内蒙古克什克腾旗拜仁达坝银多金属矿床成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,大兴安岭地区众多有色金属矿床的发现与开发使得该区成为矿床学界研究的热点地区。研究表明,该区具有良好的成矿潜力,拜仁达坝银多金属矿床作为一个大型银铅锌多金属矿床即位于该地区。本文在综合分析前人工作成果的基础上,以该区的大地构造体制为框架,以岩浆热液成矿理论为指导,通过对矿区及其外围进行翔实系统的野外地质调查,详细研究了矿区的地质特征,结合岩石学、岩体地球化学、矿床地球化学、矿物学、年代学等综合研究手段,对矿床的成矿物质来源、成矿流体特征、控矿因素以及矿床的成因等一系列科学问题做了较为深入的研究与探讨,并建立了矿床的成矿模型,这对于矿床深部及外围的找矿勘查具有重要的应用价值。
     研究表明,拜仁达坝银多金属矿床与区域内众多的燕山期有色金属矿床一样,受控于大兴安岭地区区域地质构造活动历史及其所在的大地构造环境,即古生代末期至中生代早期该区域内的压性构造体制向中生代伸展构造体制的转换过程,区域上包括拜仁达坝矿床在内的众多多金属矿床,其成因主要与中生代期间区域内地壳伸展的成矿作用有关。
     通过对围岩地质、岩石学及岩石地球化学等方面的详细研究表明,片麻岩的原岩主要为正常沉积碎屑岩,并有部分火山碎屑物质的加入。SHRIMP锆石U-Pb测年表明,锡林浩特杂岩、白音高勒石英闪长岩及北大山花岗岩体的形成年龄分别为409~437Ma、326±3Ma和140±3Ma,杂岩中锆石的增生边形成于323~350Ma之间,很可能代表杂岩受到区域变质作用的时代,这与白音高勒石英闪长岩的侵入时代能够对应,显示二者可能是同一次构造岩浆作用的产物。
     研究表明,拜仁达坝矿床是明显受构造控制的后生脉状充填交代矿床,矿体以断裂构造为赋矿空间,并明显经历了岩浆热液蚀变与成矿作用,矿床具有多阶段成矿的特点,可以将岩浆热液成矿期划分为四个阶段,即:毒砂—石英阶段、多金属硫化物—石英阶段1、多金属硫化物—石英阶段2以及脉石—黄铁矿阶段。硫化物电子探针数据分析表明,方铅矿是矿床中最重要的银的载体矿物,银黝铜矿则是矿床中主要独立银矿物,并计算了矿物的平均分子式。
     矿床中金属硫化物的~(206)Pb/~(204)Pb值变化于18.333~18.515之间,~(207)Pb/~(204)Pb值变化于15.532~15.656之间,~(208)Pb/~(204)Pb值变化于38.057~38.610之间,分布范围较窄,这些铅同位素数据可以拟合成一条异常铅混合线,显示铅同位素为两端元混合来源。对这些数据的研究表明,拜仁达坝银多金属矿床成矿物质的两端元之一可能是矿区围岩锡林浩特杂岩,另一端元可能位于深部,具有相对较低的μ值。矿床的成矿热液为岩浆热液,并以东矿段为热液成矿的中心。通过成矿物质对比发现,大兴安岭地区燕山期众多的多金属硫化物具有类似的成矿物质来源,具有共同的两端元混合历史。矿床中硫化物的δ~(34)S值为-4‰~1.6‰,显示硫来源于深部岩浆。石英中δ~(18)O值为11.6‰~14.3‰,萤石样品的δ~(18)O值为-15.8~-5.2‰,δD值为-75~-106‰,氢氧同位素研究认为成矿期的热液为发生过水岩反应的岩浆水,成矿期末热液主要为大气降水。
     综合所有研究内容表明,拜仁达坝银多金属矿床是一个与岩浆热液有成因关系的中低温脉状矿床。
In recent years, the discovery and exploitation of plenty of polymetallic deposits in Daxing'anling area makes it a hot area for metallogenic research. It shows that there is a huge potential for polymetallic mineralization, and the Bairendaba Ag polymetallic deposit with million tons of base metal and thousands tons of silver is located in this area. We made systematic field study in Bairendaba ore district and its nearby area to get the fist hand data to describe the geological features of this deposit, and report new data of mineralogy, petrology, petro-geochemistry, geochronology and geochemistry of mineral deposits. Incorporating the recent research data from literature, we inspect the deposit with the latest hydrothermal metallgenic theory based on the geodynamic setting and plate tectonic model aimed at unveil the ore-forming process through the detailed studies on ore-forming substance source tracing, ore-forming fluid characters, mineralization controlling factors and metallogenic model, and so on. It will be useful for the further mineral exploration in this area.
