LINGO-1与WNK分子的相互作用在神经元突起延长和凋亡中的功能及分子机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分: LINGO-1与WNK1分子相互作用在调节Nogo抑制轴突延长中的功能研究
     LINGO-1是一个三元复合受体的一个组分,这个三元受体复合物作为三种髓鞘相关抑制因子的共有受体介导跨膜信号转导,导致生长锥塌陷及抑制神经突起延长。尽管对LINGO-1分子的功能已进行了广泛研究,但其下游信号转导仍未明确。本研究通过酵母双杂交筛选发现LINGO-1可与一种丝苏氨酸激酶WNK1分子发生结合。并通过活细胞内FRET和脑组织裂解液免疫共沉淀检测进一步得到验证,且这种结合在Nogo66处理时会增强。形态学结果提示WNK1与LINGO-1共存于皮层神经元内。进一步研究发现,通过RNA干扰抑制WNK1表达或过表达WNK1(123-510)均可削弱Nogo66引起的突起延长抑制并抑制RhoA激活。此外,通过免疫共沉淀发现WNK1与RhoGDI在脑组织内结合,且这种结合在Nogo66处理时会减弱,进一步提示其对RhoA激活的调节作用。
     综上,我们的研究结果提示WNK1是一个新的参与调制LINGO-1介导的神经突起延长的信号转导分子。这为深入探讨LINGO-1的生物学功能及其机制提供了新思路。
     第二部分WNK3激酶受LINGO-1的负性调控介导Nogo诱导的神经元的凋亡摘要
     神经元的凋亡不论对神经系统生理发育还是在损伤后或神经退行性疾病过程中的病理变化方面都发挥着举足轻重的作用。神经系统特异性跨膜蛋白LINGO-1,已经被充分证明在调节突起延伸和再生中发挥负性调控作用,最近又提出它还在神经元的凋亡中发挥着作用,但是其确切的功能和内在机制仍旧不明。在此我们提出LINGO-1与丝苏氨酸激酶WNK3在神经系统内相互作用,而后者在体外和在体试验中表现出对神经元的凋亡发挥着保护作用,呈激酶依赖方式。值得关注的是,LINGO-1的激活,不论在配体水平还是在受体水平,都足以启动神经元的凋亡,而且同时WNK3的磷酸化也会受到抑制,因此提出了MAIFs诱导神经元的凋亡的另一种新的机制——LINGO-1的激活介导细胞凋亡发生的增加是由于抑制了WNK3激酶的活性。
Part One LINGO-1 interacts with WNK1 to regulate Nogo-induced inhibition of neurite extension
     LINGO-1 is a component of the tripartite receptor complexes, which act as a convergent mediator of the intracellular signaling in response to myelin-associated inhibitors and lead to collapse of growth cone and inhibition of neurite extension. Although the function of LINGO-1 has been intensively studied, its downstream signaling remains elusive. In the present study, a novel interaction between LINGO-1 and a serine-threonine kinase WNK1 was identified by yeast two-hybrid screen. The interaction was further validated by fluorescence resonance energy transfer and co-immunoprecipitation, and this interaction was intensified by Nogo66 treatment. Morphological evidences showed that WNK1 and LINGO-1 were co-localized in cortical neurons. Furthermore, either suppressing WNK1 expression by RNA interference or overexpression of WNK1(123-510) attenuated Nogo66-induced inhibition of neurite extension and inhibited the activation of RhoA. Moreover, WNK1 was identified to interact with Rho-GDI1, and this interaction was attenuated by Nogo66 treatment, further indicating its regulatory effect on RhoA activation.
     Taken together, our results suggest that WNK1 is a novel signaling molecule involved in regulation of LINGO-1 mediated inhibition of neurite extension.
     Part Two WNK3 kinase was negatively regulated by LINGO-1in Nogo-induced neuronal apoptosis
     Neuronal apoptosis has an impactful role in neuronal system physiology during development and pathology after injury or during degenerative diseases. The neuronal system specific transmembrane protein LINGO-1, which has been well documented in negative regulating in neurite extension and regeneration, nowadays was proposed also has an role in neuronal apoptosis, however, its certain role and the underlied mechanism is still vague. Here we proposed LINGO-1 interacts with the serine-threonine kinase WNK3 in neuronal system, and the latter exhibits a protective role in neuronal apoptosis in vitro and in vivo during development in a kinase-dependent manner. In particular, LINGO-1 activation, either at a ligand level or an receptor level, would be sufficient to initiate neuronal apoptosis and at the same time WNK3 phosphoralation is also down-regulated, therefore provid an alternative mechanism for LINGO-1 activation-mediated elevation in apoptotic cell death, that is, by inhibition of WNK3 kinase activity. .
