米Al_2O_3能促使细菌细胞产生大量OH·,激发细菌的氧化抗氧化反应。透射电镜与原子力显微镜的结果也表明,纳米Al_2O_3对细菌细胞膜产生影响,细胞膜表面变得不光滑,甚至部分细胞膜发生溶解。浓度越高,纳米Al_2O_3对细菌细胞膜影响越严重。大颗粒Al_2O_3却无类似的结果,说明纳米Al_2O_3的纳米结构是产生细胞膜损伤的主要因素。纳米Al_2O_3对细菌细胞膜的影响为供体菌和受体菌的细胞膜融合和DNA跨膜转运提供了便利条件。纳米Al_2O_3通过抑制korA和korB的mRNA表达,激活了trbBp基因的mRNA表达,进而促使供体菌与受体菌间形成“接合桥”,促进了接合转移的第一个过程。电镜结果也证实纳米Al_2O_3使形成的“接合桥”数量增加。同时纳米Al_2O_3通过抑制korB和trbA的mRNA的表达,激活了trfAp基因的mRNA表达,促使RP4质粒的转移与复制,促进了接合转移的第二个过程。
     总的来说,纳米材料能通过影响细菌细胞膜状态,影响与接合转移过程相关的调控基因mRNA表达而促进了接合质粒的接合转移。
     本课题利用生命科学的新技术,研究材料领域的纳米粒子对环境安全领域的细菌耐药性接合转移的影响规律与机制,是典型的学科交叉研究,也是相关学科的前沿领域,将开辟纳米材料环境安全研究的新领域。本课题的研究结果将进一步增加人们对细菌耐药性转移与获得的认识程度,丰富相关的科学知识,同时也将提高人们对环境中残留纳米材料所引起的环境与生态风险的认识。本研究提示我们应更加认真的对纳米材料进行相关的安全性评价和谨慎地使用纳米材料,以便控制或减少由纳米材料导致的环境中耐药菌的形成与增加。
The development of antibiotic resistance in bacteria is one of the most serious threats to global public health, as exemplified by the appearance of a new 'super bug' in2010in South of Asia and our country. The spread of antibiotic resistance genes is due to the selective pressures caused by increases in the use and misuse of antibiotics in medicine and animal feedstuffs. Also important is the presence of increasing amounts of these substances in the environment by horizontal transfer between bacteria, rather than by the sequential modification of gene function by the accumulation of point mutations. Of all the mechanisms and mobile elements that mediate horizontal gene transfer between bacteria, conjugation by self-transferable plasmids may be the most important. The critical role that plasmids play in the rapid spread of antibiotic resistance genes is particularly salient. Aquatic environments and water treatment processes are able to affect the efficiency of antibiotic resistance gene transfer.
     Nanomaterials, which often possess novel physical, chemical, and biological properties, are being utilised in an increasing number of fields, especially in water treatment as efficient adsorbents and oxidants. Their use in water treatment may result in a considerable amount of nanomaterial residue in the water, and cause negative impact on the environment, biological and human. Otherwise, nanosized materials at the same time they may, in fact, become new environmental hazards themselves. Some studies have indicated that nano-materials can cause disruption to bacterial membranes by the production of reactive oxygen species (ROS), can affect protein and gene, and can deliver DNA or RNA molecules into animal or plant cells. Recently, there are a large number of drug-resistant bacteria and nano materials in water environment. The extent to which nano-materials are able to cause an increase in antibiotic resistance by the regulation of the conjugative transfer of antibiotic resistance genes in bacteria is still unknown.
     Based on the above data, we hypothesised that nano-materials that are present in water may promote the horizontal transfer of multidrug-resistance genes by acting on cell membranes and/or regulating genes involved in plasmid transfer. And on basis of the construction of the conjugative transfer models mediated by plasmids, we studied the effect of nano-materials in water environment on the conjugative transfer, and analyzed the effect of various factors on conjugative transfer under nano-materials induced, found out the main factors with Orthogonal experiment, and explored the mechanisms by which nano-alumina promote the horizontal transfer of antibiotic multiresistance features by morphological, biochemical, and molecular biological methods.
     The main findings are as follows:
     We established four kinds conjugative transfer models with RP4plasmid, including the resistance gene conjugative transfer in E. coli species, from E. coli to Salmonella, from E. coli to Enterococcus faecalis, and from Enterococcus faecalis to Enterococcus faecalis. Another two conjugative transfer models, including transfer in E. coli species with RK2plasmid and transfer in to Enterococcus faecalis with PCF10plasmid were also be established. These six models include the resistance genes transferring within species and across specie. The results showed that the six conjugative transfer models were relatively stable and could be used to evaluate the effect of nano-materials on the conjugative transfer of resistance genes.
     Nano-TiO2, nano-SiO2, nano-Fe2O3and nano-Al2O3could promote the transfer of the RP4plasmid from E. coli to Salmonella. At5mmol/L, these four anomaterials could promote the conjugative transfer of RP4by up to89times,10times,20times and142times respectively compared with blank control and bulk materials. Nano-alumina gave the most significant effect. And in other conjugative transfer systems, nano-materials also could promote the resistance genes transfer.5mmol/L nano-alumina can promote the conjugative transfer of RP4between bacteria of the same genus, more specifically from E. coli to E. coli, and increase the transfer by200-fold. Nano-alumina also can significantly promote the conjugative transfer of RP4from Gram-negative bacteria to Gram-positive bacteria by more than50-fold. In other mating systems, from Enterococci to Enterococci, the conjugative transfer of RP4could also be promoted by5mmol/L nano-alumina which increased the transfer by100-fold. Nano-alumina also could promote the horizontal transfer of other conjugative plasmids, such as an unrelated conjugation system in the Gram-negative bacteria, RK2and the enterococcal pheromone-mediated conjugation system involving an endogenous enterococcal plasmid, pCF10. The results showed that nano-alumina could significantly promote the RK2and pCF10conjugational transfer when the concentration of nano-alumina ranged from0.05to50mmol/L. The conjugative transfer frequencies of RK2and pCF10were also the highest in the5mmol/L nano-alumina group, which induced an increase in the transfer of more than170-fold and120-fold compared to the control group respectively. These data showed that it might be a common phenomenon that nano-materials could promote the conjugative transfer of resistance genes. And the results that bulk nano-materials did not affect the conjugative transfer of resistance genes suggested that nanostructures rather than the chemical composition of these nano-materials played a major role in the promoting transfer.
     Nano Al2O3and RP4plasmid were chosen as the indicators to evaluate the effect of factors on the transfer of resistance genes. Bulk alumina at any concentration had no significant effect on conjugative transfer of RP4, but nano-alumina could significantly promote conjugative transfer, and this transfer increased with increasing of nano-alumina concentrations the conjugative transfer was the highest in the5mmol/L nano-alumina group, which was more than100-fold higher than that of control group. When the nano-alumina concentration was higher than5mmol/L, the transfer rate decreased, as higher nano-alumina concentrations were found to damage the bacterial membrane severely and kill most bacteria. Furthermore, the nanoparticles may have aggregated, and thus become relatively less bioavailable at these concentrations compared with lower concentrations.The conjugative transfer of RP4increased with bacterium concentration. The conjugative transfer in each group increased with the prolongation of mating time, and the conjugative transfer in5mmol/L nano-alumina group was markedly higher than that of the control group at each time point. In order to determine the impact of nano-alumina on RP4transfer accurately, a simple mass action model was used to explain the kinetics of RP4conjugative transfer. The results showed that the conjugational transfer rate constant of5mmol/L nano-alumina group was approximately5orders magnitude higher than that of the control group. The conjugation was lower at4℃and15℃than that at20℃or higher, but showed no further increase above20℃. The pH had no significant effect on plasmid transfer. We used orthogonal design (L64(421)) with the four variables to observe the effect on the conjugative transfer of RP4. The statistical results showed that every one of these four variables had a significant effect on the conjugation, while there was an interaction between the bacterial concentration and nano-alumina concentration. The ranking of these factors in the order of importance of affecting the conjugative transfer was as follows:bacteria concentration> nano-alumina concentration> mating temperature> mating time> the interaction between bacteria concentration and nano-alumina concentration. The effect on promotion of conjugative transfer of nano-alumina was greater than the effects of mating temperature and mating time. Under the optimum conditions, the conjugative transfers of RP4across genera in PBS and within species in LB were more than200-fold and250fold higher than that when no nano-alumina was added.
     We also explored the potential mechanisms of nano-alumina in promoting conjugative transfer of RP4. Our study showed that nano-alumina caused the SOS response of parent bacteria and also damage the integrity of cell membranes, as was seen from the results of TEM and AFM. The productions of hydroxyl free radicals (OH·) in bacteria were increased with the increasing of nano-alumina concentration. And other inductors of bacterial oxidative stress-response systems increased with increase in nano-alumina levels and significantly higher than those in the control group and bulk alumina groups. The cytoplasm of the bacteria agglomerated, and the parts of the cell membranes were undefined, and the cell membranes displayed wrinkles and fissures when nano-alumina induced. Nano-alumina can enhance the conjugation efficiency through the regulation of conjugative gene expression. We observed that nano-alumina significantly promoted bacteria conjugation. This phenomenon results from the promotion of RP4conjugation gene expression by nano-alumina. The trbBp expression was enhanced after treatment with nano-alumina, which led to the formation of more conjugants. In addition, nano-alumina could promote the expression of trfAp, which is a gene that plays an important role in the transfer and replication of RP4. Nano-alumina may promote the horizontal transfer by repressing the expression of global regulatory genes that are involved in RP4conjugation. We found in this study that korA, korB and trbA mRNA expression were repressed significantly by nano-alumina. These results mean that trfA and trbB are activated and increase this expression, which provides the sequential steps that enhance the efficiency of transfer.
