东秦岭金堆城斑岩钼矿床地质地球化学特征与成矿动力学背景
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在系统收集和分析前人对东秦岭基础地质和矿床地质勘察资料的基础上,针对东秦岭钼矿带前人研究中主要存在的关键性问题,采用矿床地球化学、岩石学、岩石地球化学、锆石U-Pb年代学、同位素地球化学及流体包裹体地球化学等多学科研究方法和手段,重点剖析了中生代花岗岩的成因和金堆城钼矿床地质地球化学特征,并建立成岩成矿模式。
     东秦岭金堆城花岗斑岩与华山、合峪及老牛山岩体具有相似的地球化学特征,均为高钾钙碱性系列花岗岩,富硅、铝和全碱,具有某些Ⅰ型花岗岩特征,都富集LILE,亏损HFSE,具有低的Yb、Y含量(Y<18μg/g,Yb<2μg/g),暗示其源区为下地壳,并且原始岩浆经历了角闪石+斜长石相的分离结晶或在源区残留。
     本文利用LA-ICP-MS锆石U-Pb测年方法获得华山岩体、合峪岩体、老牛山岩体及金堆城花岗斑岩的年龄分别为133.8±1.1Ma、134.5±1.5Ma、146.1±4.1Ma和141.5±1.5Ma。上述四个岩体都具有较低的I_(Sr)、负的ε_(Nd)(t)和ε_(Hf)(t)值及贫放射成因铅的特征;Hf二阶段模式年龄集中在2.1~1.7Ga之间,说明四个岩体都是由东秦岭在2.1~1.7Ga左右的增生地壳熔融形成。不同的是金堆城花岗斑岩的锆石Hf同位素组成不均一,有向地幔演化的趋势,暗示着金堆城花岗斑岩在形成过程中可能加入了地幔物质。
     金堆城矿床元素地球化学研究表明,矿石和黄铁矿稀土元素配分曲线与斑岩相似而与围岩不同,围岩在蚀变和矿化过程中,成矿元素Mo由与斑岩同源的流体提供并加入到围岩中;矿床硫、碳、铅、氢-氧及氦-氩同位素地球化学研究表明,成矿流体早期主要来自深部岩浆,晚期则有大气降水的加入;流体包裹体研究也表明了流体成矿系统的温度和盐度随成矿作用进行而逐渐降低,显示了成矿物质早期来自岩浆,晚期则有大气降水加入。
     东秦岭钼矿带,成岩成矿为同一地球动力学背景下产生,都与东秦岭在中生代的陆内A型俯冲有关,在早白垩世大约140Ma左右,秦岭造山带发生大范围的伸展,早期的碰撞或逆冲推覆使得下地壳增厚,在向伸展机制转换的过程中,下地壳处于强烈的减压增温条件下,发生部分熔融,形成碰撞改造型花岗岩基,而在断裂带附近则有地幔物质的上涌,加热下地壳发生部分熔融并与底侵的基性岩浆混合,形成同熔型花岗斑岩及斑岩型矿床。
The East Qinling Mo deposit belt located in southern margin of the North China Craton which with a great amount of Mesozoic granites.The detailed geological and geochemical characteristic as well as LA-ICP-MS zircon U-Pb dating of the Jinduicheng super large porphyry Mo deposit,Huashan pluton,Laoniushan pluton,and the Heyu pluton have been carried out in this thesis.
     The Jinduicheng granitic porphyry,Huashan pluton,Heyu pluton as well as the Laoniushan pluton have the similar geochemical features.They are all belong to high K cal-alkaline granites with high SiO_2,Al_2O_3 and K_2O+Na_2O contents.These plutons are I-type granites which enriched in large ion lithophile elements(LILE),depleted in high field strength elements(HFSE),with obvious fractionation between LREE and HREE,and low Y,Yb contents(Y<18μg/g,Yb<2μg/g).The characteristics mentioned above indicate that, the granites were formed by partial melting of the thickened lower crust with the fractionation or residence of Plagioclase+hornblende assemblage.
     The LA-ICP-MS zircon U-Pb ages of the Jinduicheng granitic porphyry,Huashan pluton, Laoniushan pluton and the Heyu pluton are 141.5±1.5Ma,133.8±1.1Ma,146.1±4.1Ma, 134.5±1.5Ma,respectively.They all have low I_(Sr),negativeε_(Nd)(t) andε_(Hf)(t) values,and depleted in radiogenic lead.Zircon Hf isotopic characteristics show that,they are derived from the accretionary crust formed in about 2.0Ga~1.8Ga.But the inhomogenous Hf isotopic compositions of the Jinduicheng granitic porphyry suggest that the primitive magma has been mixed by the mantle materials.
     The ores and pyrites share the similar Chondrite-normalized REE patterns with the granitic porphyry in the Jinduicheng Mo deposit.Mo has consistently added to the country rocks in the processes of alteration and mineralization.All of the characteristics above indicate that the ore-bearing hydrothermal fluids are derived from the porphyry but not the country rocks.The lead,sulfur,carbon,hydrogen-oxygen and Helium-argon isotopic characteristics show that,the metallogenetic materiels and fluids of Jinduicheng deposit have the same sources with the porphyry,which were all derived from the mantle in the early-stage with addition of the meteoric water in the late-stage.
     The diagenesis and mineralization of the East Qinling Mo deposits occurred in the same dynamic setting.The formation of the plutons is associated with A-type subduction of the Qinling Orogen in Mesozoic.The granites and Mo deposits were formed in the transition stage geodynamic setting from compression to extension in Jurassic-Cretaceous(about 140Ma).During this process,the conditions of decompression and geothermal increasing and result in partial melting of the thickend lower crust(2.1Ga~1.7Ga) in the North China Craton. The magma generated by the partial melting formed the collisional transformation-type granites.But nearby the fault,the basaltic magma derived from asthenospher upwelling and underplating induced the partial melting of the lower crust(2.1Ga~1.7Ga),the magma formed by the partial melting were mixing with the basaltic magma and forming the Jinduicheng granitic porphyry and porphyry Mo deposit.