引文
1. Qiu, J., Cai, D., and Filbin, M.T. (2000) Glial inhibition of nerve regeneration in the mature mammalian CNS. Glia. 29, 166-174
    2. Fournier, A.E., GrandPre, T., and Strittmatter, S.M. (2001) Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature. 409, 341-346
    3. McKerracher, L., David, S., Jackson, D.L., Kottis, V., Dunn, R.J., and Braun, P.E. (1994) Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron.13, 805-811
    4. Mukhopadhyay, G., Doherty, P., Walsh, F.S., Crocker, P.R., and Filbin, M.T. (1994) A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron. 13, 757–767
    5. Liu, B.P., Fournier, A., GrandPre, T., Strittmatter, S.M. (2002) Myelinassociated glycoprotein as a functional ligand for the Nogo-66 receptor. Science. 297, 1190-1193
    6. Niederost, B.P., Zimmermann, D.R., Schwab, M.E., Bandtlow, C.E. (1999) Bovine CNS myelin contains neurite growth-inhibitory activity associated with chondroitin sulfate proteoglycans. J. Neurosci. 19, 8979-8989
    7. Wang, K.C., Koprivica, V., Kim, J.A., Srivasankaran, R., Guo, Y., Neve, R.L., He, Z. (2002a) Oligodendrocytemyelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature. 417, 941-944
    8. Chen, M.S., Huber, A.B., van der Haar, M.E., Frank, M., Schnell, L., Spillmann, A.A., Christ, F., Schwab, M.E. (2000) Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature. 403, 434-439
    9. GrandPr′e, T., Nakamura, F., Vartanian, T., Strittmatter, S.M. (2000) Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature. 403, 439-444
    10. Prinjha, R., Moore, S.E., Vinson, M., Blake, S., Morrow, R., Christie, G.,Michalovich, D., Simmons, D.L., Walsh, F.S. (2000) Inhibitor of neurite outgrowth in humans. Nature. 403, 383-384
    11. Mi, S., Lee, X., Shao, Z., Thill, G., Ji, B., Relton, J., Levesque, M., Allaire, N., Perrin, S., Sands, S., Crowell, T., Cate, R., McCoy, J.M., Pepinsky, R.B. (2004) LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat. Neurosci. 7, 221-228
    12. Park, J.B., Yiu, G., Kaneko, S., Wang, J., Chang, J., He, X.L., Garcia, K.C., He, Z. (2005) A TNF receptor family member. TROY, is a coreceptor with Nogo receptor in mediating the inhibitory activity of myelin inhibitors. Neuron. 45, 345-351
    13. Shao, Z., Browning, J.L., Lee, X., Scott, M.L., Shulga-Morskaya, S., Allaire, N., Thill, G., Levesque, M., Sah, D., McCoy, J.M., Murray, B., Jung, V., Pepinsky, R.B., Mi, S. (2005) TAJ/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor 1 and regulates axonal regeneration. Neuron. 45, 353-359
    14. Carim-Todd, L., Escarceller, M., Estivill, X., Sumoy, L. (2003) LRRN6A/LERN1 (leucine-rich repeat neuronal protein 1), a novel gene with enriched expression in limbic system and neocortex. Eur. J. Neurosci. 18, 3167-3182.
    15. Ji, B., Li, M., Wu, W.T., Yick, L.W., Lee, X., Shao, Z., Wang, J., So, K.F., McCoy, J.M., Pepinsky, R.B., Mi, S., and Relton, J.K. (2006) LINGO-1 antagonist promotes functional recovery and axonal sprouting after spinal cord injury. Mol. Cell. Neurosci. 33, 311-320
    16. Mi, S., Miller, R.H., Lee, X., Scott, M.L., Shulag-Morskaya, S., Shao, Z., Chang, J., Thill, G., Levesque, M., Zhang, M., Hession, C., Sah, D., Trapp, B., He, Z., Jung, V., McCoy, J.M., Pepinsky, R.B. (2005) LINGO-1 negatively regulates myelination by oligodendrocytes. Nat. Neurosci. 8, 745-751
    17. Mi, S., Hu, B., Hahm, K., Luo, Y., Kam Hui, E.S., Yuan, Q., Wong, W.M., Wang, L., Su, H., Chu, T.H., Guo, J., Zhang, W., So, K.F., Pepinsky, B., Shao, Z., Graff, C., Garber, E., Jung, V., Wu, E.X., Wu, W. (2007) LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat. Med. 13, 1228-1233
    18. Inoue, H., Lin, L., Lee, X., Shao, Z., Mendes, S., Snodgrass-Belt, P., Sweigard, H.,Engber, T., Pepinsky, B., Yang, L., Beal, M.F., Mi, S., Isacson, O. (2007) Inhibition of the leucine-rich repeat protein LINGO-1 enhances survival, structure, and function of dopaminergic neurons in Parkinson’s disease models. Proc. Natl. Acad. Sci. 104, 14430-14435
    19. Hanks, S.K., Quinn, A.M., and Hunter, T. (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 241, 42-52
    20. Wilson, F.H., Disse-Nicodeme, S., Choate, K.A., Ishikawa, K., Nelson-Willams, C., Desitter, I., Gunel, M., Milford, D.V., Lipkin, G.W. and Achard, J.M. (2001) Human hypertension caused by mutations in WNK kinases. Science. 293, 1107-1112
    21. Golbang, A.P., Murthy, M., Hamad, A., Liu, C.H., Cope, G., Van’t Hoff, W., Cuthbert, A., and O’Shaughnessy, K.M. (2005) A new kindred with pseudohypoaldosteronism type II and a novel mutation (564D>H) in the acidic motif of the WNK4 gene. Hypertension. 46, 295-300
    22. Kahle, K.T., Ring, A.M., and Lifton, R.P. (2008) Molecular Physiology of the WNK Kinases. Annu. Rev. Physiol. 70, 329-355
    23. Stephens, P., Edkins, S., Davies, H., Greenman, C., Cox, C., et al. (2005) A screen of the complete protein kinase gene family identifies diverse patterns of somatic mutations in human breast cancer. Nat. Genet. 37, 590-592
    24. Verissimo, F., Silva, E., Morris, J.D., Pepperkok, R., Jordan, P.(2006)Protein kinase WNK3 increases cell survival in a caspase-3-dependent pathway. Oncogene 25, 4172–4182