     In conclusion, this study reported that nano-materials in water increased the conjugative transfer of resistance genes involve the damage of bacterial membranes by oxidative stresses, an enhancement of the expression of conjugative genes, and the repression of the global regulatory factor genes for RP4plasmid conjugation.
     This study will not only open up a new field of study on the environmental safety of nanomaterials, but also further enrich our knowledge about the the transfer of resistance genes. The results will also help us to control the generation of drug resistance bacteria, to lay theoretical and technical foundation for us to in-depth study the potential risks of nanomaterials and provide us an guidline of nano-materials production and security applications.
引文
[1]Fojtik A, Henglein A. Surface chemistry of luminescent colloidal silicon nanoparticles. J Phys Chem B,2006,110(5):1994-1998.
    [2]李守田,邹炳锁,张岩,肖良质,李铁津,史苏华.硫化铅超微粒的制备及量子尺寸效应研究.高等学校化学学报,1991,12(10):1393-1395.
    [3]郎兴友.纳米材料相变的尺寸和界面效应的研究.吉林大学博士学位论文,2007.
    [4]高晓云,郭广生,安志棠,张敬畅,贺晓冬,王伟洁,杨福明.超微硅粉的氮化.无机材料学报,1992,7(3):28-30.
    [5]Rakshit T, Mandal S, Mishra P, Dhar A, Manna I, Ray SK. Optical and bio-sensing characteristics of ZnO nanotubes grown by hydrothermal method. J Nanosci Nanotechnol,2012,12(1):308-315.
    [6]Nowack B, Bucheli TD. Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut,2007,150(1):5-22.
    [7]郭永,巩雄,杨宏秀.纳米微粒的制备方法及其进展.化学通报,1996,60(3):1-4.
    [8]周双生,周根陶.纳米材料的制备及应用概况.化学世界,1997,38(8):399-401.
    [9]易文辉,郭焱.超微细粒子的制备及应用.化工新型材料,1996,24(11):7-9.
    [10]张玉龙.纳米技术与纳米塑料.北京:中国轻工业出版社,2002.
    [11]严海彪,陈艳林,潘国元,胡圣飞.纳米CaCO3增韧PVC/CPE复合材料的性能研究.塑料工业,2004,32(2):3 1-32.
    [12]李岳,陶冶,刘培英,张勤,张通和.纳米表面改性纤维增强树脂基复合材料吸波性能及机理研究.材料工程,2004,(1):46-49.
    [13]程凤宏,周宏彬.纳米材料在建筑涂料中的应用.现代涂料与涂装,2004,(1):15-17.
    [14]Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol,2003,21(1):41-46.
    [15]Zhang Y, Kohler N, Zhang M. Surface modification of super paramagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials,2002,23(7): 1553-1561
    [16]Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol,2004,22(8):969-976.
    [17]Kaul G, Hmiji M. Tumor targeted gene delivery using poly (ethyleneglycol)-modified gelatin nanoparticles:in vitro and in vivo studies. Pharm Res,2005,22(6):951-961.
    [18]Kogan MJ, Bastus NG, Amigo R, Grillo-Bosch D, Araya E, Turiel A, Labarta A, Giralt E, Puntes VF. Nanoparticle mediated local and remote manipulation of protein aggregation. Nano Lett,2006,6(1):110-115.
    [19]Panchapakesan B, Cesarone G, Liu X, Teker K, Wickstrom E. Single-wall carbon nanotubes with adsorbed antibodies detects live breast cancer cells. Nanobiotechnol, 2005,1(4):353-360.
    [20]常津.具有复合靶向抗瘟功能的纳米高分子材料.中国生物医学工程学报,1996,15(2):97-101
    [21]Gopalan B, Ito I, Branch CD, Stephens C, Roth JA, Ramesh R. Nanoparticle based systemic gene therapy for lung cancer:Molecular mechanisms and strategies to suppress nanoparticle-mediated inflammatory response. Technol Cancer Res Treat, 2004,3(6):647-657.
    [22]Li Z, Zhu S, Gan K, Zhang Q, Zeng Z, Zhou Y, Liu H, Xiong W, Li X, Li G. Poly-L-lysine-modified silica nanoparticles:a potential oral gene delivery system. J Nanosci Nanotechnol,2005,5(8):1199-1203.
    [23]Prabha S, Labhasetwar V. Nanoparticle-mediated wild type p53 gene delivery results in sustained antiproliferative activity in breast cancer cells. Mol Pharm,2004, 1(3):211-219.
    [24]O'Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett,2004, 209(2):171-176.
    [25]DeNardo SJ, DeNardo GL, Miers LA, Natarajan A, Foreman AR, Gruettner C, Adamson GN, Ivkov R. Development of tumor targeting bioprobes ((111)In-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy. Clin Cancer Res,2005, 11(19pt 2):7087s-7092s.
    [26]Song HS, Park TH. Integration of biomolecules and nanomaterials:towards highly selective and sensitive biosensors. Biotechnol J,2011,6(11):1310-1316.
    [27]Duan HL, Shen ZQ, Wang XW, Chao FH, Li JW. Preparation of immunomagnetic iron-dextran nanoparticles and application in rapid isolation of E.coli O157:H7 from foods.World J Gastroenterol,2005, 11(24):3660-3664.
    [28]Shen ZQ, Wang JF, Qiu ZG, Jin M, Wang XW, Chen ZL, Li JW, Cao FH. QCM immunosensor detection of Escherichia coli O157:H7 based on beacon immunomagnetic nanoparticles and catalytic growth of colloidal gold. Biosens Bioelectron,2011,26(7):3376-3381.
    [29]石士考.纳米材料的特性及其应用.大学化学,2001,16(2):39-42.
    [30]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,238(53/58):37-38.
    [31]张新容,杨平,赵梦月TiO2-SiO2/beads降解有机磷农药的研究.工业水处理,2001,21(3):13-15.
    [32]孔尚梅,康振晋,魏志仿.Ti02膜太阳光催化氧化法处理毛纺染整废水.化工环保,2000,20(1):11-14.
    [33]黄汉生.日本TiO2光催化剂的应用进展.工业水与废水,2001,32(2):55.
    [34]于亮.纳米YiO2光催化剂的制备与性能研究.北京:北京化工大学,2000.
    [35]朱晓兵,周集体,邱介山,朱维宇,周旭,唐萍.纳米材料在水处理中的应用研究.工业水处理,2004,24(4):5-9.
    [36]孙家寿.层状粘土纳米复合材料制备及应用进展.武汉化工学院学报,1999,21(4):30-33.
    [37]杨琼峰,方章建,王世敏.纳米氧化铝的制备及其对铜离子吸附行为的研究.湖北大学学报(自然科学版),2007,27(4):381-383.
    [38]张伟,施周,徐舜开,张骅,张茜.多壁碳纳米管吸附水中三氯苯动力学及热力学研究,上海环境科学,2010,29(6):231-235.
    [39]Li X, Elliott DW, Zhang W. Zero-valent iron nanoparticles for abatement of environmental pollutants:materials and engineering aspects. Crit Rev Solid State Mater Sci,2006,31(4):111-122.
    [40]孙家寿,刘羽.交联膨润土吸附磷研究.化学工业与工程技术,1998,19(2):1-5.
    [41]孙家寿.交联粘土矿物的吸附特性研究(Ⅱ)-铝交联蒙脱石对磷酸根粒子的选择性吸附作用.武汉化工学院学报,1997,19(1):34-37.
    [42]Sung C, Kwon Dong, Song I. Adsorption of phenol and nitrophenol isomers onto montmotrillonite modified with hexadeyltrimethylammonium cation. Sep Sci Technol, 1998,33(13):1981-1998.
    [43]Kumar E, Bhatnagar A, Kumar U, Sillanpaa M. Defluoridation from water by nano-alumina:Characterization and sorption studies. J Hazard Mater,2011,186(2-3): 1042-1049.
    [44]Sharma YC, Srivastava V, Mukherjee AK. Synthesis and application of nano-Al2O3 powder for the reclamation of hexavalent chromium from aqueous solutions. J Chem Eng Data,2010,55(7):2390-2398.
    [45]Alvarez S, Blanco-Lopez MC, Miranda-Ordieres AJ, Fuertes AB, Centeno TA. Electrochemical capacitor performance of mesoporous carbons obtained by templating technique. Carbon,2005,43(4):866-870.
    [46]罗驹华,张少明.微纳米级铁粉在水处理中的应用.工业水处理,2008,28(1):9-12.
    [47]李洁,孙体昌,齐涛,惠建斌,杨慧芬.抗菌性纳米材料在水处理中的应用现状.材料导报,2008,22(5):21-23.
    [48]Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent:a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci,2004, 275(1):177-182.
    [49]Son WK, Youk JH, Park WH. Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydrate Polymers,2006,65(4):430-434.
