燃油浮法玻璃熔窑富氧燃烧火焰空间的三维图象模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统阐述了国内外玻璃熔窑火焰空间中燃烧过程研究方法的发展,在综合浮法玻璃熔窑理论和实际作业过程的基础上,建立了具有实用意义的燃油浮法玻璃熔窑富氧燃烧火焰空间的三维数学模型。模型包括气相流动与传热模型和雾化油滴燃烧的轨道模型。前者用SIMPLE算法求解,其中方程包括连续性方程,动量方程,湍流模型方程和能量守恒方程;后者用单元内颗粒源法来处理,将颗粒对气相的影响作为源相加给气相。
     程序采用Fortran语言在微软的PowerStation平台上进行开发,按模块化进行结构设计,便于模型功能扩充和完善,并且具有较强的通用性。为便于计算结果的直观化,以计算机图形学为基础,利用Stanfordgraphic作图软件丰富的拟合功能,将数值模拟得到的计算结果用图像来拟合,从而更为直观地表示富氧燃烧温度场分布和气流的运动情况,实现计算结果的可视化。
     课题结合实例研究了日产400吨燃油浮法玻璃熔窑富氧燃烧火焰空间的温度分布情况和气体的流动情况。本模型中,富氧助燃气体的氧含量是27%,用纯氧作为燃油的雾化介质送入。从模拟图像可以看出,该三维数学模型能够比较客观的反映玻璃熔窑富氧燃烧的火焰空间的温度场分布和气体流场的分布规律,对富氧燃烧技术发展具有较大的实用价值;程序设计合理,收敛性良好,而且具有改变参数容易的优点。同时,三维数值图像模拟技术由于具有直观、明了的表示数值计算的结果等优点,在玻璃熔窑的研究中,被广泛的采纳和应用。
This thesis reviewed systematically the development of research methods,especially numerial simulation ,for the combustion process of the glass melting furnace,and established the three-dimensional oxygen-firing mathematical model which is very practical in oil fired float glass furnaces on the base of theory of glass melting furnaces and industrial application.The model consisted of gas turbulent flows and heat transfer sub-model and spray combustion sub-model.The former includes continuity equation, momentum equation,turbulence equation and energy equation, and it was solved by SIMPLE scheme. The PSIC method was taken by the later model.
    The program was developed modularization with Fortran & PowerStation,and could be easily enriched.In order to express the results clearly,the date was fitted by the Stanfordgraphic drawing software.
    In this paper, the flow field and temperature distribution space in oil fired float glass furnaces(400t/d) were studied.In the model, the oxygen was the percent of 27 in the gas,poured into the glass melting furnace as the atomization medium of the fuel.It was concluded that this model could express objectively the law of the flow field and temperature distribution space in oil fired float glass furnaces.The model fitted the practical work conditions perfectly,and owned practical value.The program was reasonable and could be easily enriched.Therefore,the three-dimensional image simulation would be applied widely in the research of glass furnaces.
引文
[1] 孙承绪、宋力昕:浮法玻璃窑内液流运动和传热三维数学模拟,第四届全国玻璃科学技术学术年会论文集,1993.10
    [2] 戴树业、韩建国、李宏:富氧燃烧技术的应用,玻璃与搪瓷,2000.2
    [3] 谯中惠:富氧技术的现状及进展,四川化工与腐蚀控制,1998.1
    [4] 王际明,玻璃熔窑的燃烧技术,中国玻璃,1993,5
    [5] 诺马克著,解剑军译:富氧燃烧熔制玻璃,中国玻璃,1992,1
    [6] 北京玻璃研究所,氧在玻璃池炉加热中的应用,玻璃,1996,4
    [7] 于兰芬、田华军,富氧燃烧技术应用的可行性分析,中国玻璃,1995,5
    [8] 王应时、范维澄、周力行、徐旭常,燃烧过程数值计算,科学出版社,1986
    [9] 岑可法、樊建人,燃烧流体力学,水利电力出版社,1991
    [10] 周力行湍流两相流流动与燃烧的数值模拟,清华大学出版社,1991.8
    [11] Chou,P.Y.,Quart. Appl.Math.,3(1945)198
    [12] Prandtl., Uber eine neue Formel system Fur die ausebidete Turbulenz,Nach richen der Akad,Wiss.,Gottingen,Math. Phys.,1945
    [13] Taylor G.I.,The transport of vorticity and heat through fluids in turbulent motion,Appendix by Fage And V.M. Falkner, Proc.Roy. Soc.,Series A,135,685-705,1932.
    [14] Komogorov A.N.,Equations of Turbulent Motion of an Incompressible Fluid,Itr.Ak.Nauk,SSSR(Translation from Russion by D.B.Spalding,1968).