    25. Sun, X., Gao, L., Yu, R.K., Zeng, G. (2006) Down-regulation of WNK1protein kinase in neural progenitor cells suppresses cell proliferation and migration. J. Neurochem. 99, 1114-1121
    26. Hong, C., Moorefield, K.S., Jun, P., Aldape, K.D., Kharbanda, S., Phillips, H.S., and Costello, J.F. (2007) Epigenome scans and cancer genome sequencing converge on WNK2, a kinase-independent suppressor of cell growth. Proc. Natl. Acad. Sci. 104,10974-10979
    27. Xu, B.E., English, J.M., Wilsbacher, J.L., Stippec, S., Goldsmith, E.J., and Cobb, M.H.(2000)WNK1, a Novel Mammalian Serine/Threonine Protein Kinase Lacking the Catalytic Lysine in Subdomain II. J. Biol. Chem. 275, 16795-16801
    28. Choate, K.A., Kahle, K.T., Wilson, F.H., Nelson-Williams, C., Lifton, R.P. (2003) WNK1, a kinase mutated in inherited hypertension with hyperkalemia, localizes to diverse Cl- -transporting epithelia. Proc. Natl. Acad. Sci. 100, 663-668
    29. Shekarabi, M., Girard, N., Rivière, J.B., Dion, P., Houle, M., Toulouse, A., afrenière, R.G., Vercauteren, F., Hince, P., Laganiere, J., Rochefort, D., Faivre, L., Samuels, M., Rouleau, G.A. (2008) Mutations in the nervous system--specific HSN2 exon of WNK1 cause hereditary sensory neuropathy type II. J Clin Invest. 118, 2496-2505
    30. Zhang, Y., Yan, Z., Farooq, A., Liu, X., Lu, C., Zhou, M.M. and He, C. (2004) Molecular Basis of Distinct Interactions Between Dok1 PTB Domain and Tyrosinephosphorylated EGF Receptor. J. Mol. Biol. 343, 1147-1155
    31. Zhang, Y., Zhu, W., Wang, Y.G., Liu, X.J., Jiao, L., Liu, X., Zhang, Z.H., Lu, C.L. and He, C. (2006) Interaction of SH2-Bβwith RET is involved in signaling of GDNF-induced neurite outgrowth. J. Cell Sci. 119, 1666-1676
    32. Fu, G., Wang, C., Wang, G.Y., Chen, Y.Z., He, C., Xu, Z.Z. (2006) Detection of constitutive homomeric associations of the integrins Mac-1 subunits by fluorescence resonance energy transfer in living cells. Biochem. Biophys. Res. Commun. 351, 847-852
    33. Erickson, M.G., Alseikhan, B.A., Peterson, B.Z., and Yue, D.T. (2001) Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells. Neuron. 31, 973-985
    34. Erickson, M.G., Liang, H., Mori, M.X., and Yue, D.T. (2003) FRET two-hybrid mapping reveals function and location of L-type Ca2+ channel CaM preassociation. Neuron. 39, 97-107
    35. Xu, X.H., He, C., Zhang, Z.H. and Chen, Y.Z. (2006) MKLP1 requires specific domains for its dendritic targeting. J. Cell Sci. 119, 452-458
    36. Ren, X.D., Kiosses, W.B. and Schwartz, M.A. (1999) Regulation of the smallGTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO. J. 18, 578-585
    37. Verissimo, F. and Jordan, P. (2001) WNK kinases, a novel protein kinase subfamily in multi-cellular organisms. Oncogene. 20, 5562-5569
    38. Fournier, A.E., Takizawa, B.T. and Strittmatter, S.M. (2003) Rho kinase inhibition enhances axonal regeneration in the injured CNS. J. Neurosci. 23,1416-1423
    39. Yamashita, T. and Tohyama, M. (2003) The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nat. Neurosci. 6, 461-467
    40. Barton, W.A., Liu, B.P., Tzvetkova, D., Jeffrey, P.D., Fournier, A.E., Sah, D., Cate, R., Strittmatter, S.M., Nikolov, D.B. (2003) Structure and axon outgrowth inhibitor binding of the Nogo-66 receptor and related proteins. EMBO J. 22, 3291-3302
    41. Wang, K.C., Kim, J.A., Sivasankaran, R., Segal, R., He, Z. (2002) P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature. 420, 74-78
    42. Dechant, G. and Barde, Y.A. (2002) The neurotrophin receptor p75(NTR): novel functions and implications for diseases of the nervous system. Nat. Neurosci. 5, 1131-1136
    43. Barker, P.A. (2004) p75NTR is positively promiscuous: novel partners and new insights. Neuron. 42, 529-533
    44. Chen, Y., Aulia, S., Li, L., Tang, B.L. (2006) AMIGO and friends: an emerging family of brain-enriched, neuronal growth modulating, type I transmembrane proteins with leucine-rich repeats(LRR) and cell adhesion molecule motifs. Brain Res Rev. 51, 265-274
    45. Mosyak, L., Wood, A., Dwyer, B., Buddha, M., Johnson, M., Aulabaugh, A., Zhong, X.T., Presman, E., Benard, S., Kelleher, K., Wilhelm, J., Stahl, M.L., Kriz, R., Gao, Y., Cao, Z.X., Ling, H.P., Pangalos, M.N., Walsh, F.S., Somers, W.S. (2006) The structure of the LINGO-1 ectodomain, a module implicated in CNS repair inhibition. J. Biol. Chem. 281, 36378-36390
    46. Llorens, F., Gil, V., Iraola, S., Carim-Todd, L., Martí, E., Estivill, X., Soriano, E.,Del Rio, J.A., Sumoy, L. (2008) Developmental analysis of Lingo-1/Lern1 protein expression in the mouse brain: interaction of its intracellular domain with Myt1l. Dev Neurobiol. 68, 521-541
    47. Cope, G., Golbang, A. and O’Shaughnessy, K.M. (2005) WNK kinases and the control of blood pressure. Pharmacol. Ther. 106, 221-231
    48. Xu, B.E., Lee, B.H., Min, X., Lenertz, L., Heise, C.J., Stippec, S., Goldsmith, E.J., Cobb, M.H. (2005) WNK1: analysis of protein kinase structure, downstream targets, and potential roles in hypertension. Cell Res. 15, 6-10
    49. Xu, B.E., Stippec, S., Chu, P.Y., Lazrak, A., Li, X.J., Lee, B.H., English, J.M., Ortega, B., Huang, C.L., and Cobb, M.H. (2005) WNK1 activites SGK1 to regulate the epithelial sodium channel. Proc. Natl. Acad. Sci .102,10315-10320.