    [50]Kim YG, Oh SG. Water sterilizing technology using particles coated with silver. Repub Korean, KRXXA7 KR pat, KR 2001069645 A.2001-07-26.
    [51]Lok CN, Ho CM, Chen R. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res,2006,5(4):916-924.
    [52]黄红祥.纳米材料及其应用.安徽化工,2004,(2):6-8.
    [53]朱世东,徐自强,白真权,尹成先,苗健.纳米材料国内外研究进展Ⅱ-纳米材料的应用与制备方法.热处理技术与装备,2010,31(4):1-7.
    [54]李泉,曾广赋,席时权.纳米粒子.化学通报,1995,59(6):29-34.
    [55]李良果,刘庆龙,张克.有机高分子超微粉体.化工新型材料,1991,(12):12-14.
    [56]Guzman KAD, Taylor MR, Banfield JF. Environmental risks of nano technology: national nanotechnology initiative funding,2000-2004. Environ. Sci. Technol.2006, 40(5):1401-1407.
    [57]Maynard AD. Nanotechnology:A research strategy for addressing risk. WoodrowWilson International Center for Scholars,Washington DC,2006.
    [58]Woodrow Wilson International Center for Scholars, Project on Emerging Nanotechnology,2010 (http://www.nanotechproject.org/).
    [59]Howard W, Anne G, Michael L. Evaluating engineered nanoparticles in natural waters. Trends Anal Chem,2011,30(1):72-83.
    [60]Zhang Y, Chen Y, Westerhoff P, Crittenden J. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res,2009, 43(17):4249-4257.
    [61]Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji Z. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol,2010,44(6):1962-1967.
    [62]Westerhoff P, Zhang Y, Crittenden J, Chen Y. in:V.H. Grassian (Editor), Nanoscience and Nanotechnology, Wiley, Hoboken, NJ, USA,2008, pp.71-90.
    [63]Zhang Y, Chen Y, Westerhoff P, Hristovski K, Crittenden JC. Stability of commercial metal oxide nanoparticles in water. Water Res,2008,42(8-9):2204-2212.
    [64]Afkhami A, Saber-Tehrani M, Bagheri H. Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2,4-dinitrophenylhydrazine. J Hazard Mater,2010,181(1-3):836-844.
    [65]Wagner T, Bundschuhb T, Schick R, Koster R. Detection of aquatic colloids in drinking water during its distribution via a water pipeline network. Water Sci Technol, 2004,50(12):27-37.
    [66]Senftle F, Thorpe AN, Grant JR, Barkatt A. Superparamagnetic nanoparticles in tap water. Water Res,2007,41(13):3005-3011.
    [67]Kaegi R, Wagner T, Hetzer B, Sinnet B, Tzuetkov G, Boller M. Size, number and chemical composition of nanosized particles in drinking water determined by analytical microscopy and LIBD. Water Res,2008,42(10-11):2778-2786.
    [68]Latkoczy C, Kagi R, Fierz M, Ritzmann M, Gunther D, Boller M. Development of a mobile fast-screening laser-induced breakdown detection (LIBD) system for field-based measurements of nanometre sized particles in aqueous solutions.J Environ Monit,2010,12(7):1422-1429.
    [69]Bundschuh T, Knopp R, Winzenbacher R, Kim JI, Koster R. Quantification of aquatic nano particles after, different steps of Bodensee water purification with laser-induced breakdown detection (LIBD). Acta Hydrochim Hydrobiol,2001,29(1): 7-15.
    [70]Roco MC. Environmentally responsible development of nanotechnology. Environ Sci Technol,2005,39(5):106A-112A.
    [71]Helland A, Wick P, Koehler A, Schmid K, Som C. Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ Health Perspect, 2007,115(8):1125-1131.
    [72]Siegrist M, Wiek A, Helland A, Kastenholz H. Risks and nanotechnology:the public is more concerned than experts and industry. Nat Nanotechnol,2007,2(2):67.
    [73]Service RF. Nanomaterials show signs of toxicity. Science,2003,300(11):243.
    [74]Brumfiel G. A little knowledge. Nature,2003,424(17):246.
    [75]Zhang Wei-xian. Environmental technologies at the nanoscale. Environ Sci Technol.2003,37(5):103-108.
    [76]Service RF. Nanotoxicology. Nanotechnology grows up. Science,2004, 304(5678):1732-1734.
    [77]Dowling A, Clift R, Grobert N. Nanoscience and nanotechnologies:Opportunities and uncertainties. London:The Royal Society & The Royal Academy of Engineering Report,2004.
    [78]Zhu Y, Zhao Q, Li Y, Cai X, Li W. The interaction and toxicity of multi-walled carbon nanotubes with Stylonychia mytilus. J Nanosci Nanotechnol,2006,6(5): 1357-1364.
    [79]Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey JL. Nanomaterials and the environment:a review for the biennium 2008-2010. J Hazard Mater,2011,186(1):1-15.
    [80]Battin TJ, Kammer FV, Weilhartner A, Ottofuelling S, Hofmann T. Nanostructured TiO2:transport behavior and effects on aquatic microbial communities under environmental conditions. Environ Sci Technol,2009,43(21): 8098-8104.
    [81]Choi O, Yu CP, Esteban Fernandez G, Hu Z. Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures. Water Res,2010,44(20): 6095-6103.
    [82]Huang Z, Zheng X, Yan D, Yin G, Liao X, Kang Y, Yao Y, Huang D, Hao B. Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir,2008,24(8): 4140-4144.
    [83]Baun A, Hartmann NB, Grieger K, Kusk KO. Ecotoxicity of engineered nanoparticles to aquatic invertebrates:a brief review and recommendations for future toxicity testing. Ecotoxicology,2008,17(5):387-395.
    [84]Lee SW, Kim SM, Choi J. Genotoxicity and ecotoxicity assays using the freshwater crustacean Daphnia magna and the larva of the aquatic midge Chironomus riparius to screen the ecological risks of nanoparticle exposure. Environ Toxicol Pharmacol,2009,28(1):86-91.
    [85]Wu Y, Zhou Q, Li H, Liu W, Wanga T, Jianga G. Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. Aquat Toxicol,2010:100(2):160-167.
    [86]Strigul N, Vaccari L, Galdun C, Wazne M, Liu X, Christodoulatos C, Jasinkiewicz K. Acute toxicity of boron, titanium dioxide, and aluminum nanoparticles to Daphnia magna and Vibrio fischeri. Desalination,2009,248(1-3):771-782.
    [87]Wang H, Wick RL, Xing B. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut,2009, 157(4):1171-1177.
    [88]Meyer JN, Lord CA, Yang XY, Turner EA, Badireddy AR, Marinakos SM, Chilkoti A, Wiesner MR, Auffan M. Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquat Toxicol,2010,100(2):140-150.
    [89]Mayer A, Vadon M, Rinner B, Novak A, Wintersteiger R, Frohlich E. The role of nanoparticle size in hemocompatibility. Toxicology,2009,258(2-3):139-147.
    [90]Wang L, Nagesha DK, Selvarasah S, Dokmeci MR, Carrier RL. Toxicity of CdSe nanoparticles in Caco-2 cell cultures. J Nanobiotechnol,2008,6:11.
    [91]Karlsson HL, Cronholm P, Gustafsson J, Moller L. Copper oxide nanoparticles are highly toxic:a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol,2008,21(9):1726-1732.
    [92]Ahamed M, Siddiqui MA, Akhtar MJ, Ahmad I, Pat AB, Alhadlaq HA. Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochem Biophys Res Commun,2010,396(2) 578-583.
    [93]Xia T, Kovochich M, Lion g M, Madler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano,2008, 2(10):2121-2134.
    [94]Wu J, Liu W, Xue C, Zhou S, Lan F, Bi L, Xu H, Yang X, Zeng FD. Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicol Lett,2009,191(1):1-8.
    [95]Yang H, Liu C, Yang D, Zhang H, Xi Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials:the role of particle size, shape and composition. J Appl Toxicol,2009,29(1):69-78.
    [96]Geiser M, Rothen-Rutishauser B, Kapp N, Schurch S, Kreyling W, Schulz H, SemmLer M, Im Hof V, Heyder J, Gehr P. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect,2005,113(11):1555-1560.
    [97]Pope CA 3rd, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D, Godleski JJ. Cardiovascular mortality and long-term exposure to particulate air pollution:epidemiological evidence of general pathophysiological pathways of disease. Circulation,2004,109(1):71-77.
    [98]Wang JX, Chen CY, Yu HW, Sun J, Li B, Li YF, Gao YX, He W, Huang YY, Chai ZF, Zhao YL, Deng XY, Sun HF. Distribution of TiO2 particles in the olfactory bulb of mice after nasal inhalation using microbeam SRXRF mapping techniques. J Radioanal Nucl Chem,2007,272(3):527-531.
    [99]Lee WM, An YJ, Yoon H, Kweon HS. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum):plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem,2008,27(9):1915-1921.
    [100]Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, Hao H, Xiaoqing L, Fashui H. Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res,2008,121(1):69-79.
    [101]Lin D, Xing B. Root uptake and phyotoxiciy of ZnO nanoparticles. Environ Sci Technol,2008,42(15):5580-5585.
    [102]Doshi R, Braida W, Chirsodoulatos C, Wazne M, O'Connor G. Nanoaluminum: transport through sand columns and environmental effects on plants and soil communities. Environ Res,2008,106(3):296-303.