引文
[1]Amelin Y.,Lee D.C.and Halliday A.N.Early-middle Arehean crustal evolution deduced from Lu-Hfand U-Pb isotopic studies of single zircon graius[J].Geochimica et Cosmochimica Acta,2000,64:4205-4225
    [2]Ballentine C.J.and Bumard P.G.Production,release and transport of noble gases in the continental crust[J].Review of Mineral.Geochemistry,2002,47,481-538
    [3]Barbarin B.A review of the relationship between granitoids types,their origins and their geodynamic environments[J].Lithos,1999,46:605-626
    [4]Barry T.L.,Pearce J.A.,Lear P.T.,et al.,Hf isotope evidence for selective mobility of high-field-strength element in a subduction setting:South Sandwich Islands[J].Earth and Planetary Science Letters,2006,223-244
    [5]Batchlor R.B.and Bowden P.Petrogenetic interpretation of granitiod rock series using multicationic parameters[J].Chemical Geology,1985,48:43-55
    [6]Bea F.,Pereirab M.D.Strohe A.Mineral/leucosome trace.element partitioning in a peraluminous migmatite(a laser ablation-ICP-MS study)[J].Chemical Geology,1994,117(1-4):291-312
    [7]Blichert-Toft J.and Albarede E.The Lu-Hf geochemistry of chondrites and evolution of the mantle-crust system[J].Earth Planetary Science Letters,1997,148:243-258
    [8]Bonin B.Do coeval marie and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting,mantle and crustal sources? A review[J].Lithos,2004,78(1/2):1-24
    [9]Bozzo A.T.,Chen J.R.Barduhn A.J.The properties of hydrates of chlorine and carbon dioxide[A].In:Delyannis A and Delyannis E,eds.Fourth International Symposium on Fresh Water the Sea[C].1973,3(c):437-451
    [10]Brown P.E.and Lamb W.M.p-v-t properties of fluids in the system H_2O±CO_2+NaCl:New graphic presentations and implications for fluid inclusion studies[J].Geoehimica Cosmochimical Acta,1989,53:1209-1221
    [11]Bumard P.G.,Hu R.,Turner G.,et al.Mantle,crustal and atmospheric noble gases in Ailaoshan Gold deposits,Yunnan Province,China[J].Geochimica et Cosmoehimica Acta,1999,63:1595-1604
    [12]Cail T.L.and Cline J.S.Alteration associated with gold deposition at the getchell Carlin-type gold deposit,North-Central Nevada[J].Economic Geology,2001,96:1343-1359
    [13]Candela P.A.and Holland H.D.A mass transfer model for copper and molybdenum in magmatic hydrothermal systems:The origin of porphyry-type ore deposits[J].Economic Geology,1986,81(1):1-19
    [14]Chappell B.W.Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites[J].Lithos,1999,46:535-551
    [15]Chaussidon M.,Lorand.J.P.Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege(North.eastern Pyrenees,France):An ion microprobe study[J].Geochimica et Cosmochimica Acta,1990,54:2835-2846.
    [16]Chen Y.J.,Li C.,Zhang J.,et al.Sr and O isotopic characteristics of porphyries in the Qinling molybdenum deposit belt and their implication to genetic mechanism and type [J]. Science in China (Ser. D), 2000,43(Supp.): 82-94
    [17] Chu N. C, Taylor R. N., Chavagnac V, et al. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections[J]. J. Anal. At. Spectrom, 2002,17: 1567-1574
    [18] Clayton R. N., O'Neil J. R., Mayeda T. K. Oxygen isotope exchange between quartz and water [J]. Geophysics Research Letters, 1972,7: 3055-3067.
    [19] Coplen T. B., Kendall C, Hopple J. intercomparison of stable isotope reference samples [J]. Nature, 1983,302: 236-238
    [20] Diwu C. R., Sun Y., Lin C. L., et al. Zircon U-Pb ages and Hf isotopes and their geological significance of Yiyang TTG gneisses from Henan province, China[J]. Acta Petrologica Sinica, 2007, 23(2): 253-262
    [21] Du A. D., Wu S. Q., Sun D. Z., et al. Preparation and Certification of Re-Os Dating Reference Materials: Molybdenite HLP and JDC [J]. Geostandard and Geoanalytical Research, 2004, 28 (1): 41-52
    [22] Dunai T. J., Baur H. Helium, neon, argon systematic of the European subcontinental mantle: implications for its geochemical evolution[J]. Geochim Cosmochim Acta, 1995, 59(13): 2767-2783
    [23] Elhlou S, Belousova E, Griffin W. L, et al. Trace Element and Isotopic Composition of GJ Red Zircon Standard by Laser Ablation[J]. Geocheimica et Cosmochimica Acta, 2006, 70 (Supp. 1), A158,doi:10.1016/j.gca.2006.06.1383
    [24] Finlow-Bates T., and Stumpfl E. F. The behaviour of so-called immobile elements in hydrothermal altered rocks associated with volcanogenic submarine exhalative ore deposits[J]. Mineralium Deposita, 1981,16:319-328
    [25] Gao S., Liu X. M., Yuan H. L. Determination of forty two major and trace element in USGS and NIST SRM glasses by laser ablation inducitely coupled plasma-mass spectrometry[J]. Geostands Newsletter, 2002,26(2): 181-195
    [26] Gebauer D. A. P-T-t path for an(Ultra-?) high-pressure ultramafic-Mafic rock-association and its felsic country- rocks based on SHRIMP- dating of magmatic and metamorphic zircon domains. Example: Alpe Arami (Central Swiss Alps)[C]. In: Earth Processes Reading the Isotopic Code, Geophysical Monograph, 1996, 95: 307-329
    
    [27] Gill, J. B. 1981. Orogenic Andesites and Plate Tectonics[M]. Springer-Verlag, Berlin. 1 -358.