     The studies show that the distribution of abundant polymetallic deposits in Daxing'anling area including Bairendaba Ag polymetallic deposit is restricted in Mesozoic and related to the regional geodynamic evolution, particularly to the transformation from compressional tectonic mechanism in pre-Mesozoic to extensional tectonic mechanism in Mesozoic.
     The detailed studies of geology, petrology and petro-geochemistry indicate that the protolith of Xilinhot complex were mainly clastic sediments, with a small part of volcanic debris. SHRIMP zircon U-Pb ages of Baiyingaole quartz diorite, Xilinhot complex and Beidashan granite are 409~437Ma, 326±3Ma and 140±3Ma, respectively. The ages of the overgrowth on the cores of zircon in Xilinhot complex range from 323Ma to 350Ma, and are consistent with the intrusive age of the Baiyingaole quartz diorite. It may suggest that the metamorphism of the Xilinhot complex and the intrusion of Baiyingaole quartz diorite were formed under the same tectonic-magmatic event.
     Studies on the ore deposit show that the Bairendaba Ag polymetallic deposit is an epigenetic vein deposit. The orebodies are controlled by nearly E-W trending structures. Four stages of the ore-forming process can be recognized in Bairendaba deposit, i.e.: arsenopyrite- quartz stage, polymetallic- sulfide stage 1, polymetallic- sulfide stage 2 and gangue- pyrite stage. Electron probe analysis reveals that the galena is the most important silver bearing mineral, and the freibergite is the primary independent silver bearing mineral.
     The sulfides in Bairendaba Ag polymetallic deposit have narrow range of ~(206)Pb/~(204)Pb ratios from 18.333 to 18.515, ~(207)Pb/~(204)Pb ratios from 15.532 to 15.656, and ~(208)Pb/~(204)Pb ratios from 38.057 to 38.610. All these data can fit a straight line, which indicate the lead was anomalous lead and was the mixture of two end-members. The ore-forming fluid was derived from magma, and the east part of the Bairendaba deposit was the center of hydrothermal ore-forming process. Theδ~(34)S values of sulfides in Bairendaba deposit vary from -4‰to 1.6‰, suggesting that the sulfur probably came from the deep magma. Theδ~(18)O values of quartz from ores range from 11.6‰to 14.3‰, and theδ~(18)O values of fluorite in gangue-quartz stage range from -15.8‰to -5.2‰, theδD values range from-75‰to -106‰, suggesting that the ore-forming fluid was magmatic water in the early stage, and evolved to meteoric water in the late stage.
     In view of all the studies in this paper, the Bairendaba Ag polymetallic deposit was regarded as a meso- epi-thermal vein deposit related to magmatic fluids.
引文
Barnes, H.L. 1997. Geochemistry of hydrothermal ore deposits, 3rd edition: New York, Wiley.
    
    Boynton W. V., 1984. Geochemistry of the rare earth elements: meteorite studies. In: Henderson P. (ed) rare earth element geochemistry. Elservier, pp. 63 -114.
    Chaussidon M. and Lorand J. P., 1990. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (N. E. Pyrenees, France): An ion microprobe study. Geochim. Cosmochim. Acta, 54, 2835 - 2846.
    
    Chaussidon M.,Albarede F and Sheppard S. M. F., 1989. Sulphur isotope variation in the mantle from ion microprobe analyses of micro-sulphide inclusion. Earth Planet. Sci. Lett., 92,144 - 156.
    Compston W, Williams I S, Krischvink J L, et al. 1992. Zircon U-Pb ages of early Cambrian Time scale [J].J.Geological Society, London, 149:171-184.
    Franklin J M Gibson H L, Jonasson I R and Galley A G. 2005.Vocanogenic massive sulfide deposits. Economic Geology 100th Anniversary Volume, 523-560.
    Groves D I and Bierlein F P. 2007. Geodynamic settings of mineral deposit systems, Journal of the Geological Society, London, 164: 19-30.
    Huston D L Stevens B, Southgate P N, Muhling P, Wyborn L. 2006. Australian Zn-Pb-Ag Ore-Forming Systems: A Review and Analysis. Economic Geology, 101:1117-1157.
    Large R R, Bull S W, McGoldrick P J, Walters S, Derrick G M and Carr G R. 2005. Economic Geology 100th Anniversary Volume: 931 -964.
    Leach D L, Sangster D F, Kelley K D, Large R R, Garven G, Gutzmer J and Walters S. 2005 Sediment-hosted lead-zinc deposits: A global perspective. Economic Geology 100th Anniversary Volume, 561-607.
    Nesbitt H W & Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299: 715-717.