    [103]Lopez-Moreno ML, de la Rosa G, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL. X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem,2010,58(6):3689-3693.
    [104]Parsons JG, Lopez ML, Gonzalez M, Peralta-Videa JR, Gardea-Torresdey JL. Toxicity and biotransformation of uncoated and coated nickel hydroxide nanoparticles on mesquite plants. Environ Toxicol Chem,2010,29 (5):1146-1154.
    [105]Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano,2009,3(10):3221-3227.
    [106]Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X. Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett,2009,9(3):1007-1010.
    [107]Wild E, Jones KC. Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environ Sci Technol,2009,43(14): 5290-5294.
    [108]Pruden A, Pei R, Storteboom H, Carlson KH. Antibiotic resistance genes as emerging contaminants:studies in Northern Colorado. Environ Sci Technol,2006, 40(23):7445-7450.
    [109]Baquero F, Martinez J. Carton R. Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol,2008,19(3):260-265.
    [110]罗义,周启星.抗生素抗性基因(ARGs)一种新型环境污染物.环境科学学报,2008,28(8):1499-1505.
    [111]汪复.2006年中国CHINET细菌耐药性监测.中国感染与化疗杂志,2008,8(1):1-9.
    [112]Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irfan S, Krishnan P, Kumar AV, Maharjan S, Mushtaq S, Noorie T, Paterson DL, Pearson A, Perry C, Pike R, Rao B, Ray U, Sarma JB, Sharma M, Sheridan E, Thirunarayan MA, Turton J, Upadhyay S, Warner M, Welfare W, Livermore DM, Woodford N. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK:a molecular, biological, and epidemiological study. Lancet Infect Dis,2010,10(9):597-602.
    [113]Timothy RW, Janis W, David ML, Mark AT. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health:an environmental point prevalence study. Lancet Infect Dis,11(5):355-362.
    [114]世界卫生组织简报.89:88-89.Doi:10.2471/BLT.11.030211.2011年2月15日[115]Abraham WR. Megacities as sources for pathogenic bacteria in rivers and their fate downstream. Int J Microbiol,2011,2011 pii:79829.
    [116]仲宇惠.抗生素合理应用浅析.黑龙江医药,2010,23(1):100-102.
    [117]王冉,刘铁铮,王恬.抗生素在环境中的转归及其生态毒理.生态学报,2006,16(1):265-270.
    [118]Baker-austin C, Wright MS, Stepanauskas R. Co-selection of antibiotic and metal resistance. Trends Microbiol,2006,14(4):176-182.
    [119]Zhang X, Zhang T, Fang HHP. Antibiotic resistance genes in water environment. Appl Microbiol Biotechnol,2009,82(3):397-414.
    [120]赵锐.细菌耐药性发生、发展与耐药机制.中国水电医学,2007,20(4):251-253.
    [121]吴聪明,陈杖榴.细菌耐药性扩散的机制.动物医学进展,2003,24(4):6-11.
    [122]朱利,俞守义.浅谈细菌基因的水平转移.中国预防医学杂志,2004,5(6):498-500.
    [123]Avery OT, MacLeod CM, McCarty M. Studies on the chemical nature of the substances inducing transformation of pneumococcal types. J Exp Med,1944, 79(2):137-158.
    [124]Magasanik B. A midcentury watershed:The transition from microbial biochemistry to molecular biology. J Bacteriol,1999,181(2):357-358.
    [125]Madigan MT, Martinko JM, Parker J. Brock biology of microorganisms.10th ed. Pearson Educ, Upper Saddle River, NJ.2003.
    [126]Maeda S, Sawamura A, Matsuda A. Transformation of colonial Escherichia coli on solid media. FEMS Microbiol Lett,2004,236(1):61-64.
    [127]Luo D, Saltzman WM. Enhancement of transfection by physical concentration of DNA at the cell surface. Nat Biotechnol,2000,18(8):893-895.
    [128]Lederberg J. The transformation of genetics by DNA:An anniversary celebration of Avery, MacLeod and McCarty (1944). Genetics,1994,136(2): 423-426.
    [129]Zinder ND, Lederberg J. Genetic exchange in Salmonella. J Bacteriol,1952, 64(5):679-699.
    [130]Jain R, Rivera MC, Lake JA. Horizontal gene transfer among genomes:the complexity hypothesis. Proc Natl Acad Sci USA,1999,96(7):3801-3806.
    [131]Salyers AA, Cooper AJ, Shoemaker NB. Lateral broad host range gene transfer in nature:How and how much? In M. Syvanen and C.I. Kado (ed.) Horizontal gene transfer. Chapman & Hall, London.1998. pp.40-50.
    [132]Davison J. Genetic exchange between bacteria in the environment. Plasmid, 1999,42(2):73-91.
    [133]Lederberg J, Tatum EL. Gene recombination in Escherichia coli. Nature,1946, 158(4016):558.
    [134]Maloy SR, Cronan JE, Jr, Freifelfer D. Microbial genetics. Jones& Bartlett Publ., Boston.1994.
    [135]Roberts AP, Mullany P, Wilson M. Gene transfer in bacterial biofilms. Methods Enzymol,2001,336:60-65.
    [136]Birge EA. Bacterial and bacteriophage genetics.3rd ed. Springer-Verlag, New York.1994.
    [137]Heinemann JA, Sprague GF Jr. Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature,1989,340(6230):205-209.
    [138]Lawley TD, Klikme WA, Gubbins MJ, Frost LS. F factor conjugation is a true type IV secretion system. FEMS Microbiol Lett,2004,224(1):1-15.
    [139]Achtman M, Morelli G, Schwuchow S. Cell-cell interactions in conjugating Escherichia coli. Role of F pili and fate of mating aggregates. J Bacteriol,1978, 135(3):1053-1061.
    [140]Sorensen SJ, Bailey M, Hansen LH, Kroer N, Wuertz S. Studying plasmid horizontal transfer in situ. A critical review. Nat Rev Microbiol,2005,3(9):400-410.
    [141]Shi K, Brown CK, Gu ZY, Kozlowicz BK, Dunny GM, Ohlendorf DH, Earhart CA. Structure of peptide sex pheromone receptor PrgX and PrgX/pheromone complexes and regulation of conjugation in Enterococcus faecalis. Proc Natl Acad Sci USA,2005,102(51):18596-18601.
    [142]Perez-Mendoza D, Sepulveda E, Pando V, Munoz S, Nogales J, Olivares J, Soto MJ, Herrera-Cervera JA, Romero D, Brom S, Sanjuan J. Identification of the rctA gene, which is required for repression of conjugative transfer of rhizobial symbiotic megaplasmids. J Bacteriol,2005,187(21):7341-7350.
    [143]Sarmah AK, Meyer MT, Boxall ABA. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere,2006,65(5):725-759.
    [144]Wright GD. The antibiotic resistome:the nexus of chemical and genetic diversity. Nat Rev Microbiol,2007,5(3):175-186.
    [145]Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic,2008,8(1):1-13.
    [146]Yang S, Carlson K. Evolution of antibiotic occurrence in a river through pristine, urban and agricultural landscapes. Water Res,2003,37(19):4645-4656.
    [147]Batt AL, Snow DD, Aga DS. Occurrence of sulfonamide antimicrobials in private water wells in Washington County, Idaho, USA. Chemosphere,2006, 64(11):1963-1971.
    [148]Tennstedt T, Szczepanowski R, Braun S, Puhler A, Schluter A. Occurrence of integron-associated resistance gene cassettes located on antibiotic resistance plasmids isolated from a wastewater treatment plant. FEMS Microbiol Ecol,2003,45(3): 239-252.
    [149]Tennstedt T, Szczepanowski R, Krahn I, Puhler A, Schliiter A. Sequence of the 68,869 bp IncP-1a plasmid pTB11 from a wastewater treatment plant reveals a highly conserved backbone, a Tn402-like integron and other transposable elements. Plasmid, 2005,53(3):218-238.
    [150]Szczepanowski R, Braun S, Riedel V, Schneiker S, Krahn I, Puhler A, Schluter A. The 120592 bp IncF plasmid pRSB107 isolated from a sewage-treatment plant encodes nine different antibiotic-resistance determinants, two iron-acquisition systems and other putative virulence-associated functions. Microbiology,2005, 151(pt4):1095-1111.
    [151]Nikolakopoulou TL, Egan S, van Overbeek LS, Guillaume G, Heuer H, Wellington EMH, van Elsas JD, Collard JM, Smalla K, Karagouni AD. PCR detection of oxytetracycline resistance genes otr(A) and otr(B) in tetracycline-resistant Streptomycete isolates from diverse habitats. Curr Microbiol,2005,51(4):211-216.
    [152]Antunes P, Machado J, Peixe L. Characterization of antimicrobial resistance and class 1 and 2 integrons in Salmonella enteric isolates from different sources in Portugal. J Antimicrob Chemother,2006,58(2):297-304.
    [153]Ferreira da Silva M, Vaz-Moreira I, Gonzalez-Pajuelo M, Nunes OC, Manaia CM. Antimicrobial resistance patterns in Enterobacteriaceae isolated from an urban wastewater treatment plant. FEMS Microbiol Ecol,2007,60(1):166-176.