    [28] Govindaraju G 1994. Compilation of working values and sample description for 383 geostandards[J]. Geostandards Newslett, 18: 1-158
    [29] Graham D. W. Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts: Characterization of mantle source reservoirs[A]. In: Porcelli, et al. Noble Gases in Geochemistry and Cosmochemistry[C]. Reviews in Mineralogy & Geochemistry, Washington: Washington Press, 2002, 247-317
    [30] Grant J. A. The isocon diagram: A simple solution to Gresens's equation for metasomatic alteration [J].Economic Geology,1986,81:1976-1982
    [31]Green M.G,Sylvester P.J.,Buick R.Growth and recycling of early Archaean continental crust:geochemical evidence from the Coonterunah and Warrawoona Groups,Pilbara Craton,Australia[J].Tectonophysics,2000,322,69-88
    [32]Griffin W.L.,Belousova E.A.Shee S.R.Crustal evolution in the northern Yilam Craton:U-Pb and Hf-isotope evidence from detrital zircons[J].Precambrian Research,2004,131(3-4):231-282
    [33]Griffin W.L.,Pearson N.J.,Belousova E.et al.The Hf isotope composition of cratonic mantle:LAM-MC- ICPMS analyses of zircon megacrysts in kimbedites[J].Geochimica et Cosmochimica Acta,2000,64:133-147
    [34]Griffin W.L.,Wang X.,Jackson S.E.,et al.Zircon chemistry and magma mixing,SE China:In-situ analysis of Hf isotopes,Tonglu and Ping tan igneous complexes[J],lithos,2002,61:237-269
    [35]Hall D.L.,Sterner S.M.Bodnar R.J.Freezing point depression of NaC1-KC1-H20 solutions[J].Economic Geology,1988,83:197-202
    [36]Hart Y.G.,Zhang S.H.,Franco P.et al.Evolution of the Mesozoic granite in the Xiong'ershan-Waifangshan region,Western Henan Province,China,and its tectonic implication[J].Acta Geologica Sinica,2007,81(2):253-265
    [37]Hawkesworth C.J.,Gallagher K.,Hergt J.M.et al.Mantle and slab contributions in arc magmas[J].Annual Review of Earth and Planetary Sciences,1993,21:175-204
    [38]Hawkesworth C.J.,Hergt J.M.,Ellam R.M.et al.Element fluxes associated with subduction related magmatism[J].Philosophical Transactions of the Royal Society of London 1991,335,393-405
    [39]He Y.H.,Zhao G.C.,Sun M.et al.Geochemistry,istope systematics and petrogenesis of the volcanic rocks in the Zhongtiao Mountain:An alternative interpretation for the evolution of the southern margin of the North China Craton[J].lithos,2007,102(1-2):158-178
    [40]Henderson P.Rare earth element geochemistry,Developments in Geochemistry[J].Elsevier,Amsterdam,1984.317-342
    [41]Hidaka H.,Shimizu H.Adachi M.U-Pb geochronology and REE geochemistry of zircons from Palaeoproterozoic paragneiss clasts in the Mesozoic Kamiaso conglomerate,central Japan:Evidence for an Archean provenance[J].Chemical Geology,2002,187:278-293
    [42]Hidaka H.,Shimizu H.Adachi M.U-Pb geochronology and REE geochemistry of zircons from Palaeoproterozoic paragneiss clasts in the Mesozoic Kamiaso conglomerate,central Japan:Evidence for an Archean provenance[J].Chemical Geology,2002,187:278-293
    [43]Hofstra A.H.,Geology and genesis of the Carlin-type gold deposits in the Jerritt Canyon district,Nevada:Boulder[D].PhD thesis,University of Colorado,1994,1-719
    [44]Hu R.Z.,Bumard P.G.,Bi X.W.,et al.Helium and argon isotope geochemistry of alkaline intrusion- associated gold and copper deposits along the Red River-Jinshajiang fault belt,SW China[J].Chemical Geology,2004,203:305-317
    [45]Hu R.Z.,Bumard P.G.,Turner G.,Bi X.W.,et al.,Helium and argon isotope systematics in fluid inclusions of Machangqing copper deposit in west Yurman province,China[J].Chemical Geology, 1998,146:55-63
    [46]Kendrick M.A.,Burgess R.,Pattrick,R.A.D.,et al.Fluid inclusion noble gas and halogen evidence on the origin of Cu porphyry mineralizing fluids[J].Geochimica et Cosmochimica Acta.2001,65:2651-2668
    [47]Kinny P.D.and Mass R.Lu-Hf and Sm-Nd isotope systems in zircon[A].In:Hanchar J.M.and Hoskin P.W.O.(eds.),Zircon[C].Reviews in Mineralogy Geochemistry,2003,53:327-341
    [48]Knudsen T.L.,Griffin W.L.,Hartz E.H.,et al.In-situ hafnium and lead isotope analyses of detrital zircons from the Devonian sedimentary basin of NE Greenland:arecord of repeated crustal reworking[J].Contributions to Mineralogy and Petrology,2001,141:83-94
    [49]Kroner A.,Compston W.,Zhang G.W.,et al.Age and tectonic setting of late Archaean greenstone-gneisses terrain in Henan Province,China,as revealed by single-grain zircon dating[J].Geology,1988,16:211-215
    [50]Liegeios L.P.1998.Preface-Some words on the post-collisional magrnatism[J].Lithos,45:ⅩⅤ-ⅩⅦ
    [51]Ludwig K R.Isoplot 3.0-A geochronological toolkit for Micro-soft Excel[J].Berkeley Geochronology Center,Special Publication,2003,(4):1-70
    [52]Mamyrin B.A.,Tolskhin I.N.Helium isotopes in the nature[J].Amsterdam:Elsevier,1984,237
    [53]Manikyamba C.,Naqvi S.M.,Mohan M.R.,et al.2004.Gold mineralization and alteration of Penakacherla schist belt,India,constraints on Archaean subduction and fluid processes[J].Ore Geology Reviews,24,199-227
    [54]Mao J.W.,Xie G.Q.,Bierlein F.,et al.Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt[J].Geochimica et Cosmochimica Acta,2008,72." 4607-4626