    Ohmoto H. and Rye R. O. 1979. Isotopes of sulfur and carbon. In: Geo-chemistry of hydrothermal ore deposits [M]. Barnes H L,ed. 2nd edition. New York: John Wiley and Sons. 509 - 567.
    Pearce J A, Harris N B W and Tindle A G 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 25: 956 - 983.
    Sakai H.Des Maris D.J.,Ueda A.and Moore J.P.,1984.Concentrations and isotope ratios of carbon,nitrogen and sulfur in ocean-floor basalts and volcanic gases at Kilauea volcano,Hawaii,Geochim Cosmochim.Acta,48,2433-2441.
    Shaw DM.1972.The origin of the Apsley Gneiss,Ontario.Can.J.Earth.Sci.,9:18-35.
    Tatsumi T.1965.Sulfur isotope fractionation between co-existing sulfide minerals from some Japanese ore deposits.Economic Geology,60(8):1645-1659.
    Taylor B.E.1987.Stable isotope geochemistry of ore-forming fluid[M].Mineralogical Association of Canada Short Course Handbook.13:337-445.
    Taylor,S.R.and Mcleannan,S.,1985,The continental crust:composition and evolution,Blackwell Scientific Publications,54,209-230,372.
    Thompson R.N.1982 British Tertiary volcanic province.Scott.J.Geol.,18,59-107.
    Turekian K.K.and Wedepohl K.H..1961.Distribution of the elements in some major units of the earth's crust.GSA Bulletin,72(2):175-191
    USGS.2002.Mineral Commodity Summaries.
    USGS.2009.Mineral Commodity Summaries.
    Wiedenbeck P,Alle F,Corfu W L,Griffin et al.1995.Three natural zircon standards for U-Th-Pb,Lu-Hf,trace element and REE analyses,Geostand.Newslett.19:1-23.
    Williams I S,Claesson S.1987.Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes,Scandinavian Caledonides:Ⅱ.Ion microprobe zircon U-Th-Pb[J].Contributions to Mineralogy and Petrology,97:205-217.
    Xiao W-J,Windley B F,Hao J and Zhai M-G.2003.Accretion leading to collision and the Permian Solonker suture,Inner Mongolia,China:Termination of the central Asian orogenic belt.Tectonic,22(6):8-1-8-20.
    Zartman R E and Doe B R.1981.Plumbotectonics-the model.Tectonophysics,75:135-162.
    包志伟,陈森煌,张祯堂.1994.内蒙古贺根山地区蛇绿岩稀土元素和Sm-Nd同位素研究.地球化学,23(4):339-349.
    鲍庆中,张长捷,吴之理,王宏,李伟,桑家和,刘永生.2007.内蒙古白音高勒地区石炭纪石英闪长岩SHRIMP锆石U-Pb年代学及其意义.吉林大学学报,37(1):15-23.
    陈祥.2000.内蒙古额仁陶勒盖银矿床成岩成矿模式.桂林工学院学报,20(1):12-20.
    储学蕾,霍卫国,张巽.2002.内蒙古林西县大井铜多金属矿床的硫、碳和铅同位素及成矿物质来源. 岩石学报,18(4):66-74.
    葛文春,林强,孙德有,吴福元,元钟宽,李文远,陈明植,尹成孝.1999.大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据.岩石学报,15(3):396-406.
    葛文春,林强,孙德有,吴福元,李献华.2000.大兴安岭中生代两类流纹岩成因的地球化学研究.地球科学,25(2):172-178.
    郭锋,范蔚茗,王岳军,林舸.2001.大兴安岭南段晚中生代双峰式火山作用.岩石学报,17(1):161-168.
    郭利军,葛昌宝,冯贞,白义勇,张振法,赵云.2004.内蒙古锡林浩特东部拜仁达坝银铅多金属矿勘查过程及远景评述.物探与化探,28(5):394-397,401.
    郭利军,谢玉玲,侯增谦,王硕,陈伟,李政,李应栩,薛怀民,童英,潘小菲,周喜文.2009.内蒙古拜仁达坝银多金属矿矿床地质及成矿流体特征.岩石矿物学杂志,28(1):26-36.
    郭利军,葛昌宝,冯贞,白义勇,张振法,赵云.2004.内蒙古锡林浩特东部拜仁达坝银铅多金属矿勘查过程及远景评述.物探与化探,28(5)394-401.
    郝旭,徐备.1997.内蒙古锡林郭勒杂岩的原岩年代和变质年代.地质论评,43:101-105.
    李锦轶,莫申国,政军,孙桂华,陈文.2004.大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约.地学前缘,11(3):157-168.
    林强,葛文春,孙德有,吴福元,元钟宽,闵庚德,陈明植,李文远,权致纯,尹成孝.1998.中国东北地区中生代火山岩的大地构造意义.地质科学,33(2):129-139.