    [154]Moura A, Henriques I, Ribeiro R, Correia A. Prevalence and characterization of integrons from bacteria isolated from a slaughter house wastewater treatment plant. J Antimicrob Chemother,2007,60(6):1243-1250.
    [155]Guillaume G, Verbrugge D, Chasseur-Libotte ML, MoensW, Collard JM. PCR typing of tetracycline resistance determinants (Tet A-E) in Salmonella enteric serotype Hadar and in the microbial community of activated sludges from hospital and urban wastewater treatment facilities in Belgium. FEMS Microbiol Ecol,2000,32(1):77-85.
    [156]Heuer H, Krogerrecklenfort E, Wellington EMH, Egan S, van Elsas JD, van Overbeek L, Collard JM, Guillaume G, Karagouni AD, Nikolakopoulou TL, Smalla, K. Gentamicin resistance genes in environmental bacteria:prevalence and transfer. FEMS Microbiol Ecol,2002,42(2):289-302.
    [157]Schmidt AS, Bruun MS, Dalsgaard I, Larsen JL. Incidence, distribution, and spread of tetracycline resistance determinants and integron-associated antibiotic resistance genes among motile aeromonads from a fish farming environment. Appl Environ Microbiol,2001,67(12):5675-5682.
    [158]Agers(?) Y, Sandvang D. Class 1 integrons and tetracycline resistance genes in Alcaligenes, Arthrobacter, and Pseudomonas spp. isolated from pigsties and manured soil. Appl Environ Microbiol,2005,71(12):7941-7947.
    [159]Jakobsen L, Sandvang D, Hansen LH, Bagger-Skj(?)t L, Westh H, Jorgensen C, Hansen DS, Pedersen BM, Monnet DL, Frimodt-M(?)ller N, S(?)rensen SJ, Hammerum AM. Characterisation, dissemination and persistence of gentamicin resistant Escherichia coli from a Danish university hospital to the waste water environment. Environ Int,2008,34(1):108-115.
    [160]Chee-Sanford JC, Aminov RI, Krapac IJ, Garrigues-Jeanjean N, Mackie RI Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities. Appl Environ Microbiol,2001,67(4): 1494-1502.
    [161]Srinivasan V, Nam HM, Nguyen LT, Tamilselvam B, Murinda SE, Oliver SP. Prevalence of antimicrobial resistance genes in Listeria monocytogenes isolated from dairy farms. Foodborne Pathog Dis,2005,2(3):201-211.
    [162]Macauley JJ, Adams CD, Mormile MR. Diversity of tet resistance genes in tetracycline resistant bacteria isolated from a swine lagoon with low antibiotic impact. Can J Microbiol,2007,53(12):1307-1315.
    [163]Poppe C, Martin L, Muckle A, Archambault M, McEwen S, Weir E. Characterization of antimicrobial resistance of Salmonella Newport isolated from animals, the environment, and animal food products in Canada. Can J Vet Res,2006, 70(2):105-114.
    [164]Thompson SA, Maani EV, Lindell AH, King CJ, McArthur JV. Novel tetracycline resistance determinant isolated from an environmental strain of Serratia marcescens. Appl Environ Microbiol,2007,73(7):2199-2206.
    [165]Mispagel H, Gray JT. Antibiotic resistance from wastewater oxidation ponds. Water Environ Res,2005,77(7):2996-3002.
    [166]Auerbach EA, Seyfried EE, McMahon KD. Tetracycline resistance genes in activated sludge wastewater treatment plants.Water Res,2007,41 (5):1143-1151.
    [167]Zhu LX, Zhang ZW, Wang C, Yang HW, Jiang D, Zhang Q, Mitchelson K, Cheng J. Use of a DNA microarray for simultaneous detection of antibiotic resistance genes among staphylococcal clinical isolates. J Clin Microbiol,2007,45(11): 3514-3521.
    [168]Lee YJ, Han HS, Seong CN, Lee HY, Jung JS. Distribution of genes coding for aminoglycoside acetyltransferases in gentamicin resistant bacteria isolated from aquatic environment. J Microbiol,1998,36(4):249-255.
    [169]Suzuki S, Kobayashi T, Suehiro F, Tuyen CB, Tana TS. High occurrence rate of tetracycline (TC)-resistant bacteria and TC resistance genes relates to microbial diversity in sediment of Mekong River main waterway. Microb Environ,2008,23(2): 149-152.
    [170]Kim SR, Nonaka L, Suzuki. S. Occurrence of tetracycline resistance genes tet(M) and tet(S) in bacteria from marine aquaculture sites. FEMS Microbiol Lett,2004, 237(1):147-156.
    [171]Kim YH, Jun LJ, Park SH, Yoon SH, Chuang JK, Kim JC, Jeong HD. Prevalence of tet(B) and tet(M) genes among tetracycline resistant Vibrio spp002E in the aquatic environments of Korea. Dis Aquat Organ,2007,75(3):209-216.
    [172]Nonaka L, Ikeno K, Suzuki S. Distribution of tetracycline resistance gene, tet(M), in Gram-positive and Gram-negative bacteria isolated from sediment and seawater at a coastal aquaculture site in Japan. Microb Environ,2007,22(4):355-364.
    [173]Rahman MH, Nonaka L, Tago R, Suzuki S. Occurrence of two genotypes of tetracycline (TC) resistance gene tet(M) in the TC resistant bacteria in marine sediments of Japan. Environ Sci Technol,2008,42(14):5055-5061.
    [174]Dang HY, Zhang XX, Song LS, Chang YQ, Yang GP. Molecular characterizations of oxytetracycline resistant bacteria and their resistance genes from mariculture waters of China. Mar Pollut Bull,2006,52(11):1494-1503.
    [175]Dang HY, Zhang XX, Song LS, Chang YQ, Yang GP. Molecular determination of oxytetracycline-resistant bacteria and their resistance genes from mariculture environments of China. J Appl Microbiol,2007,103(6):2580-2592.
    [176]Mukherjee S, Chakraborty R. Incidence of class 1 integrons in multiple antibiotic-resistant Gram-negative copiotrophic bacteria from the River Torsa in India. Res Microbiol,2006,157(3):220-226.
    [177]Mohapatra H, Mohapatra SS, Mantri CK, Colwell RR, Singh DV. Vibrio cholerae non-O1, non-0139 strains isolated before 1992 from Varanasi, India are multiple drug resistant, contain intSXT, dfr18 and aadA5 genes. Environ Microbiol, 2008,10(4):866-873.
    [178]Taviani E, Ceccarelli D, Lazaro N, Bani S, Cappuccinelli P, Colwell RR, Colombo MM. Environmental Vibrio spp., isolated in Mozambique, contain a polymorphic group of integrative conjugative elements and class 1 integrons. FEMS Microbiol Ecol,2008,64(1):45-54.
    [179]Rysz M, Alvarez PJJ. Amplification and attenuation of tetracycline resistancein soil bacteria:Aquifer Column Experiments. Water Res,2004,38(17):3705-3712.
    [180]Hegstad K, Langsrud S, Lunestad BT, Scheie AA, SundeM, Yazdankhah SP. Does the wide use of quaternary ammonium c01llpounds enhance the selection and spread of antimicrobial resistance and thus threaten our health? Microb Drug Resist, 2010,16(2):91-104.
    [181]刘小云,舒为群,李阳.地表水中耐热大肠菌群对10种常用抗生素的耐药性研究.解放军预防医学杂志,2005,23(30):164-167.
    [182]Mulamattathil SG, Esterhuysen HA, Pretorius PJ. Antibiotic-resistant Gram-negative bacteria in a virtually closed water reticulation systems. J Appl Microbiol,2000,88(6):930-937.
    [183]Guardabassi L, Dalsgaard A, Olsen JE. Phenotypic characterization and antibiotic resistance of Acinetobacter spp. isolated from aquatic sources. J App Microbiol,1999,87(5):659-667.
    [184]Messi P, Guerrieri E, Bondi M. Antibiotic resistance and antibacterial activity in heterotrophic bacteria of mineral water origin. Sci Total Environ,2005,346(1-3): 213-219.
    [185]Mudryk Z J. Occurrence and distribution antibiotic resistance of heterotrophic bacteria isolated from a maline beach. Mar Polut Bull,2005,50(1):80-86.
    [186]Akinbowale OL, Peng H, Barton MD. Antimicrobial resistance in bacteria isolated from aquaculture sources in Australia. J Appl Microbiol,2006,100(5): 1103-1113.
    [187]Liu YF, Wang CH, Janapatla RP, Fu HM, Wu HM, Wu JJ. Presence of plasmid pA15 correlates with prevalence of constitutive MLSB resistance in group A streptococcal isolates at a university hospital in southern Taiwan. J Antimicrob Chemother,2007,59(6):1167-1170.
    [188]Heuer H, Krogerrecklenfort E, Wellington EM, Egan S, van Elsas JD, van Overbeek L, Collard JM, Guillaume G, Karagouni AD, Nikolakopoulou TL, Smalla K. Gentamicin resistance genes in environmental bacteria:prevalence and transfer. FEMS Microbiol Ecol,2002,42(2):289-302.
    [189]Schwartz T, Kohnen W, Jansen B, Obst U. Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiol Ecol,2003,43(3):325-335.
    [190]Reinthaler FF, Posch J, Feierl G, Wust G, Haas D, Ruckenbauer G, Mascher F, Marth E. Antibiotic resistance of E. coli in sewage and sludge. Water Res,2003, 37(8):1685-1690.