    50. Anselmo, A.N., Earnest, S., Chen, W., Juang, Y.C., Kim, S.C., Zhao, Y., Cobb, M.H. (2006) Proc. Natl. Acad. Sci . 103, 10883-10888
    51. Wade JB, Fang L, Liu J, Li D, Yang CL, Subramanya AR, Maouyo D, Mason A, Ellison DH, Welling PA. (2006) WNK1 kinase isoform switch regulates renal potassium excretion. Proc. Nat.l Acad. Sci. 103, 8558-8563
    52. Fu, Y., Subramanya, A., Rozansky, D., Cohen, D.M. (2006) WNK kinases influence TRPV4 channel function and localization. Am. J. Physiol. Renal. Physiol. 290, F1305-F1314
    53. Yang, C.L., Zhu, X., Ellison, D.H. (2007) The thiazide-sensitive Na-Cl cotransporter is regulated by a WNK kinase signaling complex. J Clin Invest. 117, 3403-3411
    54. Richardson, C., Rafiqi, F.H., Karlsson, H.K., Moleleki, N., Vandewalle, A., Campbell, D.G., Morrice, N.A., Alessi, D.R. (2008) Activation of the thiazide-sensitive Na+-Cl- cotransporter by the WNK-regulated kinases SPAK and OSR1. J. Cell Sci. 121, 675-684
    55. Kahle, K.T., Rinehart, J., Ring, A., Gimenez, I., Gamba, G., Hebert, S.C., Lifton, R.P. (2006) WNK protein kinases modulate cellular Cl- flux by altering the phosphorylation state of the Na-K-Cl and K-Cl cotransporters. Physiology (Bethesda). 21, 326-335
    56. Xie, J., Craig, L., Cobb, M.H., Huang, C.L. (2006) Pediatr. Nephrol. 21, 1231-1236
    57. Delaloy, C., Hadchouel, J., Imbert-Teboul, M., Clemessy, M., Houot, A.M., Jeunemaitre, X. (2006) Role of with-no-lysine [K] kinases in the pathogenesis of Gordon's syndrome. Am. J. Pathol. 169, 105-118
    58. Xu, B.E., Stippec, S., Lenertz, L., Lee, B.H., Zhang, W., Lee, Y.K. and Cobb, M.H. (2004) WNK1 activates ERK5 by an MEKK2/3-dependent mechanism. J. Biol. Chem. 279, 7826-7831
    59. Min, X., Lee, B.H., Cobb, M.H., Goldsmith, E.J. (2004) Crystal structure of the kinase domain of WNK1, a kinase that causes a hereditary form of hypertension. Structure. 12, 1303-1311
    60. Schmidt, A. and Hall, A. (2002) Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 1,161587-161609
    61. Bokoch, G.M., Bohl, B.P. and Chuang, T.H. (1994) Guanine nucleotide exchange regulates membrane translocation of Rac/Rho GTP-binding proteins J. Biol. Chem. 269, 31674-31679
    62. Olofsson, B. (1999) Rho guanine dissociation inhibitors: Pivotal molecules in cellular signalling. Cell. Signal. 11, 545-554
    63. Zalcman, G., Dorseuil, O., Garcia-Ranea, J.A., Gacon, G., Camonis, J. (1999) RhoGAPs and RhoGDIs, (His)stories of two families. Prog. Mol. Subcell. Biol. 22, 85-113
    64. Lehmann, M., Fournier, A., Selles-Navarro, I., Dergham, P., Sebok, A., Leclerc, N., Tigyi, G., McKerracher, L. (1999) Inactivation of Rho signaling pathway promotes CNS axon regeneration. J Neurosci. 19, 7537-7547
    65. Niederost, B., Oertle, T., Fritsche, J., McKinney, R.A., Bandtlow, C.E. (2002) Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Rac1. J. Neurosci. 22, 10368-10376
    66. Harrington, A.W., Li, Q.M., Tep, C., Park, J.B., He, Z., Yoon, S.O.(2008) The Role of Kalirin9 in p75/Nogo Receptor-mediated RhoA Activation in Cerebellar Granule Neurons. J. Biol. Chem. 283, 24690-24697
    1. Oppenheim, R.W. (1991) Cell death during development of the nervous system. Annu. Rev. Neurosci. 14, 453-501
    2. Henderson, C.E. (1996) Role of neurotrophic factors in neuronal development. Curr. Opin. Neurobiol. 6, 64-70
    3. Pettmann, B., Henderson, C.E. (1998) Neuronal cell death. Neuron 20, 633-647
    4. Kuan, C.Y., Roth, K.A., Flavell, R.A., Rakic, P. (2000) Mechanisms of programmed cell death in the developing brain. Trends Neurosci. 23, 291-297
    5. Huang, E.J., Reichardt, L.F. (2001) Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677-736
    6. Roth, K.A., D’Sa, C. (2001). Apoptosis and brain development. Ment. Retard De . Disabil. Res. Rev. 7, 261-266
    7. Davies, A.M. (2003) Regulation of neuronal survival and death by extracellular signals during development. EMBO. J. 22, 2537-2545
    8. Lossi, L., Merighi, A. (2003) In vivo cellular and molecular mechanisms of neuronal apoptosis in the mammalian CNS. Prog. Neurobiol. 69, 287-312
    9. Yuan J, Lipinski M, Degterev A. (2003) Diversity in the mechanisms of neuronal cell death. Neuron 40, 401-413