    [55]McCuaig T.C.,Kerrich R.,Groves D.I.,et al.The nature and dimensions of regional and local gold-related hydrothermal alteration in tholeiitic metabasalts in the Norseman gold fields:the missing link in a crustal continuum of gold deposits?[J].Mineralium Deposita.1993,28,420-435
    [56]Meng Q.R.and Zhang G.W.Geologic framework and tectonic evolution of the Qinling orogen,central China[J].Tectonophysics,2000,323:183-196
    [57]M(o|¨)ller A.,O'Brien P.J.,Kennedy A.,et al.Linking growth episodes of zircon and metamorphic textures to zircon chemistry:An example from the ultrahigh-temperature granulites of Rogaland (SW Norway)[J].Geological Society,London,Special Publications,2003,220:65-81
    [58]Mungall J.E.Roasting the mantle:Slab melting and the genesis of major Au and Au-rich Cu deposit [J].Geology,2002,30(10):915-918
    [59]Norman M.D.,Pearson N.J.,Sharma A.,et al.Quantitative analysis of trace elements in geological materials by laser ablation ICPMS..Instrumental operating conditions and calibration values of NIST glasses[J].Geostandards Newsletter,1996,20:247-261
    [60]O'Neil J.R.,Clayton R.N,Mayeda T.K.Oxygen isotope fractionation in divalent metal carbonates[J].Journal of Chemical Physics,1969,51:5547-5558
    [61]Ohmoto H.Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J].Economic Geology,1972,67:551-578
    [62]Pearce J.A.and Cann J.R.,Tectonic setting of basaltic volcanic rocks determined using trace element analysis[J].Earth and planetary Science Letters,1973,19:290-300
    [63]Pearce J.A.Sources and settings of granitic rocks[J].Episodes,1996,19:120-125
    [64]Pearce J.A.,Kempton P.D.,Nowell G.M.,et al.Hf-Nd element and isotope perspective on the nature and provenance of mantle and subduction components in western Pacific arc-basin systems[J].Journal of Petrology,1999,40,1579-1611
    [65]Pearce J.A.,Peate D.W.,Tectonic implications of the composition of volcanic arc magmas[J].Annual Review of Earth and Planetary Sciences,1995,23,251-285
    [66]Qu w.J.,Du A.D.Correction of mass discrimination in the determination of the isotope abundance for rhenium and osmium in molybdenite by inductively coupled plasma mass spectrometry(in Chinese)[J].J Chin Mass Spec Soc,2004,25(Supp.) 181-182
    [67]Robb L.Introduction to ore-forming process[M].Oxford:Blackwell.2005,1-166
    [68]Roger J.W.and Greenberg J.K.Late-orogenic,post-orogenic and anorogenic granites:distinction by major-element and trace-element chemistry and possible origins[J].Journal of Geology,1990,98:291-309
    [69]Rollinson H.R.Using geochemical data:evalution,presentation,interpretation[M].Longman Scientific and Technical Press,1993,306-308
    [70]Rubatto D and Gebauer D.Use of cathodoluminescence for U-Pb zircon dating by IOM Microprobe:Some example from the western Alps[J].Cathodoluminescence in Geoscience,Sprmger-Verlag Berlin Heidelberg,Germany.2000,373-400
    [71]Sillitoe R.H.Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region[J].Australian Journal of Earth Sciences,1997,44(3):373-388
    [72]Simon E.J.,Norman J.P.,William L.G,et al.The application of laser ablation-inductively coupled plasma-mass spectrometry to in-situ U-Pb zircon geochronology[J].Chemical Geology,2004,211:47-69
    [73]S6derlund U.,Patchett P.J.,Vervoort J.D.,et al.The 176 Ludecay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J].Earth and Plantar3,Science Letters,2004,219:311-324
    [74]Solomon M.Subduction,arc reversal,and the origin of porphyry copperg-gold deposits in island arcs[J].Geology,1990,18(7):630-633
    [75]Stein H.J.,Markey R.J.,Morgan J.W.,et al.Highly precise and accurate Re-Os ages for molybdenum from the East Qinling molybdenum belt,Shannxi Province,China[J].Economic Geology,1997,98:175-180
    [76]Stuart F.M.,Bumard P.G.,Taylor R.P.,et al.Resolving mantle andcrustal contributions to ancient hydrothermal fluids:He-Ar isotopes in fluid inclusions from DaeHwa W-Mo mineralisation,South Korea[J].Geochimica et Cosmochimica Acta,1995,59:4663-4673
    [77]Sun S.S.and McDonough W.F.Chemical and isotopic systemmatics of oceanic basalts:implication for the mantle composition and process[A].In:Saunder A.D.and Norry M.J.(eds.).Magmalism in The Ocean Basins[C].Geological Society of London Special Publication.London:Geological Society of London and Blackwell Scientific Publications,1989,42:313-345
    [78]Sun X.M.,Wang M.,Xue T.,et al.He-Ar Isotopic Systematics of Fluid Inclusions in Pyrites from PGE-polymetallic Deposits in Lower Cambrian Black Rock Series,Southern China[J].Acta Geologica Sinica,2004,78(2):471-475
    [79]Sun Y.,Yu Z.P.,Krrner A.Geochemistry and single zircon geochronology of Archaean TTG gneisses in the Taihua high-grade terrain,Lushan area,central China[J].Journal of Southeast Asian Earth Sciences,1994,10(3/4):227-233
    [80]Taylor B.E.1986.Magrnatic volatiles:isotopic variation of C,H and S[A].In:Valley J.W.,Taylor H.P.,O'Neil J.R.(eds.).Stable Isotopes in High Temperature Geological Processes[C].Review of Mineral,16,185-225