    [191]Szczepanowski R, Krahn I, Linke B, Goesmann A, Piihler A, Schluter A. Antibiotic multiresistance plasmid pRSB101 isolated from a wastewater treatment plant is related to plasmids residing in phytopathogenic bacteria and carries eight different resistance determinants including a multidrug transport system. Microbiology,2004,150(pt 11):3613-3630.
    [192]Bonemann G, Stiens M, Puhler A, Schluter A. Mobilizable IncQ-related plasmid carrying a new quinolone resistance gene, qnrS2, isolated from the bacterial community of a wastewater treatment plant. Antimicrob Agents Chemother,2006, 50(9):3075-3080.
    [193]Schluter A, Szczepanowski R, Puhler A, Top EM. Genomics of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool. FEMS Microbiol Rev,2007,31(4): 449-477.
    [194]Enne VI, Bennett PM, Livermore DM, Hall LM. Enhancement of host fitness by the sul2-coding plasmid p9123 in the absence of selective pressure. J Antimicrob Chemother,2004,53(6):958-963.
    [195]Luo N, Pereira S, Sahin O, Lin J, Huang S, Michel L, Zhang Q. Enhanced in vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of antibiotic selection pressure. Proc Natl Acad Sci USA,2005,102(3):541-546.
    [196]Kummerer K. Resistance in the environment. J Antimicrob Chemother,2004, 54(2):311-320.
    [197]Ohlsen K, Ternes T, Werner G, Wallner U, Loffler D, Ziebuhr W, Witte W, Hacher J. Impact of antibiotics on conjugational resistance gene transfer in Staphylococcus aureus in sewage. Environ Microbiol,2003,5(8):711-716.
    [198]Hecht DW, Kos IM, Knopf SE, Vedantam G. Characterization of BctA, a mating apparatus protein required for transfer of the Bacteroides fragilis conjugal element BTF-37. Res Microbiol,2007,158(7):600-607.
    [199]Engemann CA, Adams L, Knapp CW, Graham DW. Disappearance of oxytetracycline resistance genes in aquatic systems. FEMS Microbiol Lett,2006. 263(2):176-182.
    [200]Berg J, Tom-Petersen A, Nybroe O. Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field. Lett Appl Microbiol,2005,40(2): 146-151.
    [201]Stepanauskas R, Glenn TC, Jagoe CH, Tuckfield RC, Lindell AH, McArthur JV. Elevated microbial tolerance to metals and antibiotics in metal-contaminated industrial environments. Environ Sci Technol,2005,39(10):3671-3678.
    [202]Wright MS, Peltier GL, Stepanauskas R, McArthur JV. Bacterial tolerances to metals and antibiotics in metal-contaminated and reference streams. FEMS Microbiol Ecol,2006,58(2):293-302.
    [203]Smets BF, Rittmann BE, Stahl DA. The specific growth rate of Pseudomonas putida PAW1 influences the conjugal transfer rate of the TOL plasmid. Appl Environ Microbiol,1993,59(10):3430-3437.
    [204]Sudarshana P, Knudsen GR. Effect of parental growth on dynamics of conjugative plasmid transfer in the pea spermosphere. Appl Environ Microbiol,1995, 6(8)1:3136-3141.
    [205]Arana JI, Justo A, Muela A, Pocino M, Iriberri J, Barcina I. Influence of a survival process in a freshwater system upon plasmid transfer between Escherichia coli strains. Microb Ecol,1997,33(1):41-49.
    [206]Muela A, Pocino M, Arana I, Justo JI, Iriberri J, Barcina I. Effect of growth phase and parental cell survival in river water on plasmid transfer between Escherichia coli strains. Appl Environ Microbiol,1994,60(12):4273-4278.
    [207]Sandt CH, Herson DS. Mobilization of the genetically engineered plasmid pHSV106 from Escherichia coli HB101(pHSV106) to Enterobacter cloacae in drinking water. Appl Environ Microbiol,1991,57(1):194-200.
    [208]Clerc S, Simonet P. Efficiency of the transfer of a pSAM-derivative plasmid between two strains of Streptomyces lividans in conditions ranging from agar slants to non-sterile soil microcosms. FEMS Microbiol Ecol,1996,21(3):157-165.
    [209]Gotz A, Smalla K. Manure enhances plasmid mobilization and survival in Pseudomonas putida introduced into the fi eld soil. Appl Environ Microbiol,1997, 63(5):1980-1986.
    [210]Droge M, Puhler A, Selbitschka W. Horizontal gene transfer among bacteria in terrestrial and aquatic habitats as assessed by microcosm and field studies. Biol Fertil Soils,1999,29(3):221-245.
    [211]Kajita E, Okano JT, Bodine EN, Layne SP, Blower S. Modelling an outbreak of an emerging pathogen. Nat Rev Microbiol,2007,5(9):700-709.
    [212]Aminov RI, Mackie RI. Evolution and ecology of antibiotic resistance genes. FEMS Microbiol Lett,2007,271(2):147-161.
    [213]Beekmann SE, Heilmann KP, Richter SS, GarciadeLomas J, Doern GV. Antimicrobial resistance in Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis and group A β-haemolytic streptococci in 2002-2003:Results of the multinational GRASP Surveillance Program. Int J Antimicrob Agents,2005,25(2): 148-156.
    [214]Massoudieh A, Mathew A, Lambertini E, Nelson KE, Ginn TR. Horizontal gene transfer on surfaces in natural porous media:conjugation and kinetics. Vadose Zone J, 2007,6(2):306-315.
    [215]Kelly BG, Vespermann A, Bolton DJ. Gene transfer events and their occurrence in selected environments. Food Chem Toxicol,2009,47(5):978-983.
    [216]Pansegrau W, Lanka E, Barth PT, Figurski DH, Guiney DG, Haas D, Helinski DR, Schwab H, Stanisich VA, Thomas CM. Complete nucleotide sequence of Birmingham IncPa plasmids:compilation and comparative analysis. J Mol Biol,1994, 239(5):623-663.
    [217]Hirt H, Manias DA, Bryan EM, Klein JR, Marklund JK, Staddon JH, Paustian ML, Kapur V, Dunny GM. Characterization of the pheromone response of the Enterococcus faecalis conjugative plasmid pCF10:complete sequence and comparative analysis of the transcriptional and phenotypicresponses of pCF10-containing cells to pheromone induction. J Bacteriol,2005,187(3):1044-1054.
    [218]Zhong X, Krol JE, Top EM, Krone SM. Accounting for mating pair formation in plasmid population dynamics. J Theor Biol,2010,262(4):711-719.
    [219]Wan Z, Varshavsky J, Teegala S, McLawrence J, Goddard NL. Measuring the rate of conjugal plasmid transfer in a bacterial population using quantitative PCR. Biophys J,2011,101(1):237-244.
    [220]Thorsted P B, Shah D S, Macartney D, Kostelidou K, Thomas C M. Conservation of the genetic switch between replication and transfer genes of IncP plasmids but divergence of the replication functions which are major host-range determinants. Plasmid,1996,36(2):95-111.
    [221]Konieczny I, Doran KS, Helinski DR, Blasina A. Role of TrfA and DnaA proteins in origin opening during initiation of DNA replication of the broad host range plasmid RK2. J Biol Chem,1997,272(32):20173-20178.
    [222]Theophilus B D, Cross M A, Smith C A, Thomas C M. Regulation of the trfA and trfB promoters of broad host range plasmid RK2:identification of sequences essential for regulation by trfB/korA/korD. Nucleic Acids Res,1985,13(22): 8129-8142.
    [223]Schreiner HC,Bechhofer DH,Pohlman RF,Young C,Borden PA,Figurski DH. Replication control in promiscuous plasmid RK2:kil and kor functions affect expression of the essential replication gene trfA. J Bacteriol,1985,163(1):228-237.
    [224]Kostelidou K, Jones A C, Thomas C M. Conserved C-terminal region of global repressor KorA of broad-host-range plasmid RK2 is required for co-operativity between KorA and a second RK2 global regulator, KorB. J Mol Biol,1999,289(2): 211-221.
    [225]Zatyka M, Jagura-Burdzy G, Thomas C M. Transcriptional and translational control of the genes for the mating pair formation apparatus of promiscuous IncP plasmids. J Bacteriol,1997,179(23):7201-7209.
    [226]Licht TR, Laugesen D, Jensen LB, Jacobsen BL. A Transfer of the pheromone-inducible plasmid pCF10 among Enterococcus faecalis microorganisms colonizing the intestine of mini-pigs. Appl Environ Microbiol,2002,68(1):187-193.
    [227]Geisenberger O, Ammendola A, Christensen BB, Molin S, Schleifer KH, Eberl L. Monitoring the conjugative transfer of plasmid RP4 in activated sludge and in situ identification of the transconjugants. FEMS Microbiol Lett,1999,174(1):9-17.
    [228]Inoue D, Sei K, Soda S, Ike M, Fujita M. Potential of predominant activated sludge bacteria as recipients in conjugative plasmid transfer. J Biosci Bioeng,2005, 100(6):600-605.
    [229]Ippolito G, Leone S, Lauria FN, Nicastri E, Wenzel RP. Methicillin-resistant Staphylococcus aureus:the superbug. Int J Infect Dis,2010,14(Suppl 4):S7-S11.