    [15] Launder B.E. And Spalding D.B.,Mathematical Model of Tuebulence,Academic Press, 1972.
    [16] Jones W.P. And Launder B.E.,Prediction of low Reynods Number Phenomena With A Two Equation Model of Turbulence Int. J.Heat and Most Transfer, Vol. 16,1973
    [17] Hottel,H.C. And Cohen,E.S.,Amer. Inst.of Chem. Eng. Jour.,4(1958)3.
    [18] Hottel,H.C. And Sarofim,A.F.,Radiative Transfer, McGraw-Hill Book
    
    Comp,(1967).
    [19] Howell J.R. et.al.,Amer, inst. Of Chem Eng. Jour.,10(1964)562.
    [20] 徐旭常,燃烧室数学模拟和辐射传热的Monte—Carlo解法,清华大学科研报告,1979.
    [21] 徐旭常,燃烧室中火焰三元传热过程的数学模拟,18~th Symp,(intern.) on Comb., (1980) 1919.
    [22] 王梓坤,概率论基础及其应用,科学出版社,1976.
    [23] Abaas, A.S., et.al., 18~(th)Symp. (intern.) on Comb., (1981) 1427.
    [24] Stumn O: Clastech Ber 5(5)252-274(1927).
    [25] Gehlhoff R:J Soc Glass Tech 15(57)12-21(1931).
    [26] Peuches J:Glastech Ber 28(7)276-281 (1965).
    [27] 功刀雅长,高桥克明,泽井郁太郎:窑业协会志,67(9)301—311(1960).
    [28] Patankar, S.V. and Spalding,D.B.,Int. J.of Heat and Mass Transfer,10(1967)1389.
    [29] Launder, B.E. and Spalding,D.B.Mathematic Models of Turbulence Academic Press,London And new York,(1972).
    [30] Harlow,F.H. And Nakayama,P.I.,Physics of fluids,10(1967)2323.
    [31] Komogorov,A.N.,Izv.Akad.Nauk.SSSR Ser.Phys.,6(1942)56.
    [32] Harlow, F.H. And Amesen,A.A.,J.Comp.Phys.,17(1975)19.
    [33] Splading,D.B.,The Calculation of Free-Convection phenomenon in Gas-Liquid mixtures,ICHMT Seminar, Dubrovnik,(1976).
    [34] Splading,D.B.,Numerical Computation of Multi-phase Fluid Flow And Heat Transfer,Pineridge Press,(1980).
    [35] Splading,D.B., Numerical Computation of Multi-phase Flows,Imperial Colleg Report HTS/81/8,London,(1981).
    [36] 李会平:华东化工学院82级硕士论文(1985)
    [37] 孙承绪,李会平:玻璃池窑供料道内流动与传热过程的数学模拟,《硅酸盐学报》Vol.15..No.1Feb l987
    [38] 邬永国,孙承绪:华东化工学院学报,13(5):P593—P599
    
    
    [39] 孙承绪,刘全清:硅酸盐学报,19 (1),86(1991)
    [40] 李会平:华东化工学院学报,18(增刊):P6—12(1992)
    [41] 王剑,周志豪:窑池内玻璃液流动和传热的二维数学模型,《玻璃与搪瓷》15卷1期
    [42] Jian,W.,Zhihao Z.:Investigation into glass tank geometries by means of a mathematic model, Glastech Ber, 1992 65(1):P 1-8
    [43] 胡兴洪:浙江大学八五级硕士论文,1987
    [44] 陈越南等,第四全国计算传热论文集,山东济南(1991)
    [45] 周海波:浙江大学八六级硕士论文,1988
    [46] 周海波,张飞鹏:玻璃池窑中流动与传热的二维数学模型《玻璃》1992.4,P1—9
    [47] 祁建伟:浙江大学八九级硕士论文,1992
    [48] 赵国昌,胡桅林,过增元等:玻璃池窑数值模拟,《玻璃与搪瓷》21卷3期,P15—20
    [49] 赵国昌等,第五届电子玻璃专业委员会年会论文,河南安阳(1993)
    [50] 胡桅林,赵国昌,评价玻璃澄清过程的定量化指标,第四届华北硅酸盐学会论文,天津 (1993)
    [51] 吴锡琪,李立华:玻璃熔窑火焰空间二维数学模型,1993.3,武汉工业大学学报,第15卷第一期,P98—105
    [52] 胡昌盛:玻璃池窑火焰空间三维传热数学模型的研究,第四届全国玻璃科学技术学术年会论文集,1993.10,P182—191
    [53] Wu,X.Q. et al,Proc, of ⅩⅧ Inte. Cong. On Glass,6(1995) 168.