    [81]Taylor S.R.and McLennan S.M.The continental crust:Its composition and evolution[M].Oxford:Blackwell Scientific Publication,1985,1-132
    [82]Tongerson T.,Kennedy B.M.,Hiyagon H.Argon accumulation and the crustal degassing flux of Ar in the Great Artesian Basin,Australia[J].Earth Planetary Science Letter,1988,92:43-59
    [83]Veizer J.,Holser W.T.,Wilgus C.K.Correlation of ~(13)C/~(12)C and ~(34)S/~(32)S secular variation[J].Geochimica et Cosmochimica Acta,1980,44:579-588
    [84]Vervoort J.D.,Pachelt P.J.,Gehrels G.E.,et al.Constraints on early Earth differentiation from hafnium and neodymium isotopes[J].Nature,1996,379:624-627
    [85]Vervoort J.D.,Patchett P.J.,Albarede F.,et al.Hf-Nd isotopic evolution of the lower crust[J].Earth and Planerary Science Letters,2000,181:115-129
    [86]Vervoort J.D.,Patchett P.J.,Blichert-Toft J.,et al.Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedientary system[J].Earth and Planetary Science Letters,1999,168:79-99
    [87]Villaseca C.,Orejana D.Paterson B.A.Zr-LREE rich minerals in residual peraluminous granulites,another factor in the origin of low Zr-LREE granitic melts?[J].Lithos,2007,375-386
    [88]Wiedenbeck M.,Alle P.,GritTm W.L.,et al.Three natural zircon standards for U-Th-Pb,Lu-Hf,trace element and REE analyses[J].Geostandards Newsletter,1995,19:1-23
    [89]Woodhead J.D.and Hergt J.M.Preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination[J].Geostandard Geoanalytical Research,2005,29,183-195
    [90]Woodhead J.,Eggins S.,Gamble J.,High field strength and transition element systematics in island and back-arc basin basalts:evidence for multi-phase extraction and a depleted mantle wedge[J].Earth and Planetary Science Letters,1993,114,491-504
    [91]Wu F.Y.,Yang Y.H.,Xie L.W.,et al.Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J].Chemical Geology,2006,234:105-126
    [92]Yigit O.,Hofstra A.H.Lithogeochemistry of Carlin-type gold mineralization in the Gold Bar district, Battle Mountain-Eureka trend,Nevada[J].Ore Geology Reviews.2003,22,201-224
    [93]Yuan H.L.,Gao S.,Dai M.N.,et al.Simultaneous determinations of U-Pb age,Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple -collector ICP-MS[J].Chemical Geology,2008,247:100-118.
    [94]Zartman R.E,Doe B.R.Plumbotectonics the model[J].Tectonophysics.1981,75,135-162.
    [95]Zhang H.F.,Zhang B.R.,Harris N.,et al.U-Pb zircon SHRIMP ages,geochemical and Sr-Nd-Pb isotopic compositions of intrusive recks from the Longshan-Tianshui area in the southeast comer of the Qilian orogenic belt,China:Constraints on petrogenesis and tectonic affinity[J].Journal of Asian Earth Scences,2006,27:751-764
    [96]Zhu L.M.,Ding Z.J.,Yao S.Z.,Zhang G W.,Song S.G.Qu W.J.,Guo B.Ore-forming event and geodynamic setting of molybdenum deposit at Wenquan in Gansu Province,Western Qinling[J].Chinese Science Bulletin,2009d,54(12).doi:10.1007/s11434-009-0094-6
    [97]Zhu L.M.,Zhang G W.,Guo B.,Lee B.He-At isotopic system of fluid inclusions in pyrite from the molybdenum deposits in south margin of North China Block and its trace to metallogenetic and geodynamic background[J].Chinese Science Bulletin,2009a,54(13) doi:10.1007/s11434-009-0047-0
    [98]安三元和卢欣祥.东秦岭中生代斑岩组合的地质与矿化特征及其成因[J].河南科学,1985,2:86-95[99]毕献武,胡瑞忠,彭建堂,等.黄铁矿微量元素地球化学特征及其对成矿流体性质的指示[J].矿物岩石地球化学通报.2004,23(1):1-4
    [100]陈斌,刘树文,耿元生,等.吕梁.五台地区晚太古宙-古元古代花岗质岩石锆石U-Pb年代学和Hf同位素性质及其地质意义[J].岩石学报,2006,22(02):296-304
    [101]陈陇刚,王北颖,陈丽荣,等.华山花岗岩的包体特征及指示意义[J].陕西地质,2003,21(1):61-66
    [102]陈衍景,Pirajino F,赖勇,等.胶东矿集区大规模成矿时间和构造环境[J].岩石学报,2007,20(4):907-922
    [103]陈衍景,李超,张静,等.秦岭钼矿带斑岩体锶氧同位素特征与岩石成因机制和类型[J]。中国科学(D辑),2000,30(增刊):64-72
    [104]陈衍景,倪培,范宏瑞,等.不同类型热液金矿系统的流体包裹体特征[J].岩石学报,2007,23(5):2085-2108
    [105]崔毫.华北地台南缘(河南)有色、贵金属矿床铅同位素组成特征及成矿意义[J].矿产与勘查,1991,(2):30-41
    [106]崔学奇,吕宪俊,周国华.金堆城钼矿石的物质组成及钼、铜、铅的赋存状态研究[J].矿物岩石地球化学通报,1999,18(4):370-373
    [107]杜安道,何红蓼,殷宁万,等.辉钼矿的铼.锇同位素地质年龄测定方法研究[J].地质学报,1994,68(4):339-347
    [108]杜本臣,陈福根,武清周,等.陕西洛南石家湾钼矿床地质特征[J].陕西地质,1986,4(2):58-70
    [109]范宏瑞,谢奕汉,郑学正,等.河南祁雨沟热液角砾岩体型金矿床成矿流体研究[J].岩石学报,2000,15(4):559=563
    [110]付治国,吕伟庆,田修启,等.东沟钼矿矿床地质特征及找矿因素研究[J].中国钼业,2005,29(2):8-16
    [111]高山,Rudnick RL,Carlson RW,等.华北克拉通岩石圈地幔置换作用和壳幔生长耦合的Re-Os 同位素证据[J].地学前缘,2003,10(3):61-67
    [112]高山,张本仁,金振民.1999.秦岭-大别造山带下地壳拆沉作用[J].中国科学(D辑),29(6):532-541
    [113]郭波,朱赖民,李辑,等.东秦岭金堆城大型斑岩钼矿床同位素及元素地球化学研究[J].矿床地质,2009,待刊
    [114]郭波,朱赖民,李犇,等.东秦岭熊耳群火山岩的地球化学及其与成矿关系研究[J].矿物学报,2007,27(增刊):148.150
    [115]郭波,朱赖民,李辑等.华北陆块南缘华山和合峪花岗岩岩体锆石U-Pb年龄、Hf同位素组成与成岩动力学背景[J].岩石学报,2009,25(2):265-281
    [116]何建坤,刘福田,刘建华,等.东秦岭造山带莫霍面展布与碰撞造山带深部过程的关系[J].地球物理学报,41(增刊):64-76
    [117]胡瑞忠,毕献武,Turner G,等.哀牢山金矿带成矿流体氦、氩同位素地球化学[J].中国科学(D辑),1999,29(4):321-330
    [118]胡瑞忠,毕献武,Turner G,等.云南马厂箐铜矿床氦同位素组成研究[J].科学通报,1997,42(17):1542-1545
    [119]胡瑞忠,钟宏,叶造军,等.金顶超大型铅、锌矿床氦、氩同位素地球化学[J].中国科学(D 辑),1998,28(3):208-213
    [120]胡受奚,林潜龙,陈泽铭等.华北与华南古板块拼合带地质和成矿[M].南京:南京大学出版社,1988,442-489
    [121]胡志宏,胡受奚,周顺之.东秦岭燕山期大陆内部挤压—俯冲背景的A型孪生花岗岩带[J].岩石学报,1990,(1):1-12
    [122]黄典豪,董群英,甘志贤.中国钼矿床[A].宋叔和主编.中国矿床[C].北京:地质出版社,1989,482-5 12.