    [230]Kummerer K. Drugs in the environment:emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources-a review. Chemosphere,2001,45(6-7):957-969.
    [231]Paul JH, Thurmond JM, Frischer ME, Cannon JP. Intergeneric natural plasmid transformation between E. coli and a marine Vibrio species. Mol Ecol,1992,1(1): 37-46.
    [232]Gaze W, O'Neill C, Wellington E, Hawkey P. Antibiotic resistance in the environment, with particular reference to MRSA. Adv Appl Microbiol,2008,63: 249-280.
    [233]Gallert C, Fund K, Winter J. Antibiotic resistance of bacteria in raw and biologically treated sewage and in groundwater below leaking sewers. Appl Microbiol Biotechnol,2005,69(1):106-112.
    [234]Daughton CG Ternes TA. Pharmaceuticals and personal care products in the environment:agents of subtle change? Environ Health Perspect,1999,107(Suppl 6): 907-938.
    [235]Moore MN. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int,2006,32(8):967-976.
    [236]Ngomsik AF, Bee A, Draye M, Cote G, Cabuil V. Magnetic nano and microparticles for metal removal and environmental applications:a review. C R Chim, 2005,8(6-7):963-970.
    [237]Uheida A, Iglesias M, Fontas C, Hidalgo M, Salvado V, Zhang Y, Muhammed M. Sorption of palladium (Ⅱ), rhodium (Ⅲ), and platinum (Ⅳ) on Fe3O4 nanoparticles. J Colloid Interf Sci,2006,301(2):402-408.
    [238]Wiesner E. Responsible development of nanotechnologies for water and wastewater treatment. Water Sci Technol,2006,53(3):45-51.
    [239]Bhatnagar A, Kumar E, Sillanpaa M. Nitrate removal from water by nano-alumina:Characterization and sorption studies. Chem Eng J,2010,63(3): 317-323.
    [240]Wang ZS, Hung MT, Liu JC. Sludge conditioning by using alumina nanoparticles and polyelectrolyte. Water Sci Technol,2007,56(8):125-132
    [241]Pronk, W. Sinnet, B.Meylan S. Boller M. Characterization of nano- and microparticles in Swiss waters and their role in potable water production. Water Suppl, 2006,6(1):21-29.
    [242]Adams LK, Lyon DY, Alvarez PJ. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res,2006,40(19):3527-3532.
    [243]MacCormack TJ, Goss GG. Identifying and predicting biological risks associated with manufactured nanoparticles in aquatic ecosystems. J Ind Ecol,2008,12(3): 286-296.
    [244]Lovric J, Cho SJ, Winnik FM, Maysinger D. Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol,2005,12(11):1227-1234.
    [245]Zhu L, Chang DW, Dai L, Hong Y. DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells. Nano Letter,2007,7(12): 3592-3597.
    [246]Torney F, Trewyn BG, Lin VS, Wang K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotechnol,2007,2(5):295-300.
    [247]Yezhelyev MV, Qi L, O'Regan RM, Nie S, Gao X. Proton-Sponge coated quantum dots for siRNA delivery and intracellular imaging. J Am Chem Soc,2008, 130(28):9006-9012.
    [248]Abraham T. Healthy prospects for nanoceramic powders. Ceramics International, 2000,150(1):28-28.
    [249]Guan J, Wasty A, Grenier C, Chan M. Influence of temperature on survival and conjugative transfer of multiple antibiotic-resistant plasmids in chicken manure and compost microcosms. Poult Sci,2007,86(4):610-613.
    [250]Abud-Archila M, Va'zquez-Mandujano DG, Ruiz-Cabrera MA, Grajales-Lagunes A, Moscosa-Santilla'M, Ventura-Canseco LMC, Gutie'rrez-Miceli FA, Dendooven L. Optimization of osmotic dehydration of yam bean (Pachyrhizus erosus) using an orthogonal experimental design. J Food Eng,2008,84(3):413-419.
    [251]Levin B R, Stewart F M, Rice V A. The kinetics of conjugative plasmid transmission:fit of a simple mass action model. Plasmid,1979,2(2):247-260.
    [252]Ferry JL, Craig P, Hexel C, Sisco P, Frey R, Pennington PL, Fulton MH, Scott IG, Decho AW, Kashiwada S, Murphy CJ, Shaw TJ. Transfer of gold nanoparticles from the water column to the estuarine food web. Nat Nanotechnol,2009,4(7): 441-444.
    [253]Samuels AL, Lanka E Davies JE. Conjugative junctions in RP4-mediated mating of Escherichia coli. J Bacteriol,2000,182(10):2709-2715.
    [254]Hesami S, Metcalf DS, Lumsden JS, Macinnes JI. Identification of cold-temperature-regulated genes in Flavobacterium psychrophilum. Appl Environ Microbiol,2011,7(5):1593-1600.
    [255]Beaber JW, Kumar E, Sillanpaa M. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature,2004,427(6969):72-74.
    [256]Cabiscol E, Tamarit J, Ros J. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol,2000,3(1):3-8.
    [257]Farr SB, Kogoma T. Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev,1991,55(4):561-585.
    [258]McElhaney R. Effects of membrane lipids on permeability and transport in prokaryotes, In G. Benga (ed.), Structure and properties of cell membranes. CRC Press, Inc., Boca Raton, Fla.1985, pp 75-91.
    [259]Dills SS, Apperson A, Schmidt MR, Saier MH. Carbohydrate transport in bacteria. Microbiol Rev,1990,44(3):385-418.
    [260]Jagura-Burdzy G, Khanim F, Smith CA, Thomas CM. Crosstalk between plasmid vegetative replication and conjugative transfer:repression of the trfA operon by trbA of broad host range plasmid RK2. Nucleic Acids Res,1992, 20(15):3939-3944.
    [261]Jagura-Burdzy G, Thomas CM. kfrA gene of broad host range plasmid RK2 encodes a novel DNA-binding protein. J Mol Biol,1992,225(3):651-660.
    [262]Motallebi-Veshareh M, Balzer D, Lanka E, Jagura-Burdzy G, Thomas CM. Conjugative transfer functions of broad-host-range plasmid RK2 are coregulated with vegetative replication. Mol Microbiol,1992,6(7):907-920.
    [263]Zatyka M, Jagura-Burdzy G, Thomas CM. Regulation of transfer genes of promiscuous IncP alpha plasmid RK2:repression of Tral region transcription both by relaxosome proteins and by the Tra2 regulator TrbA. Microbiol,1994,140(pt 11): 2981-2990.
    [264]Jagura-Burdzy G, Thomas CM. Dissection of the switch between genes for replication and transfer of promiscuous plasmid RK2:basis of the dominance of trfAp over trbAp and specificity for KorA in controlling the switch. J Mol Biol,1997,265(5): 507-518.
    [1]Woodrow Wilson International Center for Scholars, Project on Emerging Nanotechnology,2010 (http://www.nanotechproject.org/).
    [2]Howard W, Anne G, Michael L. Evaluating engineered nanoparticles in natural waters. Trends in Analytical Chemistry,2011,30(1):72-83.
    [3]Zhang Y, Chen Y, Westerhoff P, Crittenden J. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res,2009, 43(17):4249-4257.
    [4]Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji Z. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol,2010,44(6):1962-1967.
    [5]Westerhoff P, Zhang Y, Crittenden J, Chen Y in:V.H. Grassian (Editor), Nanoscience and Nanotechnology, Wiley, Hoboken, NJ, USA,2008, pp.71-90.
    [6]Zhang Y, Chen Y, Westerhoff P, Hristovski K, Crittenden JC. Stability of commercial metal oxide nanoparticles in water. Water Res,2008,42(8-9):2204-2212.
    [7]Bourlinos AB, Georgakilas V, Boukos N, Dallas P, Trapalis C, Giannelis EP. Silicone-functionalized carbon nanotubes for the Production of new carbon-based fluids. Carbon,2007,45(7):1583-1585
    [8]Wagner T, Bundschuhb T, Schick R, Koster R. Detection of aquatic colloids in drinking water during its distribution via a water pipeline network. Water Sci Technol, 2004,50(12):27-37.
    [9]Senftle F, Thorpe AN, Grant JR, Barkatt A, Superparamagnetic nanoparticles in tap water. Water Res,2007,41(13):3005-3011.
    [10]Darlington TK, Neigh AM, Spencer MT, Nguyen OT, Oldenburg SJ. Nanoparticle characteristics affecting environmental fate and transport through soil. Environ Toxicol Chem,2009,28(6):1191-1199.
    [11]Solovitch N, Labille J, Rose J, Chaurand P, Borschneck D, Wiesner MR, Bottero JY. Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media. Environ Sci Technol,2010,44(13):4897-4902.
    [12]Saleh N, Kim HJ, Phenrat T, Matyjaszewski K, Tilton RD, Lowry GV. Ionic strength and composition affect the mobility of surface-modified FeO nanoparticles in water-saturated sand columns. Environ Sci Technol,2008,42(9):3349-3355.
    [13]Doshi R, Braida W, Christodoulatos C, Wazne M, O'Connor G. Nano-aluminum: transport through sand columns and environmental effects on plants and soil communities. Environ Res,2008,106(3):296-303.