    [54] ShenJinlin, Hu Linyun: Three—Dimensional mathematic Modeling of Turbulent Combustion in Combustion space of Oil-fired Float Glass Melting Furnace,The International Conference on Glass ⅩⅧ, 1997
    [55] 吴勇:浙江大学九五级硕士论文,1998
    [56] 岳爱文:玻璃熔窑内传热与流动及砂粒熔化的计算机模型,《武汉工业大学硕士论文》,2000
    [57] 何松申、姜宏等:玻璃熔窑三维数字模拟的应用,《玻璃》,2001年第
    
    二期,P5—9
    [58] 余伟,浙江大学99级硕士毕业论文,2002,
    [59] Peschke J.V. Glastechn.Ber.,1965,38:276-281
    [60] Curran,R.L.:IEEE.Trans.Ind.Appl.,IGA-7,P116-P129(1971)
    [61] Austin,M.J.:Glass Tech.,11(5),p128-134(1970)
    [62] Leyens,G.:Glastech.Ber.,47,p251-259,261-270(1974)
    [63] Mase,H,et al:Asahi Glass Co.Res.Lab.Rep.,30(2),p69-79(1980)
    [64] Leyens,G.et al:Glastech.Ber.,55(5),p81-87 (1982)
    [65] Burley, D.M.et al:Glass Techn.,19(4),p86-91 (1978)
    [66] Mardorf,L.et al:Glastech. Ber.,56(4),p73-84(1983)
    [67] S Wright:Shieffield Univ Phd thesis,1972
    [68] S Wright H Rawson:Glass techn,1973,14:P42-49
    [69] DM Burley A Moult:Application of the finite element method to calculate flow patterns in glass tank furnace ,Glass Tech, 1978,19(4):p86-91
    [70] Spalding D.B. & Pun N.M.,A general computer program for two-dimensitioned ellipiti flows, Imperal College London, 1977
    [71] Patankar S.V.,Numberial heat transfer and fluid flow, hemisphere publishing Co. Mguaw-hill, 1980
    [72] G J Weir SP White:A two dimentional mathematic model of a forehearth, Glass tech, 1982,23(20):p113-119
    [73] Moult A.,Glastechn.1982,23(2):p106-112
    [74] RaMurnne:Analysis ofglass process problem using the multigrid method, Silikaty,1989,33(4):p311-324
    [75] D Jouvaud:Glass melting with pour oxugen combution ;modeling of convective and radiative heat transfer, ceram Eng sci Pro, 1988,9(3-4),p221-231
    [76] R Tinary DB Sticker and J Woodroffe:Numberical modeling to support engineering developmeny of an glass melter, ceramic bulletin,1988,67(11):p1791-1796
    [77] AE Hokanson:Reverse Combutioning as fires glass furnace operations,An ceram soc bull,1990,69(6):p1032-1034
    
    
    [78] P Schill:Calculation of 3D flow of glass melt using the multigrid method,Silikaty,1989,33(4):p311-324
    [79] P Schill:Calculation of 3D flow of glass melt flow in large furnace via grid method ,glastech Ber,1990,63k:p39-47
    [80] I Szepesvarl &Padar:Mathematical model of an all-electric glass furnace,Glass'89 15th int Conf on Glass,Leningrad,1989,Proc,3a:p138-142
    [81] F Simonis:Estimation of the local redox distribution in the melt by numberical flow modeling,Glastech ber,1990,63k;p29-38
    [82] B Dubois S Rey D Peit:The effect of melting temperature on the redox state of glass refines with sulphate Glastech Ber,1990,63k:p138-139
    [83] C J Hoogendoom L post:Modeling of combustion and heat transafer in glass furnaces,glastech ber,1990,63(1),P7-12
    [84] Mk Chondry:Mathematical modeling of flow and heat transfer phenomenen in glass furnace charnels and forehearths,J Am ceram soc, 1991,74(12)
    [85] Lowell E Perrine:Glass Ind,Feb 1992,p8-10
    [86] H Rawson:Radiative heat transfer in glass manufacture-one-and two dimenstional problems,Glastech Ber, 1990,63(1),p7-12
    [87] 郭宽良,数值计算传热学,安徽科学出版社,1987
    [88] 周力行,燃烧理论和化学流体力学,科学出版社,1976
    [89] Crowe, C.T., et al., St. Sec.of the Comb. Inst., (1974)
    [90] Crowe, C.T., et al., Proc. 1976 Heat transfer and Fluid Mech.Inst.,(1976).
    [91] 任安禄、谢定国,力学学报,26 (1974) 356.