脉动燃烧喷雾干燥过程数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉动燃烧干燥技术是近年来出现的一种新型干燥技术,它利用脉动燃烧器产生的高温,高频脉动尾气流直接雾化和干燥液态物料。与传统喷雾干燥相比,脉动燃烧喷雾干燥具有能耗低,热,质传递速度高,环境污染小,以及投资成本低等很多特点。长期以来,对喷雾干燥过程进行了各种试验和模拟研究,但这些研究并不能揭示喷雾干燥室内气体运动状态,颗粒群的运动轨迹和各种热力学参数分布信息,常规的测试手段又很难测得,而这些参数分布信息对干燥器没计和过程优化具有重要指导作用。为解决这一难题,本文利用气体一颗粒两相流理论和计算流体力学(CFD)技术,建立了更符合实际喷雾干燥过程的数学模型即喷雾干燥的CFD模型,并进行了脉动燃烧喷雾干燥过程模拟,其主要内容如下:
     (1)建立了脉动燃烧喷雾干燥的CFD模型 该数学模型建立在气体一颗粒两相流基础之上,用标准k-ε模型预测干燥室内的气体湍流运动过程,颗粒轨道模型追踪干燥室内颗粒群的运动轨迹,热质传递模型描述空气和液滴的热质传递过程。通过模型的求解,得到了干燥室内气体运动状态,气体温度、湿度分布,颗粒运动轨迹,颗粒沿运动轨迹质量变化,颗粒沿运动轨迹的温度变化等各种动力学和热力学参数分布信息。加深了对该干燥过程的了解。模拟结果还解释喷雾干燥过程中出现的涡流和颗粒粘壁现象,脉动燃烧喷雾干燥过程出现的回流现象等以往了解不够透彻的问题。模拟得到的干燥过程中各种热力学参数分布信息为脉动燃烧喷雾干燥器的设计,选型,干燥过程优化等捉供了参考。
     (2)进行了模型的求解 本文详细论述了该类数学模型的具体求解过程,包括模拟区域的确定和非结构化网格的划分、边界条件的选择、微分方程的控制容积离散方法、代数方程组的SIMPLER解法以及两相流方程的LEGAMI算法。
     (3)进行了脉动燃烧喷雾干燥试验和数学模型验证 建立了脉动燃烧喷雾干燥试验装置,并利用质量分数10%的NaCl溶液进行脉动气流直接雾化和干燥的试验。测量了实际干燥过程中干燥室内各点的气体温度,并进行了实验结果与模拟结果比较、分析。试验观察证实了模拟揭示的脉动燃烧喷雾干燥过程的粘壁现象。实验与模拟结果比较表明CFD模型能够比较精确地模拟脉动燃烧喷雾干燥过程。
     (4)揭示了气流脉动对干燥过程的影响 本文模拟脉动频率为83Hz的脉动气流和非脉动气流的两种干燥过程,比较两种干燥过程的颗粒蒸发速率和湿含量变化。模拟结果表明气流脉动对喷雾干燥过程有一定增强作用。
Pulsating spray drying technique makes use of the unstable hot gas stream generated by a pulse combustor to atomi/e and dry a liquid material. The unstable gas stream is characterized by oscillations with transient velocities of about +100 m/s and frequencies from 50-200H/. The enhanced mixing and transport processes lead to a highly efficient moisture evaporation rate during pulsating spray drying. The computational fluid dynamics (CFD) method was used for the analysis and investigation of flow,temperature and humidity fields in a pulsating flow spray-drying chamber.
    (1) The CFD model for the pulse combustion spray drying process.
    The Computational Fluid Dynamics (CFD) based on the two-phase flow theory was employed in this paper,which used the Standard k- e model and the Particle trajectory Model to simulate the gas-particle flow in the drying chamber. The momentum,heat and mass transfer regarding both gaseous and particulate phases during the spray drying inside the drying chamber was also revealed. The simulated profiles of flow field,temperature and humidity of the air phase,as well as particulate phase,in the drying chamber were showed. The simulation also showed that a large-scale vortex was observed in upper part of the drying chamber because of the unstable process of flow field and particle trajectories.
    (2) The explicit simulating process for the pulse combustion spray drying process
    In this project,both the gas-phase equations and particle-phase equations were integrated in the computational cell using up-wild scheme to obtain the finite difference equations. The gas-phase equations are solved using the SIMPLER algorithm and multiple iterations have been made based on a two-way coupling (LEGAML algorithm).