    10. Greene, N.D., Copp, A.J. (2005) Mouse models of neural tube defects: investigating preventive mechanisms. Am. J. Med. Genet. C. Semin. Med. Genet. 135, 31-41
    11. Mattson, M.P. (2000) Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol. 1, 120-129
    12. Nijhawan, D., Honarpour, N., Wang, X. (2000) Apoptosis in neural development and disease. Annu. Rev. Neurosci. 23, 73-87
    13. Sastry, P.S., Rao, K. (2000) Apoptosis in the nervous system. J. Neurochem. 74, 1-20
    14. Manning, G., Whyte, D.B., Martinez, R., Hunter, T., Sudarsanam, S. (2002)The protein kinase complement of the human genome. Science 298, 1912-1934
    15. Hanks, S.K., Quinn, A.M., Hunter, T. (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241, 42-52
    16. Holden, S., Cox, J., Raymond, F.L. (2004) Cloning, genomic organization, alternative splicing and expression analysis of the human gene WNK3 (PRKWNK3). Gene 335, 109-119
    17. Verissimo, F. and Jordan, P. (2001) WNK kinases, a novel protein kinase subfamily in multi-cellular organisms. Oncogene. 20, 5562-5569
    18. Kahle, K.T., Rinehart, J., de Los Heros, P., Louvi, A., Meade, P., Vazquez, N., Hebert, S.C., Gamba, G., Gimenez, I., Lifton, R.P. (2005) WNK3 modulates transport of Cl? in and out of cells: implications for control of cell volume and neuronal excitability. Proc. Natl. Acad. Sci. 102, 16783-16788
    19. Verissimo, F., Silva, E., Morris, J.D., Pepperkok, R., Jordan, P. (2006) Protein kinase WNK3 increases cell survival in a caspase-3-dependent pathway. Oncogene 25, 4172-4182
    20. Becker-Hapak, M., McAllister, S.S., and Dowdy, S.F. (2001) TAT-mediated protein transduction into mammalian cells. Methods 24, 247-256
    21. Xu, X.H., He, C., Zhang, Z.H. and Chen, Y.Z. (2006) MKLP1 requires specific domains for its dendritic targeting. J. Cell Sci. 119, 452-458
    22. Tabata, H. and Nakajima, K. (2002)Neurons tend to stop migration and differentiate along the cortical internal plexiform zones in the Reelin signal-deficient mice. J. Neurosci. Res. 69, 723-730
    23. Saito, T. and Nakatsuji, N. (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev. Biol. 240, 237-246
    24. Bai, J., Ramos, R.L., Ackman, J.B., Thomas, A.M., Lee, R.V., LoTurco, J.J. (2003) RNAi reveals doublecortin is required for radial migration in rat neocortex. Nat. Neurosci. 6, 1277-1283
    25. Mi, S., Lee, X., Shao, Z., Thill, G., Ji, B., Relton, J., Levesque, M., Allaire, N., Perrin, S., Sands, B., Crowell, T., Cate, R.L., McCoy, J.M., Pepinsky, R.B. (2004) LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat.Neurosci. 7, 221-228
    26. Llorens, F., Gil, V., Iraola, S., Carim-Todd, L., Martí, E., Estivill, X., Soriano, E., Del Rio, J.A., Sumoy, L. (2008) Developmental analysis of Lingo-1/Lern1 protein expression in the mouse brain: interaction of its intracellular domain with Myt1l. Dev. Neurobiol. 68, 521-541
    27. Zhang, Z.H., Xu, X.H., Zhang, Y., Zhou, J.F., Yu, Z.W., He, C. (2009) LINGO-1 interacts with WNK1 to regulate Nogo-induced inhibition of neurite extension. J. Biol. Chem. 284, 15717-15728
    28. Bonni, A., Brunet, A., West, A.E., Datta, S.R., Takasu, M.A., Greenberg, M.E. (1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286, 1358-1362
    29. Mi, S., Miller, R.H., Lee, X., Scott, M.L., Shulag-Morskaya, S., Shao, Z., Chang, J., Thill, G., Levesque, M., Zhang, M., Hession, C., Sah, D., Trapp, B., He, Z., Jung, V., McCoy, J.M., Pepinsky, R.B. (2005) LINGO-1 negatively regulates myelination by oligodendrocytes. Nat. Neurosci. 8, 745-751
    30. Mi, S., Hu, B., Hahm, K., Luo, Y., Kam Hui, E.S., Yuan, Q., Wong, W.M., Wang, L., Su, H., Chu, T.H., Guo, J., Zhang, W., So, K.F., Pepinsky, B., Shao, Z., Graff, C., Garber, E., Jung, V., Wu, E.X., Wu, W. (2007) LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat. Med. 13, 1228-1233
    31. Mi, S., Sandrock, A., Miller, R.H. (2008) LINGO-1 and its role in CNS repair. Int J. Biochem. Cell Biol. 40, 1971-1978
    32. Xu, B.E., Min, X., Stippec, S., Lee, B.H., Goldsmith, E.J., Cobb, M.H. (2002) Regulation of WNK1 by an autoinhibitory domain and autophosphorylation. J. Biol. Chem. 277, 48456-48462.