    [123]黄典豪,杜安道,吴澄宇,等.华北地台钼(铜)矿床成矿年代学研究一辉钼矿铼.锇年龄及其地质意义[J].矿床地质,1996,15(4):365-373
    [124]黄典豪,聂凤军,王义昌,等.东秦岭地区钼矿床铅同位素组成特征及其成矿物质来源初探[J].矿床地质,1984b,3(4):20-28
    [125]黄典豪,王义昌,聂凤军,等.黄龙铺碳酸岩脉型钼(铅)矿床硫、碳、氧同位素组成及成矿物质来源[J].地质学报,1984a,3:252-264
    [126]黄典豪,王义昌,聂凤军.一种新的钼矿床类型一陕西黄龙铺碳酸岩脉型钼(铅)矿床地质 特征及成矿机制[J].地质学报,1985,59(3):221-257
    [127]黄典豪,吴澄宇,杜安道,等.东秦岭地区钼矿床的铼—锇同位素年龄及其意义[J].矿床地质,1994,13(3):221-230
    [128]黄典豪,吴澄宇,聂凤军.陕西金堆城斑岩钼矿床地质特征及成因讨论[J].矿床地质,1987,6(3):22-34
    [129]黄萱,孙宝山,潘均,等.东秦岭华北地台区岩浆活动的时代及地壳增长和再改造[J].岩石学报,1995,11(2):171-178
    [130]黄永峰.南泥湖—三道庄钼钨矿床围岩蚀变与矿化浅析[J].采矿技术,2006,6(4):95-96
    [131]黄智龙和王联魁.云南老王寨金矿煌斑岩蚀变、矿化过程中元素活动规律[J].岩石矿物学杂志,1997,16(1):10-21
    [132]贾承造和施央申.东秦岭燕山期A型板块俯冲带的研究[J].南京大学学报,1986,22(1):120-128.
    [133]黎世美,瞿伦全,苏振邦,等.小秦岭金矿地质和成矿预测[M].北京:地质出版社,1996,57-174
    [134]李厚民,沈远超,毛景文,等.石英、黄铁矿及其包裹体的稀土元素特征—以胶东焦家式金矿为例[J].岩石学报,2003,19(2).267-274
    [135]李厚民,王登红,郭保健,等.河南板厂银多金属矿床钾长石氩-氩年龄及其地质意义[J].地球学报,2008,29(2):154-160
    [136]李诺,陈衍景,孙亚莉,等.河南鱼池岭钼矿床辉钼矿铼.锇同位素年龄及地质意义[J].岩石学报,2009,25(2):413-421
    [137]李诺,陈衍景,张辉,等.东秦岭斑岩钼矿带的地质特征和成矿构造背景[J].地学前缘,2007,14(5):186-198
    [138]李先梓,严阵,卢欣祥.秦岭.大别山花岗岩[M].北京:地质出版社,1993,1-216
    [139]李英,任崔锁.华北地台南缘铅同位素演化[J].西安地质学院学报,1990,13(2):1-12
    [140]李永峰,毛景文,胡华斌,等.东秦岭钼矿类型特征成矿时代及其地球动力学背景[J].矿床地质,2005,24(3):292-304
    [141]李永峰,毛景文,刘敦一,等.豫西雷门沟斑岩钼矿SHRIMP锆石U-Pb和辉钼矿Re-Os测年及其地质意义[J].地质论评,2006,52(1):122-131
    [142]李永峰,王春秋,白凤军,等.东秦岭钼矿Re-Os同位素年龄及其成矿动力学背景[J].矿产与地质,2004,18(6):571-578
    [143]李永峰.豫西熊耳山地区中生代花岗岩类时空演化与钼(金)成矿作用[D].北京:中国地质大学博士学位论文,2005,1-143
    [144]刘长命,卢欣祥,张正伟.东秦岭花岗岩类稀土元素的地球化学特征[J].河南地质,1989,7(2):32-39
    [145]刘国范,马庚杰,刘伟芳.河南内乡板厂铜多金属矿床成矿地质特征及找矿前景[J].华南地质与矿产,2007,1:28-32
    [146]刘孝善,严正富,郑素娟,等.东秦岭有色金属成矿带中典型矿床赋矿地层的地质地球化学研究[J].矿床地质,1987,6(4):1-10
    [147]刘孝善和孙晓明.金堆城钼矿成矿流体包裹体及稳定同位素研究[J].地质与勘探,1989,25(2):12-19
    [148]刘永春,付治国,高飞,等.河南栾川南泥湖特大型钼矿床成矿母岩地质特征研究[J].中国钼业,2006,30(3):13-23
    [149]刘永春,靳拥护,班宜红,等.东秦岭-大别山钼成矿带赋矿地层分布规律[J].中国钼业,2007,31(1):12-17
    [150]刘振宏,王世炎,张良,等[J].华北陆块南缘燕山期陆内造山岩浆活动特征[J].地质调查与研究,2004,27(1).35-42
    [151]卢欣祥,于在平,冯有利,等.东秦岭深源浅成型花岗岩的成矿作用及地质构造背景[J].矿床地质,2002,21(2):168-177
    [152]罗铭玖,黎世美,卢欣祥,等.河南省主要矿产的成矿作用及矿床成矿系列[M].北京:地质出版社,2000,81.111