    (3) Comparison of the experimental data with the simulation results
    A pulse combustion spray drying system was constructed and the spray drying of NaCl solution was carried out under a high oscillating flow field generated by the pulse combustor. The particle deposition which was observed in the simulation results and verified by the experiment and The comparison of the air experimental data with simulation data showed that the CFD model is a feasible way to simulate the spray drying process.
    (4) The influence of pulsation frequency on the drying process
    Two special cases,in which the selected pulsation frequencies were 0 H/,and 83 H/ respectively,were simulated and their simulation results indicated that the pulsating frequency of gas stream could improve the intensities of the heat and mass transfer during a pulse combustion spray drying process.
引文
1.潘永康主编,现代干燥技术,化学工业出版社,1998
    2. Sonodyne Industries, Pulse Combustion Lowers Drying Costs, Chemical Engineering,December, 1984, p44~45
    3. Keller, J. O., German, R. S. and Ozer, R. W., Fundamentals of enhanced scalar transport in strongly oscillating and/or resonant flow fields as created by pulse conbustion, Drying'92, 1992, pp. 161~180
    4. Ozer, R. W., Review of operating date from pilot plant and field combustion drying system, in proc. Power and bulk Solids Conference and Exhibition, Chicago, Illinis,1993, pp. 407~419
    5. Stewat, C. R., Lemieux, P. M. and Zinn, B. T., Proc. Int. Symp. on Pulsating Combustion, Monterey, California, 1991. B-21
    6. Robert J, Swientek. Pulse combustion burner dries food in O. Is, Food Processing,1989, pp9~10
    7.曹崇文,朱文学著,农产品干燥工艺过程的计算机模拟,中国农业出版社,2001
    8.曹崇文,计算流体动力学(CFD)在喷雾干燥中的应用,第八届全国干燥大会论文集,2002,pp32~37
    9. Straatsma, J., Houwelingen, G. Van, Steenbergen, A.E. and Jong, P.De, Spray drying of food products: 1. Simulation model, Journal of Food Engineering, 42, 1999, pp. 67-72
    10. Southwell, D.B., Langrish, A.G. and Fletcher, D.F., Process intensification in spray dryers by turbulence enhancement, Trans IchemE, 77(A), 1999, pp.189-205
    11. Southwell, D.B. and Langrish, T.A.G., Observations of flow patterns in a spray dryer, Drying Technology, 18(3), 2000, pp. 661-685
    12. HYUN mo yang and SANG soo kim, Experimental study on the spray characteristics in the spray drying absorber, Envion.Sci. Technol, 34, 2000, pp.4582-4586
    13.周力行,湍流气粒两相流动和燃烧的理论与数值模拟,科学出版社,1994
    14.范维澄,万跃鹏,流动及燃烧的模型与计算,中国科技大学出版社,1992
    15.倪浩清,沈明,工程湍流流动,传热及传质的数值模拟,中国水利水电出版社,1996
    16.邓颂九,李启恩,传递过程原理,华南理工大学出版社,1990
    
    
    17.戴干策,陈敏恒,化工流体力学,化学工业出版社,1988
    18.李德元.三维非定常流体力学数值方法. 科学出版社,1998
    19.郭印诚,林文漪,王冬,液雾燃烧的全欧拉模型数值模拟,《燃烧科学与技术》,第6卷,第1期,2000年2月,pp.38-43.
    20.郭印诚,王希麟,王德新,林文漪,周力行,旋风炉内气相燃烧及两相流动的数值模拟,《燃烧科学与技术》,第6卷,第3期,2000年8月,pp.119-194.
    21.高金森,徐春明,杨光华,郭印诚,林文漪,催化裂化提升管反应器气液固3相流动反应的数值模拟,Ⅳ:原料液雾油滴粒径变化的数值模拟,《石油学报(石油加工)》,第16卷,第1期,2000年2月,pp.26-30.
    22.徐春明,杨光华,郭印诚,林文漪,提升管反应器气固两相流动反应模型及数值模拟:Ⅰ.气固两相流动反应模型的建立,《石油学报》(石油加工版),1998年3月,第14卷,第1期,pp.27-33.
    23.陈新国,徐春明,郭印城,颗粒动力学模型在催化裂化工艺中的应用,《炼油设计》,第30卷,第9期(总第178期),2000年8月,pp.25-28.