    33. Lenertz, L.Y., Lee, B.H., Min, X., Xu, B.E., Wedin, K., Earnest, S., Goldsmith, E.J., Cobb, M.H. (2005) Properties of WNK1 and implications for other family members. J. Biol. Chem. 280, 26653-26658
    34. Yang, C.L., Angell, J., Mitchell, R., Ellison, D.H. (2003) WNK kinases regulate thiazidesensitive Na-Cl cotransport. J. Clin. Invest. 111, 1039-1045
    35. Xu, B.E., Lee, B.H., Min, X., Lenertz, L., Heise, C.J., Stippec, S., Goldsmith, E.J., Cobb, M.H. (2005a) WNK1: analysis of protein kinase structure, downstream targets, and potential roles in hypertension. Cell Res. 15, 6-10
    36. Xu, B.E., Stippec, S., Chu, P.Y., Lazrak, A., Li, X.J., Lee, B.H.,, English, J.M., Ortega, B., Huang, C.L., and Cobb, M.H. (2005b) WNK1 activites SGK1 to regulate the epithelial sodium channel. Proc. Natl. Acad. Sci. 102, 10315-10320
    37. de Los Heros, P., Kahle, K.T., Rinehart, J., Bobadilla, N.A., Vázquez, N., San Cristobal, P., Mount, D.B., Lifton, R.P., Hebert, S.C., Gamba, G. (2006) WNK3 bypasses the tonicity requirement for K-Cl cotransporter activation via a phosphatase-dependent pathway. Proc. Natl. Acad. Sci. 103, 1976-1981
    38. Xu, B., English, J.M., Wilsbacher, J.L., Stippec, S., Goldsmith, E.J., Cobb, M.H. (2000) WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. J. Biol. Chem. 275, 16795-16801
    39. Rinehart, J., Kahle, K.T., de Los Heros, P., Vazquez, N., Meade, P., Wilson, F.H., Hebert, S.C., Gimenez, I., Gamba, G., Lifton, R.P. (2005) WNK3 kinase is a positive regulator of NKCC2 and NCC, renal cation-Cl?cotransporters required for normal blood pressure homeostasis. Proc. Natl. Acad. Sci. 102,16777-16782
    40. Xu, B.E., Stippec, S., Lenertz, L., Lee, B.H., Zhang, W., Lee, Y.K., Cobb, M.H. (2004) WNK1 activates ERK5 by an MEKK2/3-dependent mechanism. J. Biol. Chem. 279, 7826-7831
    41. Liu, X.Z., Xu, X.M., Hu, R., Du, C., Zhang, S.X., McDonald, J.W., Dong, H.X., Wu, Y.J., Fan, G.S., Jacquin, M.F., Hsu, C.Y., Choi, D.W. (1997) Neuronal and glial apoptosis after traumatic spinal cord injury. J. Neurosci. 17, 5395-5406
    42. Springer, J.E., Azbill, R.D., Knapp, P.E. (1999) Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury. Nature 5, 943-946
    43. Li, M., Ona, V.O., Chen, M., Kaul, M., Tenneti, L., Zhang, X., Steig, P.E., Lipton, S.A., Friedlander, R.M. (2000) Functional role and therapeutic implications of neuronal caspase-1 and caspase-3 in a mouse model of traumatic spinal cord injury. Neuroscience 99, 333-342
    44. Casha, S., Yu, W.R., Fehlings, M.,G. (2001) Oligodendroglial apoptosis occursalong degenerating axons and is associated with Fas and p75 expression following spinal cord injury in the rats. Neuroscience 103, 203-218
    45. Beattie, M.S., Hermann, G.E., Rogers, S.C., Bresnahan, J.C. (2002) Cell death in models of spinal cord injury. Prog. Brain Res. 137, 37-47
    46. Ji, B., Li, M., Wu, W.T., Yick, L.W., Lee, X., Shao, Z., Wang, J., So, K.F., McCoy, J.M., Pepinsky, R.B., Mi, S., Relton, J.K. (2006) LINGO-1 antagonist promotes functional recovery and axonal sprouting after spinal cord injury. Mol. Cell Neurosci. 33, 311-320
    47. Filbin, M.T. (2003) Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat. Neurosci. Rev. 4, 1-11
    48. Park, J.B., Yiu, G., Kaneko, S., Wang, J., Chang, J., He, X.L., Garcia, K.C., He, Z. (2005). A TNF receptor family member, TROY, is a coreceptor with Nogo receptor in mediating the inhibitory activity of myelin inhibitors. Neuron 45, 345-351
    49. Shao, Z., Browning, J.L., Lee, X., Scott, M.L., Shulga-Morskaya, S., Allaire, N., Thill, G., Levesque, M., Sah, D., McCoy, J.M., Murray, B., Jung, V., Pepinsky, R.B., Mi, S. (2005)TAJ/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor 1 and regulates axonal regeneration. Neuron 45, 353-359
    50. Inoue, H., Lin, L., Lee, X., Shao, Z., Mendes, S., Snodgrass-Belt, P., Sweigard, H., Engber, T., Pepinsky, B., Yang, L., Beal, M.F., Mi, S., Isacson, O. (2007) Inhibition of the leucine-rich repeat protein LINGO-1 enhances survival, structure, and function of dopaminergic neurons in Parkinson’s disease models. Proc. Natl. Acad. Sci. 36, 14430-14435