    [153]罗铭玖,林潜龙,卢欣祥,等.东秦岭含钼花岗岩的地质特征[J].河南地质,1993,11(1):2-8
    [154]罗铭玖,张辅民,董群英,等.中国钼矿床[M].郑州:河南科学技术出版社,1991,118-128
    [155]罗铭玖.河南金矿概论[M].北京:地震出版社,1992,1-312
    [156]毛光周,华仁民,高剑锋,等.江西金山金矿含金黄铁矿的稀土元素和微量元素特征[J].矿床地质,2006,25(4):412-426
    [157]毛景文,谢桂青,张作衡,等.中国北方中生代大规模成矿作用的其次及其地球动力学背景[J].岩石学报,2005,21(01):169-188
    [158]毛景文,张作衡,余金杰,等.华北及邻区中生代大规模成矿的地球动力学背景:从金属矿床年龄精测得到启示[J].中国科学(D辑),2003,33(4):289-299
    [159]毛景文,张作衡,找招崇,等.北祁连小柳沟钨矿床中辉钼矿Re-Os年龄测定及其意义[J].地质论评,1999,45(4):412-417
    [160]聂凤军和樊建庭.陕西金堆城—黄龙铺地区含钼花岗岩类稀土元素地球化学研究[J].岩石矿物学杂志,1989,8(1):24-33
    [161]邱家骧.秦巴碱性岩[M].北京:地质出版社,1993,1-183
    [162]任富根,李维明,李增慧,等.熊耳山.崤山地区金矿成矿地质条件和找矿综合评价模型[M].北京:地质出版社,1995
    [163]任启江,吴俞斌,武耀成,等.1987.陕西金堆城斑岩钼矿含矿裂隙分布规律与成因[J].矿床地质,6(3):35-48
    [164]陕西地质志.区域地质调查报告—金堆城黄龙铺地区[M].陕西省地质局.1979
    [165]尚瑞钧,严阵,等.1988.秦巴花岗岩[M].武汉:中国地质大学出版社,1-224
    [166]邵浩连.金矿找矿矿物学[M].武汉:中国地质大学出版社,1988,38-45
    [167]邵克忠.祁雨沟地区爆破角砾岩型金矿找矿条件和找矿方向研究[J].河北地质学院学报,1992.15:105-195
    [168]孙大中和胡维兴.中条山前寒武纪年代构造格架和年代地壳结构[M].北京:地质出版社,1992
    [169]孙枢,张国伟,陈志明,等.华北断块南部前寒武纪地质演化[M].北京:地质出版社,1985,
    [170]孙晓明,刘孝善.1987.金堆城钼矿区两类不同花岗岩的关系及其成因研究[J].地质找矿论丛,2(2):34-45
    [171]孙晓明,任启江,杨荣勇,等.金堆城超大型钼矿水一岩δD-δ~(18)O同位素交换体系理论模型及成矿流体来源[J].地质地球化学,1998,26(2):16-21
    [172]孙晓明,徐莉,梁金龙,等.CCSD中HP-UHP岩石稀有气体同位素地球化学及其对板块折返过程的示踪意义[J].地质学报,2006,80(12):1911-1918
    [173]田朝晖,王斌,李继涛.三道庄钼矿床中自钨矿的赋存特征及其综合挥手新进展[J].中国钼业,2001.25(2):16-19
    [174]王长明,邓军,张寿庭,等.河南南泥湖Mo-W-Cu-Pb-Zn-Ag-Au成矿区内生成矿系统[J].地质科技情报,2006,25(6):47-52
    [175]王登红,余金杰,杨建民,等.中国新生代成矿作用的惰性气体同位素研究与动力学背景[J].矿床地质,200,21(2):179-186
    [176]王新.金堆城钼矿区两类斑岩的识别[D].西安:西北大学硕士学位论文,2001,1-56
    [177]王义天,毛景文,卢欣祥.嵩县祁雨沟金矿成矿时代的~(40)Ar-~(39)At年代学证据[J].地质论评,2001,47(5):551-555
    [178]王中刚,于学元,赵振华,等.稀土元素地球化学[M].北京:科学出版社,1-535
    [179]魏俊浩,刘丛强,丁振举.热液型金矿床围岩蚀变过程中元素迁移规律—以张家口地区东坪、后沟、水晶屯金矿为例[J].矿物学报,2000,20(2):200-206
    [180]吴澄宇和刘孝善.南泥湖钼(钨)矿化花岗岩的成因特征[J].南京大学学报,1989,25(2):333-346
    [181]吴福元,李献华,郑永飞,等.Lu-Hf同位素体系及其岩石学作用[J].岩石学报,2007,23(02):185-220
    [182]吴元保,陈道公,夏群科,等.大别山黄镇榴辉岩锆石的微区微量元素分析:榴辉岩变质锆石的微量元素特征[J].科学通报,2002,47(11):859-863
    [183]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589-1604
    [184]伍海培.陕西小秦岭地区金堆城.黄龙铺(铝)矿田成矿地质构造分析[J].河北煤炭建筑工程学院学报,(1):28-33.