    [14]Jaisi DP, Elimelech M. Single-walled carbon nanotubes exhibit limited transport in soil columns. Environ Sci Technol,2009,43(24):9161-9166.
    [15]Brar SK, Verma M, Tyagi RD, Surampalli RY. Engineered nanoparticles in wastewater and wastewater sludge-evidence and impacts. Waste Manag,2010, 30(3):504-520.
    [16]Fabrega J, Renshaw JC, Lead JR. Interactions of silver nanoparticles with Pseudomonas putida biofilm. Environ Sci Technol,2009,43(23):9004-9009.
    [17]Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicol,2008,17(5):372-386.
    [18]Jaisi DP, Elimelech M. Single-walled carbon nanotubes exhibit limited transport in soil columns.Environ Sci Technol,2009,43(24):9161-9166.
    [19]Ghosh S, Mashayekhi H, Bhowmik P, Xing B. Colloidal stability of Al2O3 nanoparticles as affected by coating of structurally different humic acids. Langmuir, 2010,26(2):873-879.
    [20]Pelley AJ, Tufenkji N. Effect of particle size and natural organic matter on the migration of nano- and microscale latexparticles in saturated porous media.J Colloid Interface Sci,2008,321(1):74-83.
    [21]Yang K, Lin D, Xing B. Interactions of humic acid with nanosized inorganic oxides. Langmuir,2009,25(6):3571-3576.
    [22]Lynch I, Dawson KA, Linse S. Detecting cryptic epitopes created by nanoparticles. Sci STKE,2006,2006(327):pe14.
    [23]Rothen-Rutishauser BM, Schurch S, Haenni B, Kapp N, Gehr P. Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environ Sci Technol,2006,40(14):4353-4359.
    [24]Smart SK, Cassady AI, Lu GQ, Martin DJ. The biocompatibility of carbon nanotubes. Carbon,2006,44(6):1034-1047.
    [25]Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, Gunther D, Stark WJ. Oxide nanoparticle uptake in human lung fibroblasts:effects of particle size, agglomeration, anddiffusion at low concentrations. Environ Sci Technol,2005, 39(23):9370-9376.
    [26]Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett,2006, 6(4):662-668.
    [27]Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science,2006,311(5761):622-627.
    [28]Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology:an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect,2005, 113(7):823-839.
    [29]Avakian MD, Dellinger B, Fiedler H, Gullet B, Koshland C, Marklund S, Oberdorster G, Safe S, Sarofim A, Smith KR, Schwartz D, Suk WA. The origin, fate, and health effects of combustion by-products:a research framework. Environ Health Perspect,2002,110(11):1155-1162.
    [30]Morawska L, Zhang JJ. Combustion sources of particles.1. Health relevance and source signatures. Chemosphere.2002,49(9):1045-1058.
    [31]Armstrong B, Hutchinson E, Unwin J, Fletcher T. Lung cancer risk after exposure to polycyclic aromatic hydrocarbons:a review and meta-analysis. Environ Health Perspect,2004,112(9):970-978.
    [32]Moore MN. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int,2006,32(8):967-976.
    [33]Zhu Y, Zhao Q, Li Y, Cai X, Li W The interaction and toxicity of multi-walled carbon nanotubes with Stylonychia mytilus. J Nanosci Nanotechnol,2006,6(5): 1357-1364.
    [34]Kashiwada S. Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environ Health Perspect,2006,114(11):1697-1702.
    [35]Lyon DY, Fortner JD, Sayes CM, Colvin VL, Hughe JB. Bacterial cell association and antimicrobial activity of a C60 water suspension. Environ Toxicol Chem,2005, 24(11):2757-2762.
    [36]Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fievet F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidalmedium. Nano Lett,2006,6(4):866-870.
    [37]Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of thecytotoxicity mechanism. Environ Sci Technol,2006,40(19):6151-6156.
    [38]Smith CJ, Shaw BJ, Handy RD. Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus my kiss):respiratorytoxicity, organ pathologies, and other physiological effects. Aquat Toxicol,2007,82(2):94-109.
    [39]Lyon DY, Adams LK, Falkner JC, Alvarezt PJ. Antibacterial activity of fullerene water suspensions:effects of preparation method and particle size. Environ Sci Technol,2006,40(14):4360-4366.
    [40]Lovern SB, Klaper R Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ Toxicol Chem,2006,25(4):1132-1137.
    [41]Oberdo"rster E, Manufactured nanomaterials (fullerenes, C6o) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect,2004, 112(10):1058-1062.
    [42]Oberdo"rster E, Zhu S, Blickley TM, McClellan-Green P, Haasch ML,. Ecotoxicology of carbon-based engineered nanoparticles:effects of fullerene (C60) on aquatic organisms. Carbon,2006,44(6):1112-1120.
    [43]Zhu SQ, Oberdorster E, Haasch ML. Toxicity of an engineered nanoparticle (fullerene, C6o) in two aquatic species, Daphnia and fathead minnow. Marine Environ Res,2006,62:S5-S9.
    [44]Fang J, Lyon DY, Dong J, Alvarez, PJJ. Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ Sci Technol,2007, 41(7):2636-2642.
    [45]Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent:a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci,2004, 275(1):177-182.
    [46]Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnol,2005, 16(10):2346-2353.
    [47]Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol,2007,73(6):1712-1720.
    [48]Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun HZ, Tam PKH, Chiu JF, Che CM. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res,2006,5(4):916-924
    [49]Adams LK, Lyon DY, Alvarez PJJ. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res,2006,40(19):3527-3532.
    [50]Yang L, Watts DJ. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett,2005,158(2):122-132.
    [51]Murashov V. Comments on "Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles" by Yang, L., Watts, D.J. Toxicology Letters,2005,158,122-32. Toxicol Lett,2006,164(2):185-187.
    [52]Hong FH, Yang F, Liu C, Gao Q, Wan ZG, Gu FG, Wu C, Ma ZN, Zhou J, Yang P. Influences of nano-TiO2 on the chloroplast aging of spinach under light. Biol Trace Elem Res,2005,104(3):249-260.
    [53]Hong FH, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P. Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res,2005, 105(1-3):269-279
    [54]Zheng L, Hong FS, Lu SP, Liu C. Effect of nano-TiO2 on strength of naturally and growth aged seeds of spinach. Biol Trace Elem Res,2005,104(1):83-91
    [55]Gao FQ, Hong FH, Liu C, Zheng L, Su MY, Wu, X, Yang F, Wu C,Yang P. Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach e inducing complex of Rubisco-Rubisco activase. Biol Trace Elem Res 2006, 111(1-3):239-253.
    [56]Yang F, Hong FS, You WJ, Liu C, Gao FQ, Wu C, Yang P. Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res,2006,110(2):179-190.
    [57]Nowack B, Bucheli TD. Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut,2007,150(1):5-22.
    [58]Cornelissen G, Gustafsson O", Bucheli TD, Jonker MTO, Koelmans AA, Van Noort PCM. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils:mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ Sci Technol 2005,39(18):6881-6895.
    [59]Koelmans AA, Jonker MTO, Cornelissen G, Bucheli TD, Van Noort PCM, Gustafsson O". Black carbon:the reverse of its dark side. Chemosphere 2006, 63(3):365-377.
    [60]Maruya KA, Risebrough RW, Home AJ. The bioaccumulation of polynuclear aromatic hydrocarbons by benthic invertebrates in an intertidal marsh. Environ Toxicol Chem,1997,16(6):1087-1097.
    [61]Jonker MTO, Hoenderboom AM, Koelmans AA. Effects of sedimentary soot like materials on bioaccumulation and sorption of polychlorinated biphenyls. Environ Toxicol Chem 2004,23(11):2563-2570.
    [62]Lohmann R, Burgess RM, Cantwell, MG, Ryba SA, MacFarlane JK, Gschwend PM. Dependency of polychlorinated biphenyl and polycyclic aromatic hydrocarbon bioaccumulation in Mya arenaria on both water column and sediment bed chemical activities. Environ Toxicol Chem,2004,23(11):2551-2562.
    [63]Rust AJ, Burgess RM, McElroy AE, Cantwell MG, Brownawell BJ. Influence of soot carbon on the bioaccumulation of sediment-bound polycyclic aromatic hydrocarbons by marine benthic invertebrates:an interspecies comparison. Environ Toxicol Chem,2004,23(11):2594-2603.
    [64]Sundelin B, Eriksson Wiklund AK, Lithner G, Gustafsson O". Evaluation of the role of black carbon in attenuating bioaccumulation of polycyclic aromatic hydrocarbons from field-contaminated sediments. Environ Toxicol Chem,2004, 23(11):2611-2617.
    [65]Voparil IM, Burgess RM, Mayer LM, Tien R, Cantwell MG., Ryba SA.2004. Digestive bioavailability to a deposit feeder (Arenicola marina) of polycyclic aromatic hydrocarbons associated with anthropogenic particles. Environ Toxicol Chem, 23(11):2618-2626.
    [66]Zhu Y, Ran T, Li Y, Guo J, Li W. Dependence of the cytotoxicity of multi-walled carbon nanotubes on the culture medium. Nanotechnol,2006,17(18):4668-4674.
    [67]Sun HW, Zhang XZ, Niu Q, Chen YS, Crittenden JC. Enhanced accumulation of arsenate in carp in the presence of titanium dioxide nanoparticles. Water Air Soil Pollut,2007,178:245-254.