    51. Fu, Q.L., Hu, B., Wu, W., Pepinsky, R.B., Mi, S., So, K.F. (2008) Blocking LINGO-1 function promotes retinal ganglion cell survival following ocular hypertension and optic nerve transection. Invest. Ophthalmol. Vis. Sci. 49, 975-986
    52. Zhao, X.H., Jin, W.L., Wu, J., Mi, S., Ju, G. (2008) Inactivation of glycogen synthase kinase-3beta and up-regulation of LINGO-1 are involved in LINGO-1 antagonist regulated survival of cerebellar granular neurons. Cell Mol. Neurobiol.28, 727-735
    53. Brunet, A., Datta, S.R., Greenberg, M.E. (2001) Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr. Opin. Neurobiol. 11, 297-305
    54. D’Astous, M., Mendez, P., Morissette, M., Garcia-Segura, L.M., Di Paolo, T. (2006) Implication of the phosphatidylinositol-3 kinase/protein kinase B signaling pathway in the neuroprotective effect of estradiol in the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice. Mol. Pharmacol. 69, 1492-1498
    55. Ries, V., Henchcliffe, C., Kareva, T., Rzhetskaya, M., Bland, R., During, M.J., Kholodilov, N., Burke, R.E. (2006) Oncoprotein Akt/PKB induces trophic effects in murine models of Parkinson's disease. Proc. Natl. Acad. Sci. 103, 18757-18762
    56. Datta, S.R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y., Greenberg, M.E. (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231-241
    57. Wang, X., Bauer, J.H., Li, Y., Shao, Z., Zetoune, F.S., Cattaneo, E., Vincen, C. (2001) Characterization of a p75(NTR) apoptotic signaling pathway using a novel cellular model. J. Biol. Chem. 276, 33812-33820
    58. Dubreuil, C.I., Winton, M.J., McKerracher, L. (2003) Rho activation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system. J. Cell Biol. 162, 233-243
    59. Ashkenazi, A., Dixit, V.M. (1998)Death receptors: signaling and modulation. Science 281, 1305-1308
    60. Schultz, D.R., Harrington, W.J. Jr. (2003) Apoptosis: programmed cell death at a molecular level. Semin Arthritis Rheum. 32, 345-369
    61. Coulson, E.J., Reid, K., Shipham, K.M., Morley, S., Kilpatrick, T.J., Bartlett, P.F. (2004) The role of neurotransmission and the Chopper domain in p75 neurotrophin receptor death signaling. Prog. Brain Res. 146, 41-62
    62. Frade, J.M. (2000) NRAGE and the cycling side of the neurotrophin receptor p75. Trends Neurosci. 23, 591-592
    63. Roux, P.P., and Barker, P. (2002) Neurotrophin signaling through the p75 neurotrophin receptor. Prog. Neurobiol. 67, 203-233
    64. Ferri, K.F., Kroemer, G. (2001) Organelle-specific initiation of cell death pathways. Nat. Cell Biol. 3, E255-E263
    65. Waterhouse, N.J., Finucane, D.M., Green, D.R., Elce, J.S., Kumar, S., Alnemri, E.S., Litwack, G., Khanna, K., Lavin, M.F., Watters, D.J. (1998) Calpain activation is upstream of caspases in radiation-induced apoptosis. Cell. Death Differ. 5, 1051-1061
    66. Guicciardi, M.E., Deussing, J., Miyoshi, H., Bronk, S.F., Svingen, P.A., Peters, C., Kaufmann, S.H., Gores, G.J. (2000) Cathepsin B contributes to TNF-alpha- mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J. Clin. Invest. 106, 1127-1137
    67. Johnson, D.E. (2000) Noncaspase proteases in apoptosis. Leukemia 14, 1695-1703
    68. Chu, G.K., Yu, W., Fehlings, M.G. (2007) The p75 neurotrophin receptor is essential for neuronal cell survival and improvement of functional recovery after spinal cord injury. Neuroscience 148, 668-682
    69. Eby, M.T., Jasmin, A., Kumar, A., Sharma, K., Chaudhary, P.M. (2000) TAJ, a novel member of the tumor necrosis factor receptor family, activates the c-Jun N-terminal kinase pathway and mediates caspase-independent cell death. J. Biol. Chem. 275,15336-15342
    70. Florez-McClure, M.L., Linseman, D.A., Chu, C.T., Barker, P.A., Bouchard, R.J., Le, S.S., Laessig, T.A., Heidenreich, K.A. (2004) The p75 neurotrophin receptor can induce autophagy and death of cerebellar Purkinje neurons. J Neurosci 24, 4498-4509
    1. Hanks, S.K., Quinn, A.M., and Hunter, T. (1988) Science 241, 42-52
    2. Plowman, G.D., Sudarsanam, S., Bingham, J., Whyte, D., and Hunter, T. (1999) Proc. Natl. Acad. Sci. 96, 13603-13610
    3. Taylor, S.S., and Radzio-Andzelm, E. (1994) Structure 2, 345-355