    24. Zbicinski, I., Modeling and verification heal and mass in the flow field generated by pulse combustor, PHD thesis, LODZ, 1999
    25. Liu Xiangdong,Cao Chongwen,Li Baoguo et al. Pulse combustion drying.Drying'98, 1998, pp496-503
    26. Patankar, S.V and Spalding, D.B, 1972,A calculation procedure for heat, mass and momentum transfer in parabolic flows, International Journal of Heat and Mass Transfer, 15, pp. 1978-1809
    27. Oakley, D.E, Bahu, R.E and Reay, D. The aerodynamics of co-current spray dryers, Proc.6th International drying Symposium, Versailers, 1988
    28. Buchkowski,A.G., Eng,E, Kitchen,J.A., Drying and burning wood waste using pulse combustion, The second biomass conference of the Americas, Portland Oregon, August, 1995, pp21~24
    29. Mujumdar A.S, Menon A.S, Drying or solids: principles, classification and selection of dryer. In: Handbook of Industrial Drying, 1995, pp1-40
    30. Bahu, R.E., Spray drying-maturity or opportunities?, In Mujumdar, A.S.(ed.), Drying 92, Elsevier,
    
    Amsterdam:74-91, 1992
    31. Goldstcin, S., 1938, Modern developments in fluid mechanics, Clarendon Press. Oxford
    32. Haider, A., Levcnspicel, O., Drag cofficicnt and terminal velocity of spherical and nonspherical particles, Powder Technology, 58, 1989, pp63-70
    33. Kiranoudis, C.T., Karathanos, V.T., and Markatos, N.C., Computational fluid dynamics of industrial batch dryers of fruits, Drying Technology, 17(1&2), 1999, pp.1-25
    34. Kuo, K. K. Y., Principles of Combustion, John Wiley and Sons, New York, 1986,
    35. Launder, B.E. and Splading, D.B., The nmnerical computation of turbulence flows, Computer Methods in Applied Mechanics and Engineering, 3, 1974, pp. 269-289
    36.郭印诚,林文漪,玻璃熔窑预燃室内流动与燃烧计算,《燃烧科学与技术》,第6卷,第2期,2000年5月,pp.146-149.
    37.郭印诚,向明燕,徐春明,石油化工燃油加热炉中液雾燃烧的数学模型,《燃料化学学报》,第28卷,第3期,2000年6月,pp.210-215.
    38.郭印诚,林文漪,马蹄形火焰玻璃熔窑燃烧空间流动与燃烧计算,《燃烧科学与技术》,第6卷,第3期,2000年8月,pp.244-248.
    39.张会强,王赫阳,王希麟,郭印诚,林文漪,两相混合层中颗粒运动的数值模拟,《工程热物理学报》,第21卷,第1期,2000年1月,pp.115-119.Launder,B.E.and Splading,D.B., Mathematical Models of Turbulence, Academic Press, London, 1972,
    40. Langrish, T.A.G., Oakley, D.E., Keey, R.B., Bahu, R.E. and Hutchinson, C.A., Time-dependent flow patterns in spray dryers, Trans. IchemE, 71(A), 1993, pp.355-360
    41. Markatos, N.C., The mathematical modeling of turbulent flows, Applied Mathematical Modeling, 10, 1986, pp. 190-220
    42. Oakey, D.E. and Babu, R.E, Spray/gas mixing bchaviour within spray dryers, In Mujumdar, A.S. and Filkova, I. (ods), Drying '91, Elsevier, Amsterdam, 1991, pp.303-313
    43. Parti, M. and Palanez, B., Mathematical model for spray drying, Chemical Enginccring Science, 29, 1974, pp. 355-362
    44. Spalding, D.B., A general purpose computer program for multi-dimensional one-and two-phase flow, Mathematics and Computers in Simulation, ⅩⅩⅢ, 1981, pp.267-276
    45.高金森,徐春明,林世雄,郭印诚,王希麟,提升管反应器气固两相流动反应模型及数值模拟:Ⅱ:工业提升管反应器气固两相流动反应的数值模拟,《石油学报》(石油加工版),1998
    
    年6月,第14卷,第2期,pp.55-60.
    46.高金森,徐春明,林世雄,郭印诚,王希麟,提升管反应器固两相气流动反应模型及数值模拟:Ⅲ.注终止剂技术的数值模拟,《石油学报》(石油加工版),1998年9月,第14卷,第3期,pp.38-45.
    47.高金森,徐春明,杨光华,郭印诚,林文漪,催化裂化提升管反应器模型的建立,《高校化学工程学报》,1998年9月,第12卷,第3期,pp.259-264.