    [185]徐兆文,陆现彩,杨荣勇,等.河南省栾川县上房斑岩铝矿床地质地球化学特征及成因[J].地质与勘探,2000,36(1):14-16
    [186]徐兆文,任启江,邱检生.河南省栾川三道庄和黄背岭矿区含矿矽卡岩的对比研究[J].矿物学报,1995,15(1):88-96
    [187]徐兆文,杨荣勇,刘红樱,等.陕西金堆城斑岩钼矿床成矿流体研究[J].高校地质学报,1998,4(4):423-431
    [188]许志琴,卢一伦,汤耀庆,等.东秦岭造山带的变形特征及构造演化[J].地质学报,1986,60(3):237-247
    [189]薛良伟,原振雷,张荫树,等.鲁山太华群Sm-Nd同位素年龄及其意义[J].地球化学,1995,24(增刊):92-97
    [190]鄢明才,迟清华,顾铁新,等.中国东部地壳丰度与岩石平均化学组成研究[J].物探与化探,1997,21(6):451-459
    [191]严阵.秦巴地区花岗岩类的Ar~(40)/Ar~(39)年龄报导[J].陕西地质,1986,4(2):43-49
    [192]姚春亮,陆建年,郭维民,等.斑岩铜矿若干问题的最新研究进展[J].矿床地质,2007,26(2):222-229
    [193]叶会寿.华北陆块南缘中生代构造演化与铅锌银成矿作用[D].北京:中国地质科学院博士学位论文,2006a,1-217
    [194]叶会寿,毛景文,李永峰,等.东秦岭东沟超大型斑岩钼矿SHRIMP锆石U-Pb和辉钼矿Re-Os 年龄及其地质意义[J].地质学报,2006b,80(7):1078-2006
    [195]余研.金堆城地区熊耳群火山岩系的构造背景及地球化学论据[J].大地构造与成矿学,1992,16(4):343-353
    [196]袁洪林,吴福元,高山等.东北地区新生代侵入岩的激光锆石探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003,48(4):1511-1520
    [197]翟明国.华北克拉通2.1~1.7Ga地质事件群的分解和构造意义探讨[J].岩石学报,2004,20(6):1343-1345
    [198]翟裕生,邓军,汤中立.古陆边缘成矿系统[M].北京:地质出版社,2002,1-384
    [199]张本仁,高山,张宏飞.秦岭造山带地球化学[M].北京:科学出版社,2002,1-187
    [200]张本仁,张宏飞,许继锋,等.同位素地球化学填图与化学地球动力学在东秦岭造山带研究中的应用[J].地球科学.中国地质大学学报,1995,20(5):551-555
    [201]张本仁,张宏飞,赵志丹,等.东秦岭及邻区壳幔地球化学分区和演化及其大地构造意义[J].中国科学(D辑),1996,26(3)201.208
    [202]张本仁.区域岩石圈组成和热状态对岩浆作用和成矿的制约一以秦巴地区为例[J].地球科学—中国地质大学学报,1994,19(3):345.352
    [203]张国伟,郭安林,刘福田,等.秦岭造山带三维结构及其动力学分析[J].中国科学(D辑),1996,26(增):1.6
    [204]张国伟,孟庆仁,刘少峰,等.华北地块南部巨型陆内俯冲带与秦岭造山带岩石圈现今三维 结构[J].高校地质学报,1997,3(2):129-143
    [205]张国伟,于在平,董云鹏,等.秦岭区前寒武纪构造格局与演化问题探讨[J].岩石学报,2000,16(1):11-21
    [206]张国伟,张本仁,袁学诚.秦岭造山带与大陆动力学[M].北京:科学出版社,2001,1-729
    [207]张旗,潘国强,李承东,等.花岗岩构造环境问题:关于花岗岩研究的思考之三[J].岩石学报,2007,23(11):2683-2698
    [208]张旗,王焰,李承东,等.花岗岩的Sr-Yb分类及其地质意义[J].岩石学报,2006,22(9):2249-2269
    [209]张正伟,张中山,董有,等.东秦岭钼矿床及其深部构造制约[J].矿物学报,2007,27(3/4):372-377
    [210]张正伟,朱炳泉,常向阳,等.东秦岭钼矿带成岩成矿背景及时空统一性[J].高校地质学报,2001,7(3):307-315
    [211]张宗清,黎世美.河南省西部熊耳山地区太古宙太华群变质岩的Sm-Nd,Rb-Sr年龄及其地质意义[A].见:程浴淇主编,华北地台早前寒武纪地质研究论文集[C].北京:地质出版社,1998,133-136
    [212]张宗清,张国伟,唐索寒.南秦岭变质地层同位素年代学[M].北京:地质出版社,2002,1-348
    [213]赵太平,关保德,屠森.华北板块南缘熊耳群火山岩研究的若干问题[J].地质论评,1994,40(5):446-455
    [214]赵太平,金成伟,翟明国,等.华北陆块南部熊耳群火山岩的地球化学特征与成因[J].岩石学报,2002,18(01):59-69
    [215]赵太平,周美夫,金成伟,等.华北陆块南缘熊耳群形成时代讨论[J].地质科学,2001,36(3):326-334
    [216]赵太平.华北陆块南缘元古宙熊耳群钾质火山岩特征与成因[D].广州:中国科学院地质地球物理研究所博士学位论文,2000,1-102
    [217]赵振华,涂光炽.中国超大型矿床[M].北京:科学出版社,2003,523-542
    [218]周汉文,钟增球,凌文黎,等.豫西小秦岭地区太华杂岩斜长角闪岩Sm-Nd等时线年龄及其地质意义[J].地球化学,1998,27(4):367-372
    [219]朱赖民,张国伟,郭波,等.东秦岭金堆城大型斑岩钼矿床LA-ICP-MS锆石U-Pb定年及成矿动力学背景[J].地质学报,2008,82(2):204-220
    [220]朱赖民,张国伟,李犇,等.马鞍桥金矿床中香沟岩体锆石U-Pb定年、地球化学及其与成矿关系研究[J].中国科学(D辑),2009c,待刊
    [221]朱赖民,张国伟,李犇,等.陕西省马鞍桥金矿床地质特征、同位素地球化学与矿床成因[J].岩石学报,2009b,25(2):431-443
    [222]朱铭.秦岭地区花岗岩的K-Ar等时年龄和~(39)Ar-~(40)Ar年龄及其地质意义[J].岩石学报,1995,11(2):179-192