    4. Knighton, D.R., Zheng, J., Ten Eyck, L.F., Ashford, V.A., Xuong, N.H., Taylor, S.S., and Sowadski, J.M. (1991) Science 253, 407-413
    5. Knighton, D.R., Zheng, J., Ten Eyck, L.F., Xuong, N.-H., Taylor, S.S., and Sowadski, J.M. (1991) Science 253, 414-429
    6. Taylor, S.S., Kerlavage, A.R., and Zoller, M.J. (1983) Methods Enzymol. 99, 140-153
    7. Gibbs, C.S., and Zoller, M.J. (1991) J. Biol. Chem. 266, 8923-8931
    8. Barker, W.C., and Dayhoff, M.O. (1982) Proc. Natl. Acad. Sci. 79, 2836-2839
    9. Zoller, M.J., Nelson, N.C., and Taylor, S.S. (1981) J. Biol. Chem. 256, 10837-10842
    10. Robinson, M.J., Harkins, P.C., Zhang, J., Baer, R., Haycock, J.W., Cobb,M.H., and Goldsmith, E.J. (1995) Biochemistry 35, 5641-5646
    11. Seger, R., Seger, D., Lozeman, F.J., Ahn, N.G., Graves, L.M., Campbell, J.S., Ericsson, L., Harrylock, M., Jensen, A.M., and Krebs, E.G. (1992) J. Biol.Chem. 267, 25628-25631
    12. Crews, C.M., and Erikson, R.L. 1992 Proc. Natl. Acad. Sci. 89, 8205-8209
    13. English, J.M., Vanderbilt, C.A., Xu, S., Marcus, S., and Cobb, M.H. (1995) J. Biol. Chem. 270, 28897-28902
    14. Verissimo, F. and Jordan, P. (2001) Oncogene 20, 5562-5569
    15. Wilson, F.H., Disse-Nicodeme, S., Choate, K.A., Ishikawa, K., Nelson-Willams, C., Desitter, I., Gunel, M., Milford, D.V., Lipkin, G.W. and Achard, J.M. (2001) Science 293, 1107–1112
    16. Holden, S., Cox, J., Raymond, F.L. (2004) Gene 335, 109-119
    17. Taylor, S.S., Radzio-Andzelm, E. and Hunter, T. (1995) FASEB J. 9, 1255-1266
    18. Xu, B., English, J.M., Wilsbacher, J.L., Stippec, S., Goldsmith, E.J., Cobb, M.H. (2000) J. Biol. Chem. 275, 16795–16780
    19. Subramanya, A.R., Yang, C.L., Zhu, X., and Ellison, D.H. (2005) Am J Physiol Renal Physiol 289 , F619–F624
    20. Levy, D., DeStefano, A.L., Larson, M.G., O’Donnell, C.J., Lifton, R.P., et al. (2000) Hypertension 36, 477-83
    21. Julier, C., Delepine, M., Keavney, B.,Terwilliger, J., Davis, S., et al. (1997) Hum. Mol. Genet. 6, 2077-2085
    22. Baima, J., Nicolaou, M., Schwart, F., DeStefano, A.L., Manolis, A., et al. (1999) Hypertension 34, 4-7
    23. Hong, C., Moorefield, K.S., Jun, P., Aldape, K.D., Kharbanda, S., Phillips, H.S., Costello, J.F. (2007) Proc. Natl. Acad. Sci. 104 , 10974–10979
    24. Cox, J.J., Holden, S.T., Dee, S., Burbridge, J.I., Raymond, F.L. (2003) J. Med. Genet. 40, 169-174
    25. Xu, B.E., Min, X., Stippec, S., Lee, B.H., Goldsmith, E.J., Cobb, M.H. (2002) J. Biol. Chem. 277, 48456- 48462
    26. Kahle, K.T., Wilson, F.H., Leng, Q., Lalioti, M.D., O’Connell, A.D., Dong, K., Rapson, A.K., MacGregor, G.G., Giebisch, G., Hebert, S.C., Lifton, R.P. (2003) Genet. 35, 372-376
    27. Xu, B.E., Lee, B.H., Min, X., Lenertz, L., Heise, C.J., Stippec, S., Goldsmith, E.J., Cobb, M.H. (2005) Cell Res. 15, 6-10
    28. Reilly, R.F., Ellison, D.H. (2000) Physiol. Rev. 80, 277-313
    29. Zambrowicz, B.P., Abuin, A., Ramirez-Solis, R., et al. (2003) Proc. Natl. Acad. Sci. 100, 14109-14114
    30. Xu, B.E., Stippec, S., Lazrak, A., Huang, C.L. Cobb, M.H. (2005) J. Biol. Chem. 280, 34218-23
    31. Shekarabi, M., Girard, N., Rivière, J.B., Dion, P., Houle, M., Toulouse, A., afrenière, R.G., Vercauteren, F., Hince, P., Laganiere, J., Rochefort, D., Faivre, L., Samuels, M., Rouleau, G.A. (2008) J .Clin.Invest. 118, 2496-2505
    32. Xu, B., Stippec, S., Lenertz, L., et al. (2004) J.Biol.Chem. 279, 7826-31
    33. Lee, B.H., Chen, W., Stippec, S., Cobb, M.H. (2007) J. Biol. Chem. 282,17985-96
    34. Kahle, K.T., Rinehart, J., de Los Heros, P., Louvi, A., Meade, P., et al. (2005) Proc. Natl. Acad. Sci. 102, 16783-88
    35. Kahle, K.T., Ring, A.M., and Lifton, R.P. (2008)Annu. Rev. Physiol. 70, 11.1–11.27
    36. Davies, H., Hunter, C., Smith, R., Stephens, P., Greenman, C., Bignell, G., Teague, J., Butler, A., Edkins, S., Stevens, C., et al. (2005) Cancer Res 65,7591-7595.
    37. Sjoblom, T., Jones, S., Wood, L.D., Parsons, D.W., Lin, J., Barber, T., Mandelker, D., Leary, R.J., Ptak, J., Silliman, N., et al. (2006) Science 314, 268-274
    38. Moniz, S., Veríssimo, F., Matos, P., Braz?o, R., Silva, E., Kotelevets, L., Chastre, E., Gespach, C., Jordan, P. (2007) Oncogene 26, 6071-6081