    48.高金森,徐春明,杨光华,郭印诚,林文漪,提升管反应器气固两相流动反应模型及数值模拟:Ⅳ.进料段消除回流的数值模拟,《石油学报》(石油加工版),1998年12月,第14卷,第4期,pp.45
    49. FAN Quanlin, ZHANG Huiqiang, GUO Yincheng, WANG Xilin, LIN Wenyi, Experimental Studies of Two-Phase Round Turbulent Jet Coherent Structures, Tsinghua Science and Technology, Vol.5, No.1, March 2000, pp.105-108.
    50.陈新国,徐春明,郭印诚,稠密气体理论在催化裂化提升管中的应用,《化学反应工程与工艺》,第16卷,第1期,2000年3月,pp.7-13.
    51.陈新国,徐春明,郭印诚,用颗粒流的动力学理论模拟提升管反应器流动特征,《化工学报》,第51卷,第2期,2000年4月,pp.264-268.
    52.陈新国,徐春明,郭印诚,催化裂化提升管反应器流动反应模型的建立,《石油大学学报》(自然科学版),第24卷,第3期,2000年6月,pp.1-4.
    53.程易,魏飞,郑雨,金涌,郭印诚,林文漪,下行床气固两相流动计算流体力学模拟,《化工学报》,第51卷,第3期,2000年6月,pp.344-352.
    54.周欣,王赫阳,王希麟,张会强,郭印诚,林文漪,液固两相平板混合层中涡结构对颗粒沉降的影响,《清华大学学报》(自然科学版),第40卷,第6期。2000年6月,pp.39-41.
    55.王赫阳,张会强,王希麟,郭印诚,林文漪,改进的格子涡方法及其在混合层模拟中的应用,《清华大学学报》(自然科学版),第40卷,第5期,2000年5月,pp.92-94.
    56.周欣,王赫阳,王希麟,张会强,郭印诚,林文漪,流速比对颗粒在液固两相平板混合层中沉降的影响,《工程热物理学报》,第21卷,第5期,2000年9月,pp.587-589.
    57. Theologos, K.N., Maroulis, Z.B. and Markatos, N.C., Simulation of transport dynamics in
    
    fluidized-bed dryers, Drying Technology, 15, 1997, pp. 1265-1291
    58. Zbicinski, I., Development and experimental verification of momentum, heat and mass transfer model in spray drying, Journal of Chemical Engineering, 58, 1995, pp 123-133
    59. Zbicinski, I., Grad, J. and Strumilo, C., Effect of turbulence on heat and mass transfer in the atomization zone, Drying Technology, 14 (2), 1996, pp. 231-244
    60. Zhou, L. X., Chen, T., Xu, Y., Ma, Z. H., Guo, Y. C., Strongly Swirling Gas-Particle Flows and Coal Combustion in a Cyclone Combustor, Proc. 27th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, July, 1998, pp.3119-3126.
    61. Keller, J. O., German, R. S., and Ozer, R. W., Fundamentals of enhanced scalar transport in strongly oscillating and/or resonant flow fields as created by pulse conbustion, Drying'92, 1992, pp. 161~180
    62. Ozer, R. W., Review of operating date from pilot plant and field combustion drying system, in proc. Power and bulk Solids Conference and Exhibition , Chicago, Illinis, 1993, pp. 407~419
    63. Stewat, C. R., Lemieux, P. M., and Zinn, B. T., Proc. int. Symp. on Pulsating Combustion, Monterey, California, 1991.B-21
    64. Keller, J. O., Hong, I, Pulse Combustion:The Mechanism of NO_x Production, Combustion and Flame, Vol 80, 1990, pp.219~237
    65.李保国,脉动燃烧及脉动燃烧喷雾干燥的理论分析与实验研究,中国农业大学博士论文,1999
    66. Sonodyne Industries, Pulse Combustion Lowers Drying Costs, Chemical Engineering, December, 1984, p44~45
    67.秦朝葵,脉冲燃烧的机理和稳定性研究,第一,二,三,四,六章,同济大学博士学位论文,1994
    68.李嘉,李克锋,邓云,李然,流场和浓度场三维计算的数学模型和验证,2001年CFX中国用户年会论文集,2001,pp101~106
    69.何承军,自适应网格在超音速进气道流场分析中的应用,2001年CFX中国用户年会论文集,2001,pp167~169
    70.刘兴洲,何承军,埋入式进气道流场数值模拟,2001年CFX中国用户年会论文集,2001,pp153~157