    刘建明,张锐,张庆洲.2004.大兴安岭地区的区域成矿特征.地学前缘,11(1):269-277.
    吕志成,张培萍,段国正,郝立波,李殿超.2002.大兴安岭地区银矿床中银矿物的矿物学初步研究.矿物学报,22(1):75-80
    马家骏,方大赫.1991.黑龙江省中生代火山岩初步研究.黑龙江地质,2(2):11-61.
    内蒙古自治区地质矿产局.19991.内蒙古自治区地质矿产局内蒙古自治区区域地质志.北京.地质出版社.
    内蒙古自治区第九地质矿产勘查开发院.2004.内蒙古自治区克什克腾旗拜仁达坝矿区银多金属矿详查报告.
    内蒙古自治区第九地质矿产勘查开发院.2006.内蒙古自治区克什克腾旗拜仁达坝西矿区锌多金属矿详查报告.
    邵济安,藏绍先,牟保磊,李晓波,王冰.1994.造山带的伸展构造与软流圈隆起——以兴蒙造山带为例.科学通报,39(6):533-537.
    邵济安,刘福田,陈辉,韩庆军.2001.大兴安岭—燕山晚中生代岩浆活动与俯冲作用关系.地质学报.75(1):56-63.
    邵济安,牟保磊,何国琦,张履桥.1997.华北北部在古亚洲域与古太平洋域构造叠加过程中的地质作用.中国科学(D辑),27(5):390-394.
    邵济安,张履桥,牟保磊.1998.大兴安岭中南段中生代的构造热演化.中国科学(D辑),28(3):193-200.
    邵济安,张履桥,贾文,王佩瑛.2001.内蒙古喀喇沁变质核杂岩及其隆升机制探讨.岩石学报,17(2):283-290.
    盛继福,李岩,范书义.1999.大兴安岭中段铜多金属矿床矿物微量元素研究.矿床地质,18(2):153-160.
    施光海,刘敦一,张福勤,简平,苗来成,石玉若,陶华.2003.中国内蒙古锡林郭勒杂岩SHRIMP锆石U-Pb年代学及意义.科学通报,48(20):2187-2192.
    孙丰月,王力.2008.内蒙拜仁达坝银铅锌多金属矿床成矿条件.吉林大学学报,38(3):376-383.
    王力,孙丰月,2008.内蒙拜仁达坝银铅锌多金属矿床地质特征.世界地质,27(13):252-259.
    王荃.1986.内蒙古中部中朝与西伯利亚古板块间缝合线的确定.地质学报,1:31-43.
    吴福元,孙德有,林强.1999.东北地区显生宙花岗岩的成因与地壳增生.岩石学报,15(2):181-189.
    肖利梅.2004.内蒙古赤峰拜仁达坝银多金属矿矿床特征及成因探讨.吉林大学硕士学位论文
    徐备,陈斌,邵济安.1996.内蒙古锡林郭勒杂岩Sm-Nd、Rb-Sr同位素年代研究.科学通报,41:153-155.
    徐公愉.1983.大兴安岭的大陆火山岩及其矿化作用.中国区域地质,5:39-491.
    徐明才,荣立新,刘建勋,高景华,柴铭涛,王广科.2007.地震方法在拜仁达坝银铅锌多金属矿区的应用试验研究.地质与勘探'43(4):61-64.
    徐志刚,陈毓川,王登红,陈郑辉,李厚民.2008.中国成矿区带划分方案.北京:中国地质出版社
    许怀凤.2004.克什克腾旗拜仁达坝多金属矿物研究,内蒙古电大学刊,60(2):25,41.
    姚玉鹏.1997.国际地质对比计划IGCP420项目“显生宙大陆增生:东-中亚地区的证据”简介.科学通报,42(10):1119-1120.
    张万益.2008.内蒙古东乌珠穆沁旗岩浆活动与金属成矿作用.中国地质科学院博士学位论文.
    赵光,朱永峰,张勇.2002.内蒙古锡林郭勒杂岩岩石学特征及其变质作用的p-t条件.岩石矿物学杂志.21(1):40-48.
    赵一鸣,张德全.1997.大兴安岭及其邻区铜多金属矿床成矿贵了与远景评价.北京.地震出版社.86
    郑翻身,蔡红军,张振法.内蒙古拜仁达坝维拉斯托超大型银铅锌矿的发现及找矿意义.物探与化探,28(5):13-20,25.
    钟日晨,杨永飞,石英霞,李文博.2008.内蒙古拜仁达坝银多金属矿区矿石矿物特征及矿床成因.中国地质,35(6):1274-1285.
    朱笑青,张乾,何玉良,邵树勋.2004.内蒙古孟恩陶勒盖银铅锌铟矿床成因研究.矿床地质,23(1